llvm-project/clang/lib/CodeGen/CGCUDANV.cpp

368 lines
15 KiB
C++
Raw Normal View History

//===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides a class for CUDA code generation targeting the NVIDIA CUDA
// runtime library.
//
//===----------------------------------------------------------------------===//
#include "CGCUDARuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/Decl.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
using namespace clang;
using namespace CodeGen;
namespace {
class CGNVCUDARuntime : public CGCUDARuntime {
private:
llvm::Type *IntTy, *SizeTy, *VoidTy;
llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
/// Convenience reference to LLVM Context
llvm::LLVMContext &Context;
/// Convenience reference to the current module
llvm::Module &TheModule;
/// Keeps track of kernel launch stubs emitted in this module
llvm::SmallVector<llvm::Function *, 16> EmittedKernels;
llvm::SmallVector<std::pair<llvm::GlobalVariable *, unsigned>, 16> DeviceVars;
/// Keeps track of variables containing handles of GPU binaries. Populated by
/// ModuleCtorFunction() and used to create corresponding cleanup calls in
/// ModuleDtorFunction()
llvm::SmallVector<llvm::GlobalVariable *, 16> GpuBinaryHandles;
llvm::Constant *getSetupArgumentFn() const;
llvm::Constant *getLaunchFn() const;
/// Creates a function to register all kernel stubs generated in this module.
llvm::Function *makeRegisterGlobalsFn();
/// Helper function that generates a constant string and returns a pointer to
/// the start of the string. The result of this function can be used anywhere
/// where the C code specifies const char*.
llvm::Constant *makeConstantString(const std::string &Str,
const std::string &Name = "",
const std::string &SectionName = "",
unsigned Alignment = 0) {
llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
llvm::ConstantInt::get(SizeTy, 0)};
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
llvm::GlobalVariable *GV =
cast<llvm::GlobalVariable>(ConstStr.getPointer());
if (!SectionName.empty())
GV->setSection(SectionName);
if (Alignment)
GV->setAlignment(Alignment);
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
ConstStr.getPointer(), Zeros);
}
void emitDeviceStubBody(CodeGenFunction &CGF, FunctionArgList &Args);
public:
CGNVCUDARuntime(CodeGenModule &CGM);
void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
void registerDeviceVar(llvm::GlobalVariable &Var, unsigned Flags) override {
DeviceVars.push_back(std::make_pair(&Var, Flags));
}
/// Creates module constructor function
llvm::Function *makeModuleCtorFunction() override;
/// Creates module destructor function
llvm::Function *makeModuleDtorFunction() override;
};
}
CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
: CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
TheModule(CGM.getModule()) {
CodeGen::CodeGenTypes &Types = CGM.getTypes();
ASTContext &Ctx = CGM.getContext();
IntTy = Types.ConvertType(Ctx.IntTy);
SizeTy = Types.ConvertType(Ctx.getSizeType());
VoidTy = llvm::Type::getVoidTy(Context);
CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
VoidPtrPtrTy = VoidPtrTy->getPointerTo();
}
llvm::Constant *CGNVCUDARuntime::getSetupArgumentFn() const {
// cudaError_t cudaSetupArgument(void *, size_t, size_t)
llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(IntTy,
Params, false),
"cudaSetupArgument");
}
llvm::Constant *CGNVCUDARuntime::getLaunchFn() const {
// cudaError_t cudaLaunch(char *)
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
}
void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
FunctionArgList &Args) {
EmittedKernels.push_back(CGF.CurFn);
emitDeviceStubBody(CGF, Args);
}
void CGNVCUDARuntime::emitDeviceStubBody(CodeGenFunction &CGF,
FunctionArgList &Args) {
// Emit a call to cudaSetupArgument for each arg in Args.
