2014-11-22 02:58:23 +08:00
|
|
|
//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
|
2009-11-11 08:22:30 +08:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file defines the interface for lazy computation of value constraint
|
|
|
|
// information.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Analysis/LazyValueInfo.h"
|
2012-12-04 00:50:05 +08:00
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
2015-01-04 20:03:27 +08:00
|
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
2012-12-04 00:50:05 +08:00
|
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
2015-01-15 10:16:27 +08:00
|
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
2010-12-16 04:02:24 +08:00
|
|
|
#include "llvm/Analysis/ValueTracking.h"
|
2014-03-04 19:45:46 +08:00
|
|
|
#include "llvm/IR/CFG.h"
|
2014-03-04 20:24:34 +08:00
|
|
|
#include "llvm/IR/ConstantRange.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/Constants.h"
|
|
|
|
#include "llvm/IR/DataLayout.h"
|
2014-09-08 04:29:59 +08:00
|
|
|
#include "llvm/IR/Dominators.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
2016-08-12 23:52:23 +08:00
|
|
|
#include "llvm/IR/Intrinsics.h"
|
[LVI/CVP] Teach LVI about range metadata
Somewhat shockingly for an analysis pass which is computing constant ranges, LVI did not understand the ranges provided by range metadata.
As part of this change, I included a change to CVP primarily because doing so made it much easier to write small self contained test cases. CVP was previously only handling the non-local operand case, but given that LVI can sometimes figure out information about instructions standalone, I don't see any reason to restrict this. There could possibly be a compile time impact from this, but I suspect it should be minimal. If anyone has an example which substaintially regresses, please let me know. I could restrict the block local handling to ICmps feeding Terminator instructions if needed.
Note that this patch continues a somewhat bad practice in LVI. In many cases, we know facts about values, and separate context sensitive facts about values. LVI makes no effort to distinguish and will frequently cache the same value fact repeatedly for different contexts. I would like to change this, but that's a large enough change that I want it to go in separately with clear documentation of what's changing. Other examples of this include the non-null handling, and arguments.
As a meta comment: the entire motivation of this change was being able to write smaller (aka reasonable sized) test cases for a future patch teaching LVI about select instructions.
Differential Revision: http://reviews.llvm.org/D13543
llvm-svn: 251606
2015-10-29 11:57:17 +08:00
|
|
|
#include "llvm/IR/LLVMContext.h"
|
2014-03-04 19:08:18 +08:00
|
|
|
#include "llvm/IR/PatternMatch.h"
|
2014-03-04 19:17:44 +08:00
|
|
|
#include "llvm/IR/ValueHandle.h"
|
2009-11-12 09:22:16 +08:00
|
|
|
#include "llvm/Support/Debug.h"
|
2012-12-04 00:50:05 +08:00
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2012-01-12 07:43:34 +08:00
|
|
|
#include <map>
|
2010-12-18 09:00:40 +08:00
|
|
|
#include <stack>
|
2009-11-11 08:22:30 +08:00
|
|
|
using namespace llvm;
|
2012-03-02 23:34:43 +08:00
|
|
|
using namespace PatternMatch;
|
2009-11-11 08:22:30 +08:00
|
|
|
|
2014-04-22 10:48:03 +08:00
|
|
|
#define DEBUG_TYPE "lazy-value-info"
|
|
|
|
|
2016-06-14 06:01:25 +08:00
|
|
|
char LazyValueInfoWrapperPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
|
2011-12-02 09:26:24 +08:00
|
|
|
"Lazy Value Information Analysis", false, true)
|
2015-01-04 20:03:27 +08:00
|
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
2015-01-15 18:41:28 +08:00
|
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
2016-06-14 06:01:25 +08:00
|
|
|
INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
|
2010-10-08 06:25:06 +08:00
|
|
|
"Lazy Value Information Analysis", false, true)
|
2009-11-11 08:22:30 +08:00
|
|
|
|
|
|
|
namespace llvm {
|
2016-06-14 06:01:25 +08:00
|
|
|
FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
|
2009-11-11 08:22:30 +08:00
|
|
|
}
|
|
|
|
|
2016-06-14 06:01:25 +08:00
|
|
|
char LazyValueAnalysis::PassID;
|
2009-11-11 10:08:33 +08:00
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// LVILatticeVal
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// This is the information tracked by LazyValueInfo for each value.
|
2009-11-11 10:08:33 +08:00
|
|
|
///
|
|
|
|
/// FIXME: This is basically just for bringup, this can be made a lot more rich
|
|
|
|
/// in the future.
|
|
|
|
///
|
|
|
|
namespace {
|
|
|
|
class LVILatticeVal {
|
|
|
|
enum LatticeValueTy {
|
2016-04-26 02:48:43 +08:00
|
|
|
/// This Value has no known value yet. As a result, this implies the
|
|
|
|
/// producing instruction is dead. Caution: We use this as the starting
|
|
|
|
/// state in our local meet rules. In this usage, it's taken to mean
|
2016-07-04 09:26:27 +08:00
|
|
|
/// "nothing known yet".
|
2009-11-11 10:08:33 +08:00
|
|
|
undefined,
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2016-04-26 02:48:43 +08:00
|
|
|
/// This Value has a specific constant value. (For integers, constantrange
|
|
|
|
/// is used instead.)
