llvm-project/llvm/lib/IR/IntrinsicInst.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

349 lines
11 KiB
C++
Raw Normal View History

//===-- InstrinsicInst.cpp - Intrinsic Instruction Wrappers ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements methods that make it really easy to deal with intrinsic
// functions.
//
// All intrinsic function calls are instances of the call instruction, so these
// are all subclasses of the CallInst class. Note that none of these classes
// has state or virtual methods, which is an important part of this gross/neat
// hack working.
//
// In some cases, arguments to intrinsics need to be generic and are defined as
// type pointer to empty struct { }*. To access the real item of interest the
// cast instruction needs to be stripped away.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Constants.h"
Re-apply "[DebugInfo] Check size of variable in ConvertDebugDeclareToDebugValue" This is r334704 (which was reverted in r334732) with a fix for types like x86_fp80. We need to use getTypeAllocSizeInBits and not getTypeStoreSizeInBits to avoid dropping debug info for such types. Original commit msg: > Summary: > Do not convert a DbgDeclare to DbgValue if the store > instruction only refer to a fragment of the variable > described by the DbgDeclare. > > Problem was seen when for example having an alloca for an > array or struct, and there were stores to individual elements. > In the past we inserted a DbgValue intrinsics for each store, > just as if the store wrote the whole variable. > > When handling store instructions we insert a DbgValue that > indicates that the variable is "undefined", as we do not know > which part of the variable that is updated by the store. > > When ConvertDebugDeclareToDebugValue is used with a load/phi > instruction we assert that the referenced value is large enough > to cover the whole variable. Afaict this should be true for all > scenarios where those methods are used on trunk. If the assert > blows in the future I guess we could simply skip to insert a > dbg.value instruction. > > In the future I think we should examine which part of the variable > that is accessed, and add a DbgValue instrinsic with an appropriate > DW_OP_LLVM_fragment expression. > > Reviewers: dblaikie, aprantl, rnk > > Reviewed By: aprantl > > Subscribers: JDevlieghere, llvm-commits > > Tags: #debug-info > > Differential Revision: https://reviews.llvm.org/D48024 llvm-svn: 334830
2018-06-15 21:48:55 +08:00
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
/// DbgVariableIntrinsic - This is the common base class for debug info
/// intrinsics for variables.
///
Value *DbgVariableIntrinsic::getVariableLocation(bool AllowNullOp) const {
Value *Op = getArgOperand(0);
if (AllowNullOp && !Op)
return nullptr;
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
auto *MD = cast<MetadataAsValue>(Op)->getMetadata();
if (auto *V = dyn_cast<ValueAsMetadata>(MD))
return V->getValue();
// When the value goes to null, it gets replaced by an empty MDNode.
assert(!cast<MDNode>(MD)->getNumOperands() && "Expected an empty MDNode");
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
return nullptr;
}
Optional<uint64_t> DbgVariableIntrinsic::getFragmentSizeInBits() const {
Re-apply "[DebugInfo] Check size of variable in ConvertDebugDeclareToDebugValue" This is r334704 (which was reverted in r334732) with a fix for types like x86_fp80. We need to use getTypeAllocSizeInBits and not getTypeStoreSizeInBits to avoid dropping debug info for such types. Original commit msg: > Summary: > Do not convert a DbgDeclare to DbgValue if the store > instruction only refer to a fragment of the variable > described by the DbgDeclare. > > Problem was seen when for example having an alloca for an > array or struct, and there were stores to individual elements. > In the past we inserted a DbgValue intrinsics for each store, > just as if the store wrote the whole variable. > > When handling store instructions we insert a DbgValue that > indicates that the variable is "undefined", as we do not know > which part of the variable that is updated by the store. > > When ConvertDebugDeclareToDebugValue is used with a load/phi > instruction we assert that the referenced value is large enough > to cover the whole variable. Afaict this should be true for all > scenarios where those methods are used on trunk. If the assert > blows in the future I guess we could simply skip to insert a > dbg.value instruction. > > In the future I think we should examine which part of the variable > that is accessed, and add a DbgValue instrinsic with an appropriate > DW_OP_LLVM_fragment expression. > > Reviewers: dblaikie, aprantl, rnk > > Reviewed By: aprantl > > Subscribers: JDevlieghere, llvm-commits > > Tags: #debug-info > > Differential Revision: https://reviews.llvm.org/D48024 llvm-svn: 334830
2018-06-15 21:48:55 +08:00
if (auto Fragment = getExpression()->getFragmentInfo())
return Fragment->SizeInBits;
return getVariable()->getSizeInBits();
}
int llvm::Intrinsic::lookupLLVMIntrinsicByName(ArrayRef<const char *> NameTable,
StringRef Name) {
assert(Name.startswith("llvm."));
// Do successive binary searches of the dotted name components. For
// "llvm.gc.experimental.statepoint.p1i8.p1i32", we will find the range of
// intrinsics starting with "llvm.gc", then "llvm.gc.experimental", then
// "llvm.gc.experimental.statepoint", and then we will stop as the range is
// size 1. During the search, we can skip the prefix that we already know is
// identical. By using strncmp we consider names with differing suffixes to
// be part of the equal range.
