llvm-project/clang/lib/AST/NSAPI.cpp

620 lines
18 KiB
C++
Raw Normal View History

//===--- NSAPI.cpp - NSFoundation APIs ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/AST/NSAPI.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
NSAPI::NSAPI(ASTContext &ctx)
: Ctx(ctx), ClassIds(), BOOLId(nullptr), NSIntegerId(nullptr),
NSUIntegerId(nullptr), NSASCIIStringEncodingId(nullptr),
NSUTF8StringEncodingId(nullptr) {}
IdentifierInfo *NSAPI::getNSClassId(NSClassIdKindKind K) const {
static const char *ClassName[NumClassIds] = {
"NSObject",
"NSString",
"NSArray",
"NSMutableArray",
"NSDictionary",
"NSMutableDictionary",
"NSNumber",
"NSMutableSet",
"NSMutableOrderedSet",
"NSValue"
};
if (!ClassIds[K])
return (ClassIds[K] = &Ctx.Idents.get(ClassName[K]));
return ClassIds[K];
}
Selector NSAPI::getNSStringSelector(NSStringMethodKind MK) const {
if (NSStringSelectors[MK].isNull()) {
Selector Sel;
switch (MK) {
case NSStr_stringWithString:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("stringWithString"));
break;
case NSStr_stringWithUTF8String:
Sel = Ctx.Selectors.getUnarySelector(
&Ctx.Idents.get("stringWithUTF8String"));
break;
case NSStr_initWithUTF8String:
Sel = Ctx.Selectors.getUnarySelector(
&Ctx.Idents.get("initWithUTF8String"));
break;
case NSStr_stringWithCStringEncoding: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("stringWithCString"),
&Ctx.Idents.get("encoding")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSStr_stringWithCString:
Sel= Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("stringWithCString"));
break;
case NSStr_initWithString:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("initWithString"));
break;
}
return (NSStringSelectors[MK] = Sel);
}
return NSStringSelectors[MK];
}
Optional<NSAPI::NSStringMethodKind>
NSAPI::getNSStringMethodKind(Selector Sel) const {
for (unsigned i = 0; i != NumNSStringMethods; ++i) {
NSStringMethodKind MK = NSStringMethodKind(i);
if (Sel == getNSStringSelector(MK))
return MK;
}
return None;
}
Selector NSAPI::getNSArraySelector(NSArrayMethodKind MK) const {
if (NSArraySelectors[MK].isNull()) {
Selector Sel;
switch (MK) {
case NSArr_array:
Sel = Ctx.Selectors.getNullarySelector(&Ctx.Idents.get("array"));
break;
case NSArr_arrayWithArray:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("arrayWithArray"));
break;
case NSArr_arrayWithObject:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("arrayWithObject"));
break;
case NSArr_arrayWithObjects:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("arrayWithObjects"));
break;
case NSArr_arrayWithObjectsCount: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("arrayWithObjects"),
&Ctx.Idents.get("count")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSArr_initWithArray:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("initWithArray"));
break;
case NSArr_initWithObjects:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("initWithObjects"));
break;
case NSArr_objectAtIndex:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("objectAtIndex"));
break;
case NSMutableArr_replaceObjectAtIndex: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("replaceObjectAtIndex"),
&Ctx.Idents.get("withObject")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSMutableArr_addObject:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("addObject"));
break;
case NSMutableArr_insertObjectAtIndex: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("insertObject"),
&Ctx.Idents.get("atIndex")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSMutableArr_setObjectAtIndexedSubscript: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("setObject"),
&Ctx.Idents.get("atIndexedSubscript")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
}
return (NSArraySelectors[MK] = Sel);
}
return NSArraySelectors[MK];
}
Optional<NSAPI::NSArrayMethodKind> NSAPI::getNSArrayMethodKind(Selector Sel) {
for (unsigned i = 0; i != NumNSArrayMethods; ++i) {
NSArrayMethodKind MK = NSArrayMethodKind(i);