|
2009-11-11 10:08:33 +08:00
|
|
|
constant,
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2016-04-26 02:48:43 +08:00
|
|
|
/// This Value is known to not have the specified value. (For integers,
|
|
|
|
/// constantrange is used instead.)
|
2009-11-12 12:36:58 +08:00
|
|
|
notconstant,
|
2011-12-02 09:26:24 +08:00
|
|
|
|
2016-04-26 02:48:43 +08:00
|
|
|
/// The Value falls within this range. (Used only for integer typed values.)
|
2010-08-06 06:59:19 +08:00
|
|
|
constantrange,
|
2011-12-02 09:26:24 +08:00
|
|
|
|
2016-04-26 02:48:43 +08:00
|
|
|
/// We can not precisely model the dynamic values this value might take.
|
2009-11-11 10:08:33 +08:00
|
|
|
overdefined
|
|
|
|
};
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2009-11-11 10:08:33 +08:00
|
|
|
/// Val: This stores the current lattice value along with the Constant* for
|
2009-11-12 12:36:58 +08:00
|
|
|
/// the constant if this is a 'constant' or 'notconstant' value.
|
2010-08-06 06:10:46 +08:00
|
|
|
LatticeValueTy Tag;
|
|
|
|
Constant *Val;
|
2010-08-06 06:59:19 +08:00
|
|
|
ConstantRange Range;
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2009-11-11 10:08:33 +08:00
|
|
|
public:
|
2014-04-15 12:59:12 +08:00
|
|
|
LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
|
2009-11-11 10:08:33 +08:00
|
|
|
|
2009-11-12 06:48:44 +08:00
|
|
|
static LVILatticeVal get(Constant *C) {
|
|
|
|
LVILatticeVal Res;
|
2010-12-16 02:57:18 +08:00
|
|
|
if (!isa<UndefValue>(C))
|
2010-08-11 04:03:09 +08:00
|
|
|
Res.markConstant(C);
|
2009-11-12 06:48:44 +08:00
|
|
|
return Res;
|
|
|
|
}
|
2009-11-12 12:36:58 +08:00
|
|
|
static LVILatticeVal getNot(Constant *C) {
|
|
|
|
LVILatticeVal Res;
|
2010-12-16 02:57:18 +08:00
|
|
|
if (!isa<UndefValue>(C))
|
2010-08-11 04:03:09 +08:00
|
|
|
Res.markNotConstant(C);
|
2009-11-12 12:36:58 +08:00
|
|
|
return Res;
|
|
|
|
}
|
2010-08-11 07:20:01 +08:00
|
|
|
static LVILatticeVal getRange(ConstantRange CR) {
|
|
|
|
LVILatticeVal Res;
|
2016-02-20 18:40:34 +08:00
|
|
|
Res.markConstantRange(std::move(CR));
|
2010-08-11 07:20:01 +08:00
|
|
|
return Res;
|
|
|
|
}
|
2015-12-11 08:49:47 +08:00
|
|
|
static LVILatticeVal getOverdefined() {
|
|
|
|
LVILatticeVal Res;
|
|
|
|
Res.markOverdefined();
|
|
|
|
return Res;
|
|
|
|
}
|
2016-07-04 09:26:33 +08:00
|
|
|
|
2010-08-06 06:59:19 +08:00
|
|
|
bool isUndefined() const { return Tag == undefined; }
|
|
|
|
bool isConstant() const { return Tag == constant; }
|
|
|
|
bool isNotConstant() const { return Tag == notconstant; }
|
|
|
|
bool isConstantRange() const { return Tag == constantrange; }
|
|
|
|
bool isOverdefined() const { return Tag == overdefined; }
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2009-11-11 10:08:33 +08:00
|
|
|
Constant *getConstant() const {
|
|
|
|
assert(isConstant() && "Cannot get the constant of a non-constant!");
|
2010-08-06 06:10:46 +08:00
|
|
|
return Val;
|
2009-11-11 10:08:33 +08:00
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2009-11-12 12:36:58 +08:00
|
|
|
Constant *getNotConstant() const {
|
|
|
|
assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
|
2010-08-06 06:10:46 +08:00
|
|
|
return Val;
|
2009-11-11 10:08:33 +08:00
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-08-06 06:59:19 +08:00
|
|
|
ConstantRange getConstantRange() const {
|
|
|
|
assert(isConstantRange() &&
|
|
|
|
"Cannot get the constant-range of a non-constant-range!");
|
|
|
|
return Range;
|
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// Return true if this is a change in status.
|
2009-11-11 10:08:33 +08:00
|
|
|
bool markOverdefined() {
|
|
|
|
if (isOverdefined())
|
|
|
|
return false;
|
2010-08-06 06:10:46 +08:00
|
|
|
Tag = overdefined;
|
2009-11-11 10:08:33 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// Return true if this is a change in status.