size_t CmpEnd = 4; // Skip the "llvm" component.
const char *const *Low = NameTable.begin();
const char *const *High = NameTable.end();
const char *const *LastLow = Low;
while (CmpEnd < Name.size() && High - Low > 0) {
size_t CmpStart = CmpEnd;
CmpEnd = Name.find('.', CmpStart + 1);
CmpEnd = CmpEnd == StringRef::npos ? Name.size() : CmpEnd;
auto Cmp = [CmpStart, CmpEnd](const char *LHS, const char *RHS) {
return strncmp(LHS + CmpStart, RHS + CmpStart, CmpEnd - CmpStart) < 0;
};
LastLow = Low;
std::tie(Low, High) = std::equal_range(Low, High, Name.data(), Cmp);
}
if (High - Low > 0)
LastLow = Low;
if (LastLow == NameTable.end())
return -1;
StringRef NameFound = *LastLow;
if (Name == NameFound ||
(Name.startswith(NameFound) && Name[NameFound.size()] == '.'))
return LastLow - NameTable.begin();
return -1;
}
Value *InstrProfIncrementInst::getStep() const {
if (InstrProfIncrementInstStep::classof(this)) {
return const_cast<Value *>(getArgOperand(4));
}
const Module *M = getModule();
LLVMContext &Context = M->getContext();
return ConstantInt::get(Type::getInt64Ty(Context), 1);
}
[FPEnv] Use single enum to represent rounding mode Now compiler defines 5 sets of constants to represent rounding mode. These are: 1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes defined by IEEE-754 and is used in `APFloat` implementation. 2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754 rounding modes and a special value for dynamic rounding mode. It is used in clang frontend. 3. `llvm::fp::RoundingMode`. Defines the same values as `clang::LangOptions::FPRoundingModeKind` but in different order. It is used to specify rounding mode in in IR and functions that operate IR. 4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7). Besides constants for rounding mode it also uses a special value to indicate error. It is convenient to use in intrinsic functions, as it represents platform-independent representation for rounding mode. In this role it is used in some pending patches. 5. Values like `FE_DOWNWARD` and other, which specify rounding mode in library calls `fesetround` and `fegetround`. Often they represent bits of some control register, so they are target-dependent. The same names (not values) and a special name `FE_DYNAMIC` are used in `#pragma STDC FENV_ROUND`. The first 4 sets of constants are target independent and could have the same numerical representation. It would simplify conversion between the representations. Also now `clang::LangOptions::FPRoundingModeKind` and `llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding direction `roundTiesToAway`, although it is supported natively on some targets. This change defines all the rounding mode type via one `llvm::RoundingMode`, which also contains rounding mode for IEEE rounding direction `roundTiesToAway`. Differential Revision: https://reviews.llvm.org/D77379
2020-03-26 15:51:09 +08:00
Optional<RoundingMode> ConstrainedFPIntrinsic::getRoundingMode() const {
unsigned NumOperands = getNumArgOperands();
Metadata *MD =
cast<MetadataAsValue>(getArgOperand(NumOperands - 2))->getMetadata();
if (!MD || !isa<MDString>(MD))
return None;
return StrToRoundingMode(cast<MDString>(MD)->getString());
}
Optional<fp::ExceptionBehavior>
ConstrainedFPIntrinsic::getExceptionBehavior() const {
unsigned NumOperands = getNumArgOperands();
Metadata *MD =
cast<MetadataAsValue>(getArgOperand(NumOperands - 1))->getMetadata();
if (!MD || !isa<MDString>(MD))
return None;
return StrToExceptionBehavior(cast<MDString>(MD)->getString());
}
FCmpInst::Predicate ConstrainedFPCmpIntrinsic::getPredicate() const {
Metadata *MD = cast<MetadataAsValue>(getArgOperand(2))->getMetadata();
if (!MD || !isa<MDString>(MD))
return FCmpInst::BAD_FCMP_PREDICATE;
return StringSwitch<FCmpInst::Predicate>(cast<MDString>(MD)->getString())
.Case("oeq", FCmpInst::FCMP_OEQ)
.Case("ogt", FCmpInst::FCMP_OGT)
.Case("oge", FCmpInst::FCMP_OGE)
.Case("olt", FCmpInst::FCMP_OLT)
.Case("ole", FCmpInst::FCMP_OLE)
.Case("one", FCmpInst::FCMP_ONE)
.Case("ord", FCmpInst::FCMP_ORD)
.Case("uno", FCmpInst::FCMP_UNO)
.Case("ueq", FCmpInst::FCMP_UEQ)
.Case("ugt", FCmpInst::FCMP_UGT)
.Case("uge", FCmpInst::FCMP_UGE)
.Case("ult", FCmpInst::FCMP_ULT)
.Case("ule", FCmpInst::FCMP_ULE)
.Case("une", FCmpInst::FCMP_UNE)
.Default(FCmpInst::BAD_FCMP_PREDICATE);
}