if (Sel == getNSArraySelector(MK))
return MK;
}
return None;
}
Selector NSAPI::getNSDictionarySelector(
NSDictionaryMethodKind MK) const {
if (NSDictionarySelectors[MK].isNull()) {
Selector Sel;
switch (MK) {
case NSDict_dictionary:
Sel = Ctx.Selectors.getNullarySelector(&Ctx.Idents.get("dictionary"));
break;
case NSDict_dictionaryWithDictionary:
Sel = Ctx.Selectors.getUnarySelector(
&Ctx.Idents.get("dictionaryWithDictionary"));
break;
case NSDict_dictionaryWithObjectForKey: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("dictionaryWithObject"),
&Ctx.Idents.get("forKey")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSDict_dictionaryWithObjectsForKeys: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("dictionaryWithObjects"),
&Ctx.Idents.get("forKeys")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSDict_dictionaryWithObjectsForKeysCount: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("dictionaryWithObjects"),
&Ctx.Idents.get("forKeys"),
&Ctx.Idents.get("count")
};
Sel = Ctx.Selectors.getSelector(3, KeyIdents);
break;
}
case NSDict_dictionaryWithObjectsAndKeys:
Sel = Ctx.Selectors.getUnarySelector(
&Ctx.Idents.get("dictionaryWithObjectsAndKeys"));
break;
case NSDict_initWithDictionary:
Sel = Ctx.Selectors.getUnarySelector(
&Ctx.Idents.get("initWithDictionary"));
break;
case NSDict_initWithObjectsAndKeys:
Sel = Ctx.Selectors.getUnarySelector(
&Ctx.Idents.get("initWithObjectsAndKeys"));
break;
case NSDict_initWithObjectsForKeys: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("initWithObjects"),
&Ctx.Idents.get("forKeys")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSDict_objectForKey:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("objectForKey"));
break;
case NSMutableDict_setObjectForKey: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("setObject"),
&Ctx.Idents.get("forKey")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSMutableDict_setObjectForKeyedSubscript: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("setObject"),
&Ctx.Idents.get("forKeyedSubscript")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSMutableDict_setValueForKey: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("setValue"),
&Ctx.Idents.get("forKey")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
}
return (NSDictionarySelectors[MK] = Sel);
}
return NSDictionarySelectors[MK];
}
Optional<NSAPI::NSDictionaryMethodKind>
NSAPI::getNSDictionaryMethodKind(Selector Sel) {
for (unsigned i = 0; i != NumNSDictionaryMethods; ++i) {
NSDictionaryMethodKind MK = NSDictionaryMethodKind(i);
if (Sel == getNSDictionarySelector(MK))
return MK;
}
return None;
}
Selector NSAPI::getNSSetSelector(NSSetMethodKind MK) const {
if (NSSetSelectors[MK].isNull()) {
Selector Sel;
switch (MK) {
case NSMutableSet_addObject:
Sel = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get("addObject"));
break;
case NSOrderedSet_insertObjectAtIndex: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("insertObject"),
&Ctx.Idents.get("atIndex")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSOrderedSet_setObjectAtIndex: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("setObject"),
&Ctx.Idents.get("atIndex")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSOrderedSet_setObjectAtIndexedSubscript: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("setObject"),
&Ctx.Idents.get("atIndexedSubscript")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
case NSOrderedSet_replaceObjectAtIndexWithObject: {
IdentifierInfo *KeyIdents[] = {
&Ctx.Idents.get("replaceObjectAtIndex"),
&Ctx.Idents.get("withObject")
};
Sel = Ctx.Selectors.getSelector(2, KeyIdents);
break;
}
}
return (NSSetSelectors[MK] = Sel);
}
return NSSetSelectors[MK];
}
Optional<NSAPI::NSSetMethodKind>
NSAPI::getNSSetMethodKind(Selector Sel) {
for (unsigned i = 0; i != NumNSSetMethods; ++i) {
NSSetMethodKind MK = NSSetMethodKind(i);
if (Sel == getNSSetSelector(MK))
return MK;
}
return None;
}
Selector NSAPI::getNSNumberLiteralSelector(NSNumberLiteralMethodKind MK,