|
2009-11-11 10:08:33 +08:00
|
|
|
bool markConstant(Constant *V) {
|
2010-12-16 02:57:18 +08:00
|
|
|
assert(V && "Marking constant with NULL");
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
|
|
return markConstantRange(ConstantRange(CI->getValue()));
|
|
|
|
if (isa<UndefValue>(V))
|
2009-11-11 10:08:33 +08:00
|
|
|
return false;
|
2010-12-16 02:57:18 +08:00
|
|
|
|
|
|
|
assert((!isConstant() || getConstant() == V) &&
|
|
|
|
"Marking constant with different value");
|
2009-11-11 10:08:33 +08:00
|
|
|
assert(isUndefined());
|
2010-08-06 06:10:46 +08:00
|
|
|
Tag = constant;
|
|
|
|
Val = V;
|
2009-11-12 06:48:44 +08:00
|
|
|
return true;
|
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// Return true if this is a change in status.
|
2009-11-12 12:36:58 +08:00
|
|
|
bool markNotConstant(Constant *V) {
|
2010-12-16 02:57:18 +08:00
|
|
|
assert(V && "Marking constant with NULL");
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
|
|
return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
|
|
|
|
if (isa<UndefValue>(V))
|
2009-11-12 12:36:58 +08:00
|
|
|
return false;
|
|
|
|
|
2010-12-16 02:57:18 +08:00
|
|
|
assert((!isConstant() || getConstant() != V) &&
|
|
|
|
"Marking constant !constant with same value");
|
|
|
|
assert((!isNotConstant() || getNotConstant() == V) &&
|
|
|
|
"Marking !constant with different value");
|
|
|
|
assert(isUndefined() || isConstant());
|
2010-08-06 06:10:46 +08:00
|
|
|
Tag = notconstant;
|
|
|
|
Val = V;
|
2009-11-12 12:36:58 +08:00
|
|
|
return true;
|
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// Return true if this is a change in status.
|
2016-02-20 18:40:34 +08:00
|
|
|
bool markConstantRange(ConstantRange NewR) {
|
2010-08-06 06:59:19 +08:00
|
|
|
if (isConstantRange()) {
|
|
|
|
if (NewR.isEmptySet())
|
|
|
|
return markOverdefined();
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2012-06-28 09:16:18 +08:00
|
|
|
bool changed = Range != NewR;
|
2016-02-20 18:40:34 +08:00
|
|
|
Range = std::move(NewR);
|
2010-08-06 06:59:19 +08:00
|
|
|
return changed;
|
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-08-06 06:59:19 +08:00
|
|
|
assert(isUndefined());
|
|
|
|
if (NewR.isEmptySet())
|
|
|
|
return markOverdefined();
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-08-06 06:59:19 +08:00
|
|
|
Tag = constantrange;
|
2016-02-20 18:40:34 +08:00
|
|
|
Range = std::move(NewR);
|
2010-08-06 06:59:19 +08:00
|
|
|
return true;
|
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// Merge the specified lattice value into this one, updating this
|
2009-11-12 06:48:44 +08:00
|
|
|
/// one and returning true if anything changed.
|
2015-03-10 10:37:25 +08:00
|
|
|
bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) {
|
2009-11-12 06:48:44 +08:00
|
|
|
if (RHS.isUndefined() || isOverdefined()) return false;
|
|
|
|
if (RHS.isOverdefined()) return markOverdefined();
|
|
|
|
|
2010-12-16 02:57:18 +08:00
|
|
|
if (isUndefined()) {
|
|
|
|
Tag = RHS.Tag;
|
|
|
|
Val = RHS.Val;
|
|
|
|
Range = RHS.Range;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (isConstant()) {
|
|
|
|
if (RHS.isConstant()) {
|
|
|
|
if (Val == RHS.Val)
|
|
|
|
return false;
|
2010-08-31 01:03:45 +08:00
|
|
|
return markOverdefined();
|
2009-11-12 12:57:13 +08:00
|
|
|
}
|
2010-12-16 02:57:18 +08:00
|
|
|
|
|
|
|
if (RHS.isNotConstant()) {
|
|
|
|
if (Val == RHS.Val)
|
2010-08-06 06:59:19 +08:00
|
|
|
return markOverdefined();
|
2010-12-16 02:57:18 +08:00
|
|
|
|
|
|
|
// Unless we can prove that the two Constants are different, we must
|
|
|
|
// move to overdefined.
|
2015-03-10 10:37:25 +08:00
|
|
|
if (ConstantInt *Res =
|
|
|
|
dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
|
|
|
|
CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL)))
|
2010-12-16 02:57:18 +08:00
|
|
|
if (Res->isOne())
|
|
|
|
return markNotConstant(RHS.getNotConstant());
|
|
|
|
|
2010-08-24 15:55:44 +08:00
|
|
|
return markOverdefined();
|
2010-08-06 06:59:19 +08:00
|
|
|
}
|
2010-12-16 02:57:18 +08:00
|
|
|
|
2010-09-17 02:28:33 +08:00
|
|
|
return markOverdefined();
|
|
|
|
}
|
2010-12-16 02:57:18 +08:00
|
|
|
|
|
|
|
if (isNotConstant()) {
|
|
|
|
if (RHS.isConstant()) {
|
|
|
|
if (Val == RHS.Val)
|
|
|
|
return markOverdefined();
|
|
|
|
|
|
|
|
// Unless we can prove that the two Constants are different, we must
|
|
|
|
// move to overdefined.