llvm::Constant *cudaSetupArgFn = getSetupArgumentFn();
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
CharUnits Offset = CharUnits::Zero();
for (const VarDecl *A : Args) {
CharUnits TyWidth, TyAlign;
std::tie(TyWidth, TyAlign) =
CGM.getContext().getTypeInfoInChars(A->getType());
Offset = Offset.alignTo(TyAlign);
llvm::Value *Args[] = {
CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
VoidPtrTy),
llvm::ConstantInt::get(SizeTy, TyWidth.getQuantity()),
llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
};
llvm::CallSite CS = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
llvm::Value *CSZero = CGF.Builder.CreateICmpEQ(CS.getInstruction(), Zero);
llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
CGF.Builder.CreateCondBr(CSZero, NextBlock, EndBlock);
CGF.EmitBlock(NextBlock);
Offset += TyWidth;
}
// Emit the call to cudaLaunch
llvm::Constant *cudaLaunchFn = getLaunchFn();
llvm::Value *Arg = CGF.Builder.CreatePointerCast(CGF.CurFn, CharPtrTy);
CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
CGF.EmitBranch(EndBlock);
CGF.EmitBlock(EndBlock);
}
/// Creates a function that sets up state on the host side for CUDA objects that
/// have a presence on both the host and device sides. Specifically, registers
/// the host side of kernel functions and device global variables with the CUDA
/// runtime.
/// \code
/// void __cuda_register_globals(void** GpuBinaryHandle) {
/// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
/// ...
/// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
/// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
/// ...
/// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
// No need to register anything
if (EmittedKernels.empty() && DeviceVars.empty())
return nullptr;
llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
llvm::GlobalValue::InternalLinkage, "__cuda_register_globals", &TheModule);
llvm::BasicBlock *EntryBB =
llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
CGBuilderTy Builder(CGM, Context);
Builder.SetInsertPoint(EntryBB);
// void __cudaRegisterFunction(void **, const char *, char *, const char *,
// int, uint3*, uint3*, dim3*, dim3*, int*)
llvm::Type *RegisterFuncParams[] = {
VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
llvm::Constant *RegisterFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
"__cudaRegisterFunction");
// Extract GpuBinaryHandle passed as the first argument passed to
// __cuda_register_globals() and generate __cudaRegisterFunction() call for
// each emitted kernel.
llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
for (llvm::Function *Kernel : EmittedKernels) {
llvm::Constant *KernelName = makeConstantString(Kernel->getName());
llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
llvm::Value *Args[] = {
&GpuBinaryHandlePtr, Builder.CreateBitCast(Kernel, VoidPtrTy),
KernelName, KernelName, llvm::ConstantInt::get(IntTy, -1), NullPtr,
NullPtr, NullPtr, NullPtr,
llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
Builder.CreateCall(RegisterFunc, Args);
}
// void __cudaRegisterVar(void **, char *, char *, const char *,
// int, int, int, int)
llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
CharPtrTy, IntTy, IntTy,
IntTy, IntTy};
llvm::Constant *RegisterVar = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, RegisterVarParams, false),
"__cudaRegisterVar");
for (auto &Pair : DeviceVars) {
llvm::GlobalVariable *Var = Pair.first;
unsigned Flags = Pair.second;
llvm::Constant *VarName = makeConstantString(Var->getName());
uint64_t VarSize =
CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
llvm::Value *Args[] = {
&GpuBinaryHandlePtr,
Builder.CreateBitCast(Var, VoidPtrTy),
VarName,
VarName,
llvm::ConstantInt::get(IntTy, (Flags & ExternDeviceVar) ? 1 : 0),
llvm::ConstantInt::get(IntTy, VarSize),
llvm::ConstantInt::get(IntTy, (Flags & ConstantDeviceVar) ? 1 : 0),
llvm::ConstantInt::get(IntTy, 0)};
Builder.CreateCall(RegisterVar, Args);
}
Builder.CreateRetVoid();
return RegisterKernelsFunc;
}
/// Creates a global constructor function for the module:
/// \code
/// void __cuda_module_ctor(void*) {
/// Handle0 = __cudaRegisterFatBinary(GpuBinaryBlob0);
/// __cuda_register_globals(Handle0);
/// ...