bool ConstrainedFPIntrinsic::isUnaryOp() const {
switch (getIntrinsicID()) {
default:
return false;
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC: \
return NARG == 1;
#include "llvm/IR/ConstrainedOps.def"
}
}
bool ConstrainedFPIntrinsic::isTernaryOp() const {
switch (getIntrinsicID()) {
default:
return false;
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC: \
return NARG == 3;
#include "llvm/IR/ConstrainedOps.def"
}
}
bool ConstrainedFPIntrinsic::classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC:
#include "llvm/IR/ConstrainedOps.def"
return true;
default:
return false;
}
}
ElementCount VPIntrinsic::getStaticVectorLength() const {
auto GetVectorLengthOfType = [](const Type *T) -> ElementCount {
auto VT = cast<VectorType>(T);
auto ElemCount = VT->getElementCount();
return ElemCount;
};
auto VPMask = getMaskParam();
return GetVectorLengthOfType(VPMask->getType());
}
Value *VPIntrinsic::getMaskParam() const {
auto maskPos = GetMaskParamPos(getIntrinsicID());
if (maskPos)
return getArgOperand(maskPos.getValue());
return nullptr;
}
Value *VPIntrinsic::getVectorLengthParam() const {
auto vlenPos = GetVectorLengthParamPos(getIntrinsicID());
if (vlenPos)
return getArgOperand(vlenPos.getValue());
return nullptr;
}
Optional<int> VPIntrinsic::GetMaskParamPos(Intrinsic::ID IntrinsicID) {
switch (IntrinsicID) {
default:
return None;
#define REGISTER_VP_INTRINSIC(VPID, MASKPOS, VLENPOS) \
case Intrinsic::VPID: \
return MASKPOS;
#include "llvm/IR/VPIntrinsics.def"
}
}
Optional<int> VPIntrinsic::GetVectorLengthParamPos(Intrinsic::ID IntrinsicID) {
switch (IntrinsicID) {
default:
return None;
#define REGISTER_VP_INTRINSIC(VPID, MASKPOS, VLENPOS) \
case Intrinsic::VPID: \
return VLENPOS;
#include "llvm/IR/VPIntrinsics.def"
}
}
bool VPIntrinsic::IsVPIntrinsic(Intrinsic::ID ID) {
switch (ID) {
default:
return false;
#define REGISTER_VP_INTRINSIC(VPID, MASKPOS, VLENPOS) \
case Intrinsic::VPID: \
break;
#include "llvm/IR/VPIntrinsics.def"
}
return true;
}
// Equivalent non-predicated opcode
unsigned VPIntrinsic::GetFunctionalOpcodeForVP(Intrinsic::ID ID) {
switch (ID) {
default:
return Instruction::Call;
#define HANDLE_VP_TO_OC(VPID, OC) \
case Intrinsic::VPID: \
return Instruction::OC;
#include "llvm/IR/VPIntrinsics.def"
}
}
Intrinsic::ID VPIntrinsic::GetForOpcode(unsigned OC) {
switch (OC) {
default:
return Intrinsic::not_intrinsic;
#define HANDLE_VP_TO_OC(VPID, OC) \
case Instruction::OC: \
return Intrinsic::VPID;
#include "llvm/IR/VPIntrinsics.def"
}
}
bool VPIntrinsic::canIgnoreVectorLengthParam() const {
using namespace PatternMatch;
ElementCount EC = getStaticVectorLength();
// No vlen param - no lanes masked-off by it.
auto *VLParam = getVectorLengthParam();
if (!VLParam)
return true;
// Note that the VP intrinsic causes undefined behavior if the Explicit Vector
// Length parameter is strictly greater-than the number of vector elements of
// the operation. This function returns true when this is detected statically
// in the IR.
// Check whether "W == vscale * EC.Min"
if (EC.Scalable) {
// Undig the DL
auto ParMod = this->getModule();
if (!ParMod)
return false;
const auto &DL = ParMod->getDataLayout();
// Compare vscale patterns
uint64_t VScaleFactor;
if (match(VLParam, m_c_Mul(m_ConstantInt(VScaleFactor), m_VScale(DL))))
return VScaleFactor >= EC.Min;
return (EC.Min == 1) && match(VLParam, m_VScale(DL));
}
// standard SIMD operation
auto VLConst = dyn_cast<ConstantInt>(VLParam);
if (!VLConst)
return false;
uint64_t VLNum = VLConst->getZExtValue();
if (VLNum >= EC.Min)
return true;
return false;
}
Instruction::BinaryOps BinaryOpIntrinsic::getBinaryOp() const {
switch (getIntrinsicID()) {
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_sat:
case Intrinsic::sadd_sat:
return Instruction::Add;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_sat:
case Intrinsic::ssub_sat:
return Instruction::Sub;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
return Instruction::Mul;
default:
llvm_unreachable("Invalid intrinsic");
}
}
bool BinaryOpIntrinsic::isSigned() const {
switch (getIntrinsicID()) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
return true;
default:
return false;
}
}
unsigned BinaryOpIntrinsic::getNoWrapKind() const {
if (isSigned())
return OverflowingBinaryOperator::NoSignedWrap;
else
return OverflowingBinaryOperator::NoUnsignedWrap;
}