|
2015-03-10 10:37:25 +08:00
|
|
|
if (ConstantInt *Res =
|
|
|
|
dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
|
|
|
|
CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL)))
|
2010-12-16 02:57:18 +08:00
|
|
|
if (Res->isOne())
|
|
|
|
return false;
|
|
|
|
|
2009-11-12 12:57:13 +08:00
|
|
|
return markOverdefined();
|
2010-12-16 02:57:18 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (RHS.isNotConstant()) {
|
|
|
|
if (Val == RHS.Val)
|
|
|
|
return false;
|
|
|
|
return markOverdefined();
|
|
|
|
}
|
|
|
|
|
|
|
|
return markOverdefined();
|
2009-11-12 12:57:13 +08:00
|
|
|
}
|
|
|
|
|
2010-12-16 02:57:18 +08:00
|
|
|
assert(isConstantRange() && "New LVILattice type?");
|
|
|
|
if (!RHS.isConstantRange())
|
2009-11-12 06:48:44 +08:00
|
|
|
return markOverdefined();
|
2010-12-16 02:57:18 +08:00
|
|
|
|
|
|
|
ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
|
|
|
|
if (NewR.isFullSet())
|
|
|
|
return markOverdefined();
|
|
|
|
return markConstantRange(NewR);
|
2009-11-11 10:08:33 +08:00
|
|
|
}
|
|
|
|
};
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2009-11-11 10:08:33 +08:00
|
|
|
} // end anonymous namespace.
|
|
|
|
|
2009-11-12 06:48:44 +08:00
|
|
|
namespace llvm {
|
2011-04-19 02:49:44 +08:00
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
|
|
|
|
LLVM_ATTRIBUTE_USED;
|
2009-11-12 06:48:44 +08:00
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
|
|
|
|
if (Val.isUndefined())
|
|
|
|
return OS << "undefined";
|
|
|
|
if (Val.isOverdefined())
|
|
|
|
return OS << "overdefined";
|
2009-11-12 12:36:58 +08:00
|
|
|
|
|
|
|
if (Val.isNotConstant())
|
|
|
|
return OS << "notconstant<" << *Val.getNotConstant() << '>';
|
2016-05-26 06:29:34 +08:00
|
|
|
if (Val.isConstantRange())
|
2010-08-10 04:50:46 +08:00
|
|
|
return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
|
|
|
|
<< Val.getConstantRange().getUpper() << '>';
|
2009-11-12 06:48:44 +08:00
|
|
|
return OS << "constant<" << *Val.getConstant() << '>';
|
|
|
|
}
|
2015-06-23 17:49:53 +08:00
|
|
|
}
|
2009-11-11 10:08:33 +08:00
|
|
|
|
2016-02-03 06:03:19 +08:00
|
|
|
/// Returns true if this lattice value represents at most one possible value.
|
|
|
|
/// This is as precise as any lattice value can get while still representing
|
|
|
|
/// reachable code.
|
2016-06-09 03:09:22 +08:00
|
|
|
static bool hasSingleValue(const LVILatticeVal &Val) {
|
2016-02-03 06:03:19 +08:00
|
|
|
if (Val.isConstantRange() &&
|
|
|
|
Val.getConstantRange().isSingleElement())
|
|
|
|
// Integer constants are single element ranges
|
|
|
|
return true;
|
|
|
|
if (Val.isConstant())
|
|
|
|
// Non integer constants
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Combine two sets of facts about the same value into a single set of
|
|
|
|
/// facts. Note that this method is not suitable for merging facts along
|
|
|
|
/// different paths in a CFG; that's what the mergeIn function is for. This
|
|
|
|
/// is for merging facts gathered about the same value at the same location
|
|
|
|
/// through two independent means.
|
|
|
|
/// Notes:
|
|
|
|
/// * This method does not promise to return the most precise possible lattice
|
|
|
|
/// value implied by A and B. It is allowed to return any lattice element
|
|
|
|
/// which is at least as strong as *either* A or B (unless our facts
|
2016-07-04 09:26:27 +08:00
|
|
|
/// conflict, see below).
|
2016-02-03 06:03:19 +08:00
|
|
|
/// * Due to unreachable code, the intersection of two lattice values could be
|
|
|
|
/// contradictory. If this happens, we return some valid lattice value so as
|
|
|
|
/// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
|
|
|
|
/// we do not make this guarantee. TODO: This would be a useful enhancement.
|
|
|
|
static LVILatticeVal intersect(LVILatticeVal A, LVILatticeVal B) {
|
|
|
|
// Undefined is the strongest state. It means the value is known to be along
|
|
|
|
// an unreachable path.
|
|
|
|
if (A.isUndefined())
|
|
|
|
return A;
|
|
|
|
if (B.isUndefined())
|
|
|
|
return B;
|
|
|
|
|
|
|
|
// If we gave up for one, but got a useable fact from the other, use it.
|
|
|
|
if (A.isOverdefined())
|
|
|
|
return B;
|
|
|
|
if (B.isOverdefined())
|
|
|
|
return A;
|
|
|
|
|
|
|
|
// Can't get any more precise than constants.
|
|
|
|
if (hasSingleValue(A))
|
|
|
|
return A;
|
|
|
|
if (hasSingleValue(B))
|
|
|
|
return B;
|
|
|
|
|
|
|
|
// Could be either constant range or not constant here.