bool Instance) const {
static const char *ClassSelectorName[NumNSNumberLiteralMethods] = {
"numberWithChar",
"numberWithUnsignedChar",
"numberWithShort",
"numberWithUnsignedShort",
"numberWithInt",
"numberWithUnsignedInt",
"numberWithLong",
"numberWithUnsignedLong",
"numberWithLongLong",
"numberWithUnsignedLongLong",
"numberWithFloat",
"numberWithDouble",
"numberWithBool",
"numberWithInteger",
"numberWithUnsignedInteger"
};
static const char *InstanceSelectorName[NumNSNumberLiteralMethods] = {
"initWithChar",
"initWithUnsignedChar",
"initWithShort",
"initWithUnsignedShort",
"initWithInt",
"initWithUnsignedInt",
"initWithLong",
"initWithUnsignedLong",
"initWithLongLong",
"initWithUnsignedLongLong",
"initWithFloat",
"initWithDouble",
"initWithBool",
"initWithInteger",
"initWithUnsignedInteger"
};
Selector *Sels;
const char **Names;
if (Instance) {
Sels = NSNumberInstanceSelectors;
Names = InstanceSelectorName;
} else {
Sels = NSNumberClassSelectors;
Names = ClassSelectorName;
}
if (Sels[MK].isNull())
Sels[MK] = Ctx.Selectors.getUnarySelector(&Ctx.Idents.get(Names[MK]));
return Sels[MK];
}
Optional<NSAPI::NSNumberLiteralMethodKind>
NSAPI::getNSNumberLiteralMethodKind(Selector Sel) const {
for (unsigned i = 0; i != NumNSNumberLiteralMethods; ++i) {
NSNumberLiteralMethodKind MK = NSNumberLiteralMethodKind(i);
if (isNSNumberLiteralSelector(MK, Sel))
return MK;
}
return None;
}
Optional<NSAPI::NSNumberLiteralMethodKind>
NSAPI::getNSNumberFactoryMethodKind(QualType T) const {
const BuiltinType *BT = T->getAs<BuiltinType>();
if (!BT)
return None;
const TypedefType *TDT = T->getAs<TypedefType>();
if (TDT) {
QualType TDTTy = QualType(TDT, 0);
if (isObjCBOOLType(TDTTy))
return NSAPI::NSNumberWithBool;
if (isObjCNSIntegerType(TDTTy))
return NSAPI::NSNumberWithInteger;
if (isObjCNSUIntegerType(TDTTy))
return NSAPI::NSNumberWithUnsignedInteger;
}
switch (BT->getKind()) {
case BuiltinType::Char_S:
case BuiltinType::SChar:
return NSAPI::NSNumberWithChar;
case BuiltinType::Char_U:
case BuiltinType::UChar:
return NSAPI::NSNumberWithUnsignedChar;
case BuiltinType::Short:
return NSAPI::NSNumberWithShort;
case BuiltinType::UShort:
return NSAPI::NSNumberWithUnsignedShort;
case BuiltinType::Int:
return NSAPI::NSNumberWithInt;
case BuiltinType::UInt:
return NSAPI::NSNumberWithUnsignedInt;
case BuiltinType::Long:
return NSAPI::NSNumberWithLong;
case BuiltinType::ULong:
return NSAPI::NSNumberWithUnsignedLong;
case BuiltinType::LongLong:
return NSAPI::NSNumberWithLongLong;
case BuiltinType::ULongLong:
return NSAPI::NSNumberWithUnsignedLongLong;
case BuiltinType::Float:
return NSAPI::NSNumberWithFloat;
case BuiltinType::Double:
return NSAPI::NSNumberWithDouble;
case BuiltinType::Bool:
return NSAPI::NSNumberWithBool;
case BuiltinType::Void:
case BuiltinType::WChar_U:
case BuiltinType::WChar_S:
case BuiltinType::Char8:
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::Int128:
case BuiltinType::LongDouble:
case BuiltinType::ShortAccum:
case BuiltinType::Accum:
case BuiltinType::LongAccum:
case BuiltinType::UShortAccum:
case BuiltinType::UAccum:
case BuiltinType::ULongAccum:
[Fixed Point Arithmetic] Addition of the remaining fixed point types and their saturated equivalents This diff includes changes for the remaining _Fract and _Sat fixed point types. ``` signed short _Fract s_short_fract; signed _Fract s_fract; signed long _Fract s_long_fract; unsigned short _Fract u_short_fract; unsigned _Fract u_fract; unsigned long _Fract u_long_fract; // Aliased fixed point types short _Accum short_accum; _Accum accum; long _Accum long_accum; short _Fract short_fract; _Fract fract; long _Fract long_fract; // Saturated fixed point types _Sat signed short _Accum sat_s_short_accum; _Sat signed _Accum sat_s_accum; _Sat signed long _Accum sat_s_long_accum; _Sat unsigned short _Accum sat_u_short_accum; _Sat unsigned _Accum sat_u_accum; _Sat unsigned long _Accum sat_u_long_accum; _Sat signed short _Fract sat_s_short_fract; _Sat signed _Fract sat_s_fract; _Sat signed long _Fract sat_s_long_fract; _Sat unsigned short _Fract sat_u_short_fract; _Sat unsigned _Fract sat_u_fract; _Sat unsigned long _Fract sat_u_long_fract; // Aliased saturated fixed point types _Sat short _Accum sat_short_accum; _Sat _Accum sat_accum; _Sat long _Accum sat_long_accum; _Sat short _Fract sat_short_fract; _Sat _Fract sat_fract; _Sat long _Fract sat_long_fract; ``` This diff only allows for declaration of these fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. Differential Revision: https://reviews.llvm.org/D46911 llvm-svn: 334718