/// HandleN = __cudaRegisterFatBinary(GpuBinaryBlobN);
/// __cuda_register_globals(HandleN);
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
// No need to generate ctors/dtors if there are no GPU binaries.
if (CGM.getCodeGenOpts().CudaGpuBinaryFileNames.empty())
return nullptr;
// void __cuda_register_globals(void* handle);
llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
// void ** __cudaRegisterFatBinary(void *);
llvm::Constant *RegisterFatbinFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
"__cudaRegisterFatBinary");
// struct { int magic, int version, void * gpu_binary, void * dont_care };
llvm::StructType *FatbinWrapperTy =
llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy, nullptr);
llvm::Function *ModuleCtorFunc = llvm::Function::Create(
llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
llvm::GlobalValue::InternalLinkage, "__cuda_module_ctor", &TheModule);
llvm::BasicBlock *CtorEntryBB =
llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
CGBuilderTy CtorBuilder(CGM, Context);
CtorBuilder.SetInsertPoint(CtorEntryBB);
// For each GPU binary, register it with the CUDA runtime and store returned
// handle in a global variable and save the handle in GpuBinaryHandles vector
// to be cleaned up in destructor on exit. Then associate all known kernels
// with the GPU binary handle so CUDA runtime can figure out what to call on
// the GPU side.
for (const std::string &GpuBinaryFileName :
CGM.getCodeGenOpts().CudaGpuBinaryFileNames) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> GpuBinaryOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(GpuBinaryFileName);
if (std::error_code EC = GpuBinaryOrErr.getError()) {
CGM.getDiags().Report(diag::err_cannot_open_file) << GpuBinaryFileName
<< EC.message();
continue;
}
// Create initialized wrapper structure that points to the loaded GPU binary
llvm::Constant *Values[] = {
llvm::ConstantInt::get(IntTy, 0x466243b1), // Fatbin wrapper magic.
llvm::ConstantInt::get(IntTy, 1), // Fatbin version.
makeConstantString(GpuBinaryOrErr.get()->getBuffer(), // Data.
"", ".nv_fatbin", 8), //
llvm::ConstantPointerNull::get(VoidPtrTy)}; // Unused in fatbin v1.
llvm::GlobalVariable *FatbinWrapper = new llvm::GlobalVariable(
TheModule, FatbinWrapperTy, true, llvm::GlobalValue::InternalLinkage,
llvm::ConstantStruct::get(FatbinWrapperTy, Values),
"__cuda_fatbin_wrapper");
// NVIDIA's cuobjdump looks for fatbins in this section.
FatbinWrapper->setSection(".nvFatBinSegment");
// GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
RegisterFatbinFunc,
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
llvm::GlobalVariable *GpuBinaryHandle = new llvm::GlobalVariable(
TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
CGM.getPointerAlign());
// Call __cuda_register_globals(GpuBinaryHandle);
if (RegisterGlobalsFunc)
CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
// Save GpuBinaryHandle so we can unregister it in destructor.
GpuBinaryHandles.push_back(GpuBinaryHandle);
}
CtorBuilder.CreateRetVoid();
return ModuleCtorFunc;
}
/// Creates a global destructor function that unregisters all GPU code blobs
/// registered by constructor.
/// \code
/// void __cuda_module_dtor(void*) {
/// __cudaUnregisterFatBinary(Handle0);
/// ...
/// __cudaUnregisterFatBinary(HandleN);
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
// No need for destructor if we don't have handles to unregister.
if (GpuBinaryHandles.empty())
return nullptr;
// void __cudaUnregisterFatBinary(void ** handle);
llvm::Constant *UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
"__cudaUnregisterFatBinary");
llvm::Function *ModuleDtorFunc = llvm::Function::Create(
llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
llvm::GlobalValue::InternalLinkage, "__cuda_module_dtor", &TheModule);
llvm::BasicBlock *DtorEntryBB =
llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
CGBuilderTy DtorBuilder(CGM, Context);
DtorBuilder.SetInsertPoint(DtorEntryBB);
for (llvm::GlobalVariable *GpuBinaryHandle : GpuBinaryHandles) {
Compute and preserve alignment more faithfully in IR-generation. Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
2015-09-08 16:05:57 +08:00
auto HandleValue =
DtorBuilder.CreateAlignedLoad(GpuBinaryHandle, CGM.getPointerAlign());
DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
}
DtorBuilder.CreateRetVoid();
return ModuleDtorFunc;
}
CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
return new CGNVCUDARuntime(CGM);
}