|
|
|
|
if (!A.isConstantRange() || !B.isConstantRange()) {
|
|
|
|
// TODO: Arbitrary choice, could be improved
|
|
|
|
return A;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Intersect two constant ranges
|
|
|
|
ConstantRange Range =
|
|
|
|
A.getConstantRange().intersectWith(B.getConstantRange());
|
|
|
|
// Note: An empty range is implicitly converted to overdefined internally.
|
|
|
|
// TODO: We could instead use Undefined here since we've proven a conflict
|
2016-07-04 09:26:27 +08:00
|
|
|
// and thus know this path must be unreachable.
|
2016-02-20 18:40:34 +08:00
|
|
|
return LVILatticeVal::getRange(std::move(Range));
|
2016-02-03 06:03:19 +08:00
|
|
|
}
|
2016-02-03 05:57:37 +08:00
|
|
|
|
2009-11-11 10:08:33 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2009-11-16 03:59:49 +08:00
|
|
|
// LazyValueInfoCache Decl
|
2009-11-11 10:08:33 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2009-11-16 03:59:49 +08:00
|
|
|
namespace {
|
2015-01-10 00:47:20 +08:00
|
|
|
/// A callback value handle updates the cache when values are erased.
|
2011-01-06 05:15:29 +08:00
|
|
|
class LazyValueInfoCache;
|
2015-08-04 06:30:24 +08:00
|
|
|
struct LVIValueHandle final : public CallbackVH {
|
2016-07-28 06:33:36 +08:00
|
|
|
// Needs to access getValPtr(), which is protected.
|
|
|
|
friend struct DenseMapInfo<LVIValueHandle>;
|
|
|
|
|
2011-01-06 05:15:29 +08:00
|
|
|
LazyValueInfoCache *Parent;
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2011-01-06 05:15:29 +08:00
|
|
|
LVIValueHandle(Value *V, LazyValueInfoCache *P)
|
|
|
|
: CallbackVH(V), Parent(P) { }
|
2014-03-05 15:30:04 +08:00
|
|
|
|
|
|
|
void deleted() override;
|
|
|
|
void allUsesReplacedWith(Value *V) override {
|
2011-01-06 05:15:29 +08:00
|
|
|
deleted();
|
|
|
|
}
|
|
|
|
};
|
2016-07-28 06:33:36 +08:00
|
|
|
} // end anonymous namespace
|
2011-01-06 05:15:29 +08:00
|
|
|
|
2015-07-28 23:53:21 +08:00
|
|
|
namespace {
|
2015-01-10 00:47:20 +08:00
|
|
|
/// This is the cache kept by LazyValueInfo which
|
2009-11-16 03:59:49 +08:00
|
|
|
/// maintains information about queries across the clients' queries.
|
|
|
|
class LazyValueInfoCache {
|
2015-01-10 00:47:20 +08:00
|
|
|
/// This is all of the cached block information for exactly one Value*.
|
|
|
|
/// The entries are sorted by the BasicBlock* of the
|
2009-11-16 03:59:49 +08:00
|
|
|
/// entries, allowing us to do a lookup with a binary search.
|
2015-12-11 08:49:47 +08:00
|
|
|
/// Over-defined lattice values are recorded in OverDefinedCache to reduce
|
|
|
|
/// memory overhead.
|
2016-07-28 06:33:36 +08:00
|
|
|
struct ValueCacheEntryTy {
|
|
|
|
ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
|
|
|
|
LVIValueHandle Handle;
|
|
|
|
SmallDenseMap<AssertingVH<BasicBlock>, LVILatticeVal, 4> BlockVals;
|
|
|
|
};
|
2009-11-11 08:22:30 +08:00
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// This is all of the cached information for all values,
|
2011-01-06 07:26:22 +08:00
|
|
|
/// mapped from Value* to key information.
|
2016-07-28 06:33:36 +08:00
|
|
|
DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache;
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// This tracks, on a per-block basis, the set of values that are
|
2015-12-11 08:49:47 +08:00
|
|
|
/// over-defined at the end of that block.
|
2015-08-19 00:34:27 +08:00
|
|
|
typedef DenseMap<AssertingVH<BasicBlock>, SmallPtrSet<Value *, 4>>
|
|
|
|
OverDefinedCacheTy;
|
|
|
|
OverDefinedCacheTy OverDefinedCache;
|
2011-12-03 23:16:45 +08:00
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// Keep track of all blocks that we have ever seen, so we
|
2011-12-03 23:16:45 +08:00
|
|
|
/// don't spend time removing unused blocks from our caches.
|
|
|
|
DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
|
|
|
|
|
2016-09-13 06:38:44 +08:00
|
|
|
public:
|
2014-11-26 01:23:05 +08:00
|
|
|
void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
|
|
|
|
SeenBlocks.insert(BB);
|
2015-12-11 08:49:47 +08:00
|
|
|
|
|
|
|
// Insert over-defined values into their own cache to reduce memory
|
|
|
|
// overhead.