2018-06-14 22:53:51 +08:00
case BuiltinType::ShortFract:
case BuiltinType::Fract:
case BuiltinType::LongFract:
case BuiltinType::UShortFract:
case BuiltinType::UFract:
case BuiltinType::ULongFract:
case BuiltinType::SatShortAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatLongAccum:
case BuiltinType::SatUShortAccum:
case BuiltinType::SatUAccum:
case BuiltinType::SatULongAccum:
case BuiltinType::SatShortFract:
case BuiltinType::SatFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatUShortFract:
case BuiltinType::SatUFract:
case BuiltinType::SatULongFract:
case BuiltinType::UInt128:
case BuiltinType::Float16:
case BuiltinType::Float128:
case BuiltinType::NullPtr:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCId:
case BuiltinType::ObjCSel:
[OpenCL] Complete image types support. I. Current implementation of images is not conformant to spec in the following points: 1. It makes no distinction with respect to access qualifiers and therefore allows to use images with different access type interchangeably. The following code would compile just fine: void write_image(write_only image2d_t img); kernel void foo(read_only image2d_t img) { write_image(img); } // Accepted code which is disallowed according to s6.13.14. 2. It discards access qualifier on generated code, which leads to generated code for the above example: call void @write_image(%opencl.image2d_t* %img); In OpenCL2.0 however we can have different calls into write_image with read_only and wite_only images. Also generally following compiler steps have no easy way to take different path depending on the image access: linking to the right implementation of image types, performing IR opts and backend codegen differently. 3. Image types are language keywords and can't be redeclared s6.1.9, which can happen currently as they are just typedef names. 4. Default access qualifier read_only is to be added if not provided explicitly. II. This patch corrects the above points as follows: 1. All images are encapsulated into a separate .def file that is inserted in different points where image handling is required. This avoid a lot of code repetition as all images are handled the same way in the code with no distinction of their exact type. 2. The Cartesian product of image types and image access qualifiers is added to the builtin types. This simplifies a lot handling of access type mismatch as no operations are allowed by default on distinct Builtin types. Also spec intended access qualifier as special type qualifier that are combined with an image type to form a distinct type (see statement above - images can't be created w/o access qualifiers). 3. Improves testing of images in Clang. Author: Anastasia Stulova Reviewers: bader, mgrang. Subscribers: pxli168, pekka.jaaskelainen, yaxunl. Differential Revision: http://reviews.llvm.org/D17821 llvm-svn: 265783
2016-04-08 21:40:33 +08:00
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
case BuiltinType::OCLSampler:
case BuiltinType::OCLEvent:
case BuiltinType::OCLClkEvent:
case BuiltinType::OCLQueue:
case BuiltinType::OCLReserveID:
case BuiltinType::BoundMember:
case BuiltinType::Dependent:
case BuiltinType::Overload:
case BuiltinType::UnknownAny:
case BuiltinType::ARCUnbridgedCast:
case BuiltinType::Half:
case BuiltinType::PseudoObject:
case BuiltinType::BuiltinFn:
case BuiltinType::OMPArraySection:
break;
}
return None;
}
/// Returns true if \param T is a typedef of "BOOL" in objective-c.
