llvm-project/clang/lib/StaticAnalyzer/Checkers/PthreadLockChecker.cpp

334 lines
11 KiB
C++
Raw Normal View History

//===--- PthreadLockChecker.cpp - Check for locking problems ---*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This defines PthreadLockChecker, a simple lock -> unlock checker.
// Also handles XNU locks, which behave similarly enough to share code.
//
//===----------------------------------------------------------------------===//
#include "ClangSACheckers.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
using namespace clang;
using namespace ento;
namespace {
struct LockState {
enum Kind { Destroyed, Locked, Unlocked } K;
private:
LockState(Kind K) : K(K) {}
public:
static LockState getLocked() { return LockState(Locked); }
static LockState getUnlocked() { return LockState(Unlocked); }
static LockState getDestroyed() { return LockState(Destroyed); }
bool operator==(const LockState &X) const {
return K == X.K;
}
bool isLocked() const { return K == Locked; }
bool isUnlocked() const { return K == Unlocked; }
bool isDestroyed() const { return K == Destroyed; }
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(K);
}
};
class PthreadLockChecker : public Checker< check::PostStmt<CallExpr> > {
mutable std::unique_ptr<BugType> BT_doublelock;
mutable std::unique_ptr<BugType> BT_doubleunlock;
mutable std::unique_ptr<BugType> BT_destroylock;
mutable std::unique_ptr<BugType> BT_initlock;
mutable std::unique_ptr<BugType> BT_lor;
enum LockingSemantics {
NotApplicable = 0,
PthreadSemantics,
XNUSemantics
};
public:
void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
void AcquireLock(CheckerContext &C, const CallExpr *CE, SVal lock,
bool isTryLock, enum LockingSemantics semantics) const;
void ReleaseLock(CheckerContext &C, const CallExpr *CE, SVal lock) const;
void DestroyLock(CheckerContext &C, const CallExpr *CE, SVal Lock) const;
void InitLock(CheckerContext &C, const CallExpr *CE, SVal Lock) const;
void reportUseDestroyedBug(CheckerContext &C, const CallExpr *CE) const;
};
} // end anonymous namespace
// GDM Entry for tracking lock state.
REGISTER_LIST_WITH_PROGRAMSTATE(LockSet, const MemRegion *)
REGISTER_MAP_WITH_PROGRAMSTATE(LockMap, const MemRegion *, LockState)
void PthreadLockChecker::checkPostStmt(const CallExpr *CE,
CheckerContext &C) const {
ProgramStateRef state = C.getState();
const LocationContext *LCtx = C.getLocationContext();
StringRef FName = C.getCalleeName(CE);
if (FName.empty())
return;
if (CE->getNumArgs() != 1 && CE->getNumArgs() != 2)
return;
if (FName == "pthread_mutex_lock" ||
FName == "pthread_rwlock_rdlock" ||
FName == "pthread_rwlock_wrlock")
AcquireLock(C, CE, state->getSVal(CE->getArg(0), LCtx),
false, PthreadSemantics);
else if (FName == "lck_mtx_lock" ||
FName == "lck_rw_lock_exclusive" ||
FName == "lck_rw_lock_shared")
AcquireLock(C, CE, state->getSVal(CE->getArg(0), LCtx),
false, XNUSemantics);
else if (FName == "pthread_mutex_trylock" ||
FName == "pthread_rwlock_tryrdlock" ||
FName == "pthread_rwlock_trywrlock")
AcquireLock(C, CE, state->getSVal(CE->getArg(0), LCtx),
true, PthreadSemantics);
else if (FName == "lck_mtx_try_lock" ||
FName == "lck_rw_try_lock_exclusive" ||
FName == "lck_rw_try_lock_shared")
AcquireLock(C, CE, state->getSVal(CE->getArg(0), LCtx),
true, XNUSemantics);
else if (FName == "pthread_mutex_unlock" ||
FName == "pthread_rwlock_unlock" ||
FName == "lck_mtx_unlock" ||
FName == "lck_rw_done")
ReleaseLock(C, CE, state->getSVal(CE->getArg(0), LCtx));
else if (FName == "pthread_mutex_destroy" ||
FName == "lck_mtx_destroy")
DestroyLock(C, CE, state->getSVal(CE->getArg(0), LCtx));
else if (FName == "pthread_mutex_init")
InitLock(C, CE, state->getSVal(CE->getArg(0), LCtx));
}
void PthreadLockChecker::AcquireLock(CheckerContext &C, const CallExpr *CE,
SVal lock, bool isTryLock,
enum LockingSemantics semantics) const {
const MemRegion *lockR = lock.getAsRegion();
if (!lockR)
return;
ProgramStateRef state = C.getState();
SVal X = state->getSVal(CE, C.getLocationContext());
if (X.isUnknownOrUndef())
return;
DefinedSVal retVal = X.castAs<DefinedSVal>();
if (const LockState *LState = state->get<LockMap>(lockR)) {
if (LState->isLocked()) {
if (!BT_doublelock)
BT_doublelock.reset(new BugType(this, "Double locking",
"Lock checker"));
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
auto report = llvm::make_unique<BugReport>(
*BT_doublelock, "This lock has already been acquired", N);
report->addRange(CE->getArg(0)->getSourceRange());
C.emitReport(std::move(report));
return;
} else if (LState->isDestroyed()) {
reportUseDestroyedBug(C, CE);
return;
}
}
ProgramStateRef lockSucc = state;
if (isTryLock) {
// Bifurcate the state, and allow a mode where the lock acquisition fails.