|
2014-11-26 01:23:05 +08:00
|
|
|
if (Result.isOverdefined())
|
2015-08-19 00:34:27 +08:00
|
|
|
OverDefinedCache[BB].insert(Val);
|
2016-07-28 06:33:36 +08:00
|
|
|
else {
|
|
|
|
auto It = ValueCache.find_as(Val);
|
|
|
|
if (It == ValueCache.end()) {
|
|
|
|
ValueCache[Val] = make_unique<ValueCacheEntryTy>(Val, this);
|
|
|
|
It = ValueCache.find_as(Val);
|
|
|
|
assert(It != ValueCache.end() && "Val was just added to the map!");
|
|
|
|
}
|
|
|
|
It->second->BlockVals[BB] = Result;
|
|
|
|
}
|
2014-11-26 01:23:05 +08:00
|
|
|
}
|
2010-07-31 07:59:40 +08:00
|
|
|
|
2015-12-11 08:49:47 +08:00
|
|
|
bool isOverdefined(Value *V, BasicBlock *BB) const {
|
|
|
|
auto ODI = OverDefinedCache.find(BB);
|
|
|
|
|
|
|
|
if (ODI == OverDefinedCache.end())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return ODI->second.count(V);
|
|
|
|
}
|
|
|
|
|
2016-09-13 06:38:44 +08:00
|
|
|
bool hasCachedValueInfo(Value *V, BasicBlock *BB) const {
|
2015-12-11 08:49:47 +08:00
|
|
|
if (isOverdefined(V, BB))
|
|
|
|
return true;
|
|
|
|
|
2016-07-28 06:33:36 +08:00
|
|
|
auto I = ValueCache.find_as(V);
|
2015-12-11 08:49:47 +08:00
|
|
|
if (I == ValueCache.end())
|
|
|
|
return false;
|
|
|
|
|
2016-07-28 06:33:36 +08:00
|
|
|
return I->second->BlockVals.count(BB);
|
2015-12-11 08:49:47 +08:00
|
|
|
}
|
|
|
|
|
2016-09-13 06:38:44 +08:00
|
|
|
LVILatticeVal getCachedValueInfo(Value *V, BasicBlock *BB) const {
|
2015-12-11 08:49:47 +08:00
|
|
|
if (isOverdefined(V, BB))
|
|
|
|
return LVILatticeVal::getOverdefined();
|
|
|
|
|
2016-07-28 06:33:36 +08:00
|
|
|
auto I = ValueCache.find_as(V);
|
|
|
|
if (I == ValueCache.end())
|
|
|
|
return LVILatticeVal();
|
|
|
|
auto BBI = I->second->BlockVals.find(BB);
|
|
|
|
if (BBI == I->second->BlockVals.end())
|
|
|
|
return LVILatticeVal();
|
|
|
|
return BBI->second;
|
2015-12-11 08:49:47 +08:00
|
|
|
}
|
2016-07-04 09:26:33 +08:00
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
/// clear - Empty the cache.
|
|
|
|
void clear() {
|
|
|
|
SeenBlocks.clear();
|
|
|
|
ValueCache.clear();
|
|
|
|
OverDefinedCache.clear();
|
|
|
|
}
|
|
|
|
|
2016-09-13 06:03:36 +08:00
|
|
|
/// Inform the cache that a given value has been deleted.
|
|
|
|
void eraseValue(Value *V);
|
|
|
|
|
|
|
|
/// This is part of the update interface to inform the cache
|
|
|
|
/// that a block has been deleted.
|
|
|
|
void eraseBlock(BasicBlock *BB);
|
|
|
|
|
2016-09-13 06:38:44 +08:00
|
|
|
/// Updates the cache to remove any influence an overdefined value in
|
|
|
|
/// OldSucc might have (unless also overdefined in NewSucc). This just
|
|
|
|
/// flushes elements from the cache and does not add any.
|
|
|
|
void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
friend struct LVIValueHandle;
|
|
|
|
};
|
2016-09-13 06:03:36 +08:00
|
|
|
}
|
2016-09-13 05:46:58 +08:00
|
|
|
|
2016-09-13 06:03:36 +08:00
|
|
|
void LazyValueInfoCache::eraseValue(Value *V) {
|
|
|
|
SmallVector<AssertingVH<BasicBlock>, 4> ToErase;
|
|
|
|
for (auto &I : OverDefinedCache) {
|
|
|
|
SmallPtrSetImpl<Value *> &ValueSet = I.second;
|
|
|
|
if (ValueSet.count(V))
|
|
|
|
ValueSet.erase(V);
|
|
|
|
if (ValueSet.empty())
|
|
|
|
ToErase.push_back(I.first);
|
|
|
|
}
|
|
|
|
for (auto &BB : ToErase)
|
|
|
|
OverDefinedCache.erase(BB);
|
|
|
|
|
|
|
|
ValueCache.erase(V);
|
|
|
|
}
|
|
|
|
|
|
|
|
void LVIValueHandle::deleted() {
|
|
|
|
// This erasure deallocates *this, so it MUST happen after we're done
|
|
|
|
// using any and all members of *this.
|
|
|
|
Parent->eraseValue(*this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
|
|
|
|
// Shortcut if we have never seen this block.