bool NSAPI::isObjCBOOLType(QualType T) const {
return isObjCTypedef(T, "BOOL", BOOLId);
}
/// Returns true if \param T is a typedef of "NSInteger" in objective-c.
bool NSAPI::isObjCNSIntegerType(QualType T) const {
return isObjCTypedef(T, "NSInteger", NSIntegerId);
}
/// Returns true if \param T is a typedef of "NSUInteger" in objective-c.
bool NSAPI::isObjCNSUIntegerType(QualType T) const {
return isObjCTypedef(T, "NSUInteger", NSUIntegerId);
}
StringRef NSAPI::GetNSIntegralKind(QualType T) const {
if (!Ctx.getLangOpts().ObjC || T.isNull())
return StringRef();
while (const TypedefType *TDT = T->getAs<TypedefType>()) {
StringRef NSIntegralResust =
llvm::StringSwitch<StringRef>(
TDT->getDecl()->getDeclName().getAsIdentifierInfo()->getName())
.Case("int8_t", "int8_t")
.Case("int16_t", "int16_t")
.Case("int32_t", "int32_t")
.Case("NSInteger", "NSInteger")
.Case("int64_t", "int64_t")
.Case("uint8_t", "uint8_t")
.Case("uint16_t", "uint16_t")
.Case("uint32_t", "uint32_t")
.Case("NSUInteger", "NSUInteger")
.Case("uint64_t", "uint64_t")
.Default(StringRef());
if (!NSIntegralResust.empty())
return NSIntegralResust;
T = TDT->desugar();
}
return StringRef();
}
bool NSAPI::isMacroDefined(StringRef Id) const {
// FIXME: Check whether the relevant module macros are visible.
return Ctx.Idents.get(Id).hasMacroDefinition();
}
bool NSAPI::isSubclassOfNSClass(ObjCInterfaceDecl *InterfaceDecl,
NSClassIdKindKind NSClassKind) const {
if (!InterfaceDecl) {
return false;
}
IdentifierInfo *NSClassID = getNSClassId(NSClassKind);
bool IsSubclass = false;
do {
IsSubclass = NSClassID == InterfaceDecl->getIdentifier();
if (IsSubclass) {
break;
}
} while ((InterfaceDecl = InterfaceDecl->getSuperClass()));
return IsSubclass;
}
bool NSAPI::isObjCTypedef(QualType T,
StringRef name, IdentifierInfo *&II) const {
if (!Ctx.getLangOpts().ObjC)
return false;
if (T.isNull())
return false;
if (!II)
II = &Ctx.Idents.get(name);
while (const TypedefType *TDT = T->getAs<TypedefType>()) {
if (TDT->getDecl()->getDeclName().getAsIdentifierInfo() == II)
return true;
T = TDT->desugar();
}
return false;
}
bool NSAPI::isObjCEnumerator(const Expr *E,
StringRef name, IdentifierInfo *&II) const {
if (!Ctx.getLangOpts().ObjC)
return false;
if (!E)
return false;
if (!II)
II = &Ctx.Idents.get(name);
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
if (const EnumConstantDecl *
EnumD = dyn_cast_or_null<EnumConstantDecl>(DRE->getDecl()))
return EnumD->getIdentifier() == II;
return false;
}
Selector NSAPI::getOrInitSelector(ArrayRef<StringRef> Ids,
Selector &Sel) const {
if (Sel.isNull()) {
SmallVector<IdentifierInfo *, 4> Idents;
for (ArrayRef<StringRef>::const_iterator
I = Ids.begin(), E = Ids.end(); I != E; ++I)
Idents.push_back(&Ctx.Idents.get(*I));
Sel = Ctx.Selectors.getSelector(Idents.size(), Idents.data());
}
return Sel;
}
Selector NSAPI::getOrInitNullarySelector(StringRef Id, Selector &Sel) const {
if (Sel.isNull()) {
IdentifierInfo *Ident = &Ctx.Idents.get(Id);
Sel = Ctx.Selectors.getSelector(0, &Ident);
}
return Sel;
}