ProgramStateRef lockFail;
switch (semantics) {
case PthreadSemantics:
std::tie(lockFail, lockSucc) = state->assume(retVal);
break;
case XNUSemantics:
std::tie(lockSucc, lockFail) = state->assume(retVal);
break;
default:
llvm_unreachable("Unknown tryLock locking semantics");
}
assert(lockFail && lockSucc);
C.addTransition(lockFail);
} else if (semantics == PthreadSemantics) {
// Assume that the return value was 0.
lockSucc = state->assume(retVal, false);
assert(lockSucc);
} else {
// XNU locking semantics return void on non-try locks
assert((semantics == XNUSemantics) && "Unknown locking semantics");
lockSucc = state;
}
// Record that the lock was acquired.
lockSucc = lockSucc->add<LockSet>(lockR);
lockSucc = lockSucc->set<LockMap>(lockR, LockState::getLocked());
C.addTransition(lockSucc);
}
void PthreadLockChecker::ReleaseLock(CheckerContext &C, const CallExpr *CE,
SVal lock) const {
const MemRegion *lockR = lock.getAsRegion();
if (!lockR)
return;
ProgramStateRef state = C.getState();
if (const LockState *LState = state->get<LockMap>(lockR)) {
if (LState->isUnlocked()) {
if (!BT_doubleunlock)
BT_doubleunlock.reset(new BugType(this, "Double unlocking",
"Lock checker"));
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
auto Report = llvm::make_unique<BugReport>(
*BT_doubleunlock, "This lock has already been unlocked", N);
Report->addRange(CE->getArg(0)->getSourceRange());
C.emitReport(std::move(Report));
return;
} else if (LState->isDestroyed()) {
reportUseDestroyedBug(C, CE);
return;
}
}
LockSetTy LS = state->get<LockSet>();
// FIXME: Better analysis requires IPA for wrappers.
if (!LS.isEmpty()) {
const MemRegion *firstLockR = LS.getHead();
if (firstLockR != lockR) {
if (!BT_lor)
BT_lor.reset(new BugType(this, "Lock order reversal", "Lock checker"));
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
auto report = llvm::make_unique<BugReport>(
*BT_lor, "This was not the most recently acquired lock. Possible "
"lock order reversal", N);
report->addRange(CE->getArg(0)->getSourceRange());
C.emitReport(std::move(report));
return;
}
// Record that the lock was released.
state = state->set<LockSet>(LS.getTail());
}
state = state->set<LockMap>(lockR, LockState::getUnlocked());
C.addTransition(state);
}
void PthreadLockChecker::DestroyLock(CheckerContext &C, const CallExpr *CE,
SVal Lock) const {
const MemRegion *LockR = Lock.getAsRegion();
if (!LockR)
return;
ProgramStateRef State = C.getState();
const LockState *LState = State->get<LockMap>(LockR);
if (!LState || LState->isUnlocked()) {
State = State->set<LockMap>(LockR, LockState::getDestroyed());
C.addTransition(State);
return;
}
StringRef Message;
if (LState->isLocked()) {
Message = "This lock is still locked";
} else {
Message = "This lock has already been destroyed";
}
if (!BT_destroylock)
BT_destroylock.reset(new BugType(this, "Destroy invalid lock",
"Lock checker"));
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
auto Report = llvm::make_unique<BugReport>(*BT_destroylock, Message, N);
Report->addRange(CE->getArg(0)->getSourceRange());
C.emitReport(std::move(Report));
}
void PthreadLockChecker::InitLock(CheckerContext &C, const CallExpr *CE,
SVal Lock) const {
const MemRegion *LockR = Lock.getAsRegion();
if (!LockR)
return;
ProgramStateRef State = C.getState();
const struct LockState *LState = State->get<LockMap>(LockR);
if (!LState || LState->isDestroyed()) {
State = State->set<LockMap>(LockR, LockState::getUnlocked());
C.addTransition(State);
return;
}
StringRef Message;
if (LState->isLocked()) {
Message = "This lock is still being held";
} else {
Message = "This lock has already been initialized";
}
if (!BT_initlock)
BT_initlock.reset(new BugType(this, "Init invalid lock",
"Lock checker"));
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
auto Report = llvm::make_unique<BugReport>(*BT_initlock, Message, N);
Report->addRange(CE->getArg(0)->getSourceRange());
C.emitReport(std::move(Report));
}
void PthreadLockChecker::reportUseDestroyedBug(CheckerContext &C,
const CallExpr *CE) const {
if (!BT_destroylock)
BT_destroylock.reset(new BugType(this, "Use destroyed lock",
"Lock checker"));
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
auto Report = llvm::make_unique<BugReport>(
*BT_destroylock, "This lock has already been destroyed", N);
Report->addRange(CE->getArg(0)->getSourceRange());
C.emitReport(std::move(Report));
}
void ento::registerPthreadLockChecker(CheckerManager &mgr) {
mgr.registerChecker<PthreadLockChecker>();
}