|
|
|
|
DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
|
|
|
|
if (I == SeenBlocks.end())
|
|
|
|
return;
|
|
|
|
SeenBlocks.erase(I);
|
|
|
|
|
|
|
|
auto ODI = OverDefinedCache.find(BB);
|
|
|
|
if (ODI != OverDefinedCache.end())
|
|
|
|
OverDefinedCache.erase(ODI);
|
|
|
|
|
|
|
|
for (auto &I : ValueCache)
|
|
|
|
I.second->BlockVals.erase(BB);
|
|
|
|
}
|
|
|
|
|
2016-09-13 06:38:44 +08:00
|
|
|
void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
|
|
|
|
BasicBlock *NewSucc) {
|
|
|
|
// When an edge in the graph has been threaded, values that we could not
|
|
|
|
// determine a value for before (i.e. were marked overdefined) may be
|
|
|
|
// possible to solve now. We do NOT try to proactively update these values.
|
|
|
|
// Instead, we clear their entries from the cache, and allow lazy updating to
|
|
|
|
// recompute them when needed.
|
|
|
|
|
|
|
|
// The updating process is fairly simple: we need to drop cached info
|
|
|
|
// for all values that were marked overdefined in OldSucc, and for those same
|
|
|
|
// values in any successor of OldSucc (except NewSucc) in which they were
|
|
|
|
// also marked overdefined.
|
|
|
|
std::vector<BasicBlock*> worklist;
|
|
|
|
worklist.push_back(OldSucc);
|
|
|
|
|
|
|
|
auto I = OverDefinedCache.find(OldSucc);
|
|
|
|
if (I == OverDefinedCache.end())
|
|
|
|
return; // Nothing to process here.
|
|
|
|
SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
|
|
|
|
|
|
|
|
// Use a worklist to perform a depth-first search of OldSucc's successors.
|
|
|
|
// NOTE: We do not need a visited list since any blocks we have already
|
|
|
|
// visited will have had their overdefined markers cleared already, and we
|
|
|
|
// thus won't loop to their successors.
|
|
|
|
while (!worklist.empty()) {
|
|
|
|
BasicBlock *ToUpdate = worklist.back();
|
|
|
|
worklist.pop_back();
|
|
|
|
|
|
|
|
// Skip blocks only accessible through NewSucc.
|
|
|
|
if (ToUpdate == NewSucc) continue;
|
|
|
|
|
|
|
|
bool changed = false;
|
|
|
|
for (Value *V : ValsToClear) {
|
|
|
|
// If a value was marked overdefined in OldSucc, and is here too...
|
|
|
|
auto OI = OverDefinedCache.find(ToUpdate);
|
|
|
|
if (OI == OverDefinedCache.end())
|
|
|
|
continue;
|
|
|
|
SmallPtrSetImpl<Value *> &ValueSet = OI->second;
|
|
|
|
if (!ValueSet.count(V))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
ValueSet.erase(V);
|
|
|
|
if (ValueSet.empty())
|
|
|
|
OverDefinedCache.erase(OI);
|
|
|
|
|
|
|
|
// If we removed anything, then we potentially need to update
|
|
|
|
// blocks successors too.
|
|
|
|
changed = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!changed) continue;
|
|
|
|
|
|
|
|
worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-09-13 06:03:36 +08:00
|
|
|
namespace {
|
2016-09-13 05:46:58 +08:00
|
|
|
// The actual implementation of the lazy analysis and update. Note that the
|
|
|
|
// inheritance from LazyValueInfoCache is intended to be temporary while
|
|
|
|
// splitting the code and then transitioning to a has-a relationship.
|
2016-09-13 06:38:44 +08:00
|
|
|
class LazyValueInfoImpl {
|
|
|
|
|
|
|
|
/// Cached results from previous queries
|
|
|
|
LazyValueInfoCache TheCache;
|
2016-09-13 05:46:58 +08:00
|
|
|
|
|
|
|
/// This stack holds the state of the value solver during a query.
|
|
|
|
/// It basically emulates the callstack of the naive
|
|
|
|
/// recursive value lookup process.
|
|
|
|
std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
|
|
|
|
|
|
|
|
/// Keeps track of which block-value pairs are in BlockValueStack.
|
|
|
|
DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
|
|
|
|
|
|
|
|
/// Push BV onto BlockValueStack unless it's already in there.
|
|
|
|
/// Returns true on success.
|
|
|
|
bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
|
|
|
|
if (!BlockValueSet.insert(BV).second)
|
|
|
|
return false; // It's already in the stack.
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "PUSH: " << *BV.second << " in " << BV.first->getName()
|
|
|
|
<< "\n");
|
|
|
|
BlockValueStack.push(BV);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
|
|
|
|
const DataLayout &DL; ///< A mandatory DataLayout
|
|
|
|
DominatorTree *DT; ///< An optional DT pointer.
|
|
|
|
|
|
|
|
LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
|
|
|
|
bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
|
|
|
|
LVILatticeVal &Result, Instruction *CxtI = nullptr);
|
|
|
|
bool hasBlockValue(Value *Val, BasicBlock *BB);
|
|
|
|
|
|
|
|
// These methods process one work item and may add more. A false value
|
|
|
|
// returned means that the work item was not completely processed and must
|
|
|
|
// be revisited after going through the new items.
