2018-06-28 02:03:08 +08:00
|
|
|
//===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===//
|
|
|
|
//
|
|
|
|
// Copyright 2019 The MLIR Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
// =============================================================================
|
|
|
|
|
|
|
|
#include "mlir/IR/AffineMap.h"
|
2018-07-10 00:00:25 +08:00
|
|
|
#include "mlir/IR/AffineExpr.h"
|
2018-06-28 02:03:08 +08:00
|
|
|
#include "llvm/ADT/StringRef.h"
|
2018-07-12 12:19:31 +08:00
|
|
|
#include "llvm/Support/MathExtras.h"
|
2018-06-28 02:03:08 +08:00
|
|
|
|
|
|
|
using namespace mlir;
|
|
|
|
|
2018-07-04 11:16:08 +08:00
|
|
|
AffineMap::AffineMap(unsigned numDims, unsigned numSymbols, unsigned numResults,
|
2018-07-12 12:31:07 +08:00
|
|
|
AffineExpr *const *results, AffineExpr *const *rangeSizes)
|
2018-07-04 11:16:08 +08:00
|
|
|
: numDims(numDims), numSymbols(numSymbols), numResults(numResults),
|
2018-07-12 12:31:07 +08:00
|
|
|
results(results), rangeSizes(rangeSizes) {}
|
2018-07-10 00:00:25 +08:00
|
|
|
|
2018-07-12 12:19:31 +08:00
|
|
|
/// Fold to a constant when possible. Canonicalize so that only the RHS is a
|
|
|
|
/// constant. (4 + d0 becomes d0 + 4). If only one of them is a symbolic
|
|
|
|
/// expressions, make it the RHS. Return nullptr if it can't be simplified.
|
|
|
|
AffineExpr *AffineBinaryOpExpr::simplifyAdd(AffineExpr *lhs, AffineExpr *rhs,
|
|
|
|
MLIRContext *context) {
|
|
|
|
if (auto *l = dyn_cast<AffineConstantExpr>(lhs))
|
|
|
|
if (auto *r = dyn_cast<AffineConstantExpr>(rhs))
|
|
|
|
return AffineConstantExpr::get(l->getValue() + r->getValue(), context);
|
|
|
|
|
|
|
|
if (isa<AffineConstantExpr>(lhs) || (lhs->isSymbolic() && !rhs->isSymbolic()))
|
|
|
|
return AffineAddExpr::get(rhs, lhs, context);
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
// TODO(someone): implement more simplification like x + 0 -> x; (x + 2) + 4
|
|
|
|
// -> (x + 6). Do this in a systematic way in conjunction with other
|
|
|
|
// simplifications as opposed to incremental hacks.
|
|
|
|
}
|
|
|
|
|
|
|
|
AffineExpr *AffineBinaryOpExpr::simplifySub(AffineExpr *lhs, AffineExpr *rhs,
|
|
|
|
MLIRContext *context) {
|
|
|
|
if (auto *l = dyn_cast<AffineConstantExpr>(lhs))
|
|
|
|
if (auto *r = dyn_cast<AffineConstantExpr>(rhs))
|
|
|
|
return AffineConstantExpr::get(l->getValue() - r->getValue(), context);
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
// TODO(someone): implement more simplification like mentioned for add.
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Simplify a multiply expression. Fold it to a constant when possible, and
|
|
|
|
/// make the symbolic/constant operand the RHS.
|
|
|
|
AffineExpr *AffineBinaryOpExpr::simplifyMul(AffineExpr *lhs, AffineExpr *rhs,
|
|
|
|
MLIRContext *context) {
|
|
|
|
if (auto *l = dyn_cast<AffineConstantExpr>(lhs))
|
|
|
|
if (auto *r = dyn_cast<AffineConstantExpr>(rhs))
|
|
|
|
return AffineConstantExpr::get(l->getValue() * r->getValue(), context);
|
|
|
|
|
|
|
|
assert(lhs->isSymbolic() || rhs->isSymbolic());
|
|
|
|
|
|
|
|
// Canonicalize the mul expression so that the constant/symbolic term is the
|
|
|
|
// RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
|
|
|
|
// constant. (Note that a constant is trivially symbolic).
|
|
|
|
if (!rhs->isSymbolic() || isa<AffineConstantExpr>(lhs)) {
|
|
|
|
// At least one of them has to be symbolic.
|
|
|
|
return AffineMulExpr::get(rhs, lhs, context);
|
|
|
|
}
|
|
|
|
|
2018-07-10 00:00:25 +08:00
|
|
|
return nullptr;
|
2018-07-12 12:19:31 +08:00
|
|
|
// TODO(someone): implement some more simplification/canonicalization such as
|
|
|
|
// 1*x is same as x, and in general, move it in the form d_i*expr where d_i is
|
|
|
|
// a dimensional identifier. So, 2*(d0 + 4) + s0*d0 becomes (2 + s0)*d0 + 8.
|
2018-07-10 00:00:25 +08:00
|
|
|
}
|
|
|
|
|
2018-07-12 12:19:31 +08:00
|
|
|
AffineExpr *AffineBinaryOpExpr::simplifyFloorDiv(AffineExpr *lhs,
|
|
|
|
AffineExpr *rhs,
|
|
|
|
MLIRContext *context) {
|
|
|
|
if (auto *l = dyn_cast<AffineConstantExpr>(lhs))
|
|
|
|
if (auto *r = dyn_cast<AffineConstantExpr>(rhs))
|
|
|
|
return AffineConstantExpr::get(l->getValue() / r->getValue(), context);
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
// TODO(someone): implement more simplification along the lines described in
|
|
|
|
// simplifyMod TODO. For eg: 128*N floordiv 128 is N.
|
|
|
|
}
|
|
|
|
|
|
|
|
AffineExpr *AffineBinaryOpExpr::simplifyCeilDiv(AffineExpr *lhs,
|
|
|
|
AffineExpr *rhs,
|
|
|
|
MLIRContext *context) {
|
|
|
|
if (auto *l = dyn_cast<AffineConstantExpr>(lhs))
|
|
|
|
if (auto *r = dyn_cast<AffineConstantExpr>(rhs))
|
|
|
|
return AffineConstantExpr::get(
|
|
|
|
(int64_t)llvm::divideCeil((uint64_t)l->getValue(),
|
|
|
|
(uint64_t)r->getValue()),
|
|
|
|
context);
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
// TODO(someone): implement more simplification along the lines described in
|
|
|
|
// simplifyMod TODO. For eg: 128*N ceildiv 128 is N.
|
|
|
|
}
|
|
|
|
|
|
|
|
AffineExpr *AffineBinaryOpExpr::simplifyMod(AffineExpr *lhs, AffineExpr *rhs,
|
|
|
|
MLIRContext *context) {
|
|
|
|
if (auto *l = dyn_cast<AffineConstantExpr>(lhs))
|
|
|
|
if (auto *r = dyn_cast<AffineConstantExpr>(rhs))
|
|
|
|
return AffineConstantExpr::get(l->getValue() % r->getValue(), context);
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
// TODO(someone): implement more simplification; for eg: 2*x mod 2 is 0; (2*x
|
|
|
|
// + 1) mod 2 is 1. In general, this can be simplified by using the GCD test
|
|
|
|
// iteratively if the RHS of the mod is a small number, or in general using
|
|
|
|
// quantifier elimination (add two new variables q and r, and eliminate all
|
|
|
|
// variables from the linear system other than r.
|
|
|
|
}
|