|
|
|
|
bool solveBlockValue(Value *Val, BasicBlock *BB);
|
|
|
|
bool solveBlockValueNonLocal(LVILatticeVal &BBLV, Value *Val, BasicBlock *BB);
|
|
|
|
bool solveBlockValuePHINode(LVILatticeVal &BBLV, PHINode *PN, BasicBlock *BB);
|
|
|
|
bool solveBlockValueSelect(LVILatticeVal &BBLV, SelectInst *S,
|
|
|
|
BasicBlock *BB);
|
|
|
|
bool solveBlockValueBinaryOp(LVILatticeVal &BBLV, Instruction *BBI,
|
|
|
|
BasicBlock *BB);
|
|
|
|
bool solveBlockValueCast(LVILatticeVal &BBLV, Instruction *BBI,
|
|
|
|
BasicBlock *BB);
|
|
|
|
void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
|
|
|
|
LVILatticeVal &BBLV,
|
|
|
|
Instruction *BBI);
|
|
|
|
|
|
|
|
void solve();
|
|
|
|
|
2009-11-16 03:59:49 +08:00
|
|
|
public:
|
2015-01-10 00:47:20 +08:00
|
|
|
/// This is the query interface to determine the lattice
|
2009-11-16 03:59:49 +08:00
|
|
|
/// value for the specified Value* at the end of the specified block.
|
2014-09-08 04:29:59 +08:00
|
|
|
LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
|
|
|
|
Instruction *CxtI = nullptr);
|
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// This is the query interface to determine the lattice
|
2014-09-08 04:29:59 +08:00
|
|
|
/// value for the specified Value* at the specified instruction (generally
|
|
|
|
/// from an assume intrinsic).
|
|
|
|
LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
|
2009-11-11 10:08:33 +08:00
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// This is the query interface to determine the lattice
|
2009-11-16 03:59:49 +08:00
|
|
|
/// value for the specified Value* that is true on the specified edge.
|
2014-09-08 04:29:59 +08:00
|
|
|
LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
|
|
|
|
Instruction *CxtI = nullptr);
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2016-09-13 06:38:44 +08:00
|
|
|
/// Complete flush all previously computed values
|
|
|
|
void clear() {
|
|
|
|
TheCache.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// This is part of the update interface to inform the cache
|
|
|
|
/// that a block has been deleted.
|
|
|
|
void eraseBlock(BasicBlock *BB) {
|
|
|
|
TheCache.eraseBlock(BB);
|
|
|
|
}
|
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// This is the update interface to inform the cache that an edge from
|
|
|
|
/// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
|
2010-07-27 02:48:03 +08:00
|
|
|
void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
|
2015-01-04 20:03:27 +08:00
|
|
|
DominatorTree *DT = nullptr)
|
|
|
|
: AC(AC), DL(DL), DT(DT) {}
|
2009-11-16 03:59:49 +08:00
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
2009-11-12 06:48:44 +08:00
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
void LazyValueInfoImpl::solve() {
|
2011-01-06 07:26:22 +08:00
|
|
|
while (!BlockValueStack.empty()) {
|
|
|
|
std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
|
2014-11-26 01:23:05 +08:00
|
|
|
assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
|
|
|
|
|
2012-06-28 09:16:18 +08:00
|
|
|
if (solveBlockValue(e.second, e.first)) {
|
2014-11-26 01:23:05 +08:00
|
|
|
// The work item was completely processed.
|
|
|
|
assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
|
2016-09-13 06:38:44 +08:00
|
|
|
assert(TheCache.hasCachedValueInfo(e.second, e.first) &&
|
2015-12-11 08:49:47 +08:00
|
|
|
"Result should be in cache!");
|
2014-11-26 01:23:05 +08:00
|
|
|
|
2016-02-02 11:15:40 +08:00
|
|
|
DEBUG(dbgs() << "POP " << *e.second << " in " << e.first->getName()
|
2016-09-13 06:38:44 +08:00
|
|
|
<< " = " << TheCache.getCachedValueInfo(e.second, e.first) << "\n");
|
2016-02-02 11:15:40 +08:00
|
|
|
|
2011-01-06 07:26:22 +08:00
|
|
|
BlockValueStack.pop();
|
2014-11-26 01:23:05 +08:00
|
|
|
BlockValueSet.erase(e);
|
|
|
|
} else {
|
|
|
|
// More work needs to be done before revisiting.
|
|
|
|
assert(BlockValueStack.top() != e && "Stack should have been pushed!");
|
2012-06-28 09:16:18 +08:00
|
|
|
}
|
2010-12-18 09:00:40 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) {
|
2010-12-18 09:00:40 +08:00
|
|
|
// If already a constant, there is nothing to compute.
|
|
|
|
if (isa<Constant>(Val))
|
|
|
|
return true;
|
|
|
|
|
2016-09-13 06:38:44 +08:00
|
|
|
return TheCache.hasCachedValueInfo(Val, BB);
|
2010-12-18 09:00:40 +08:00
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
LVILatticeVal LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB) {
|
2010-12-18 09:00:40 +08:00
|
|
|
// If already a constant, there is nothing to compute.
|
|
|
|
if (Constant *VC = dyn_cast<Constant>(Val))
|
|
|
|
return LVILatticeVal::get(VC);
|
|
|
|
|
2016-09-13 06:38:44 +08:00
|
|
|
return TheCache.getCachedValueInfo(Val, BB);
|
2010-12-18 09:00:40 +08:00
|
|
|
}
|
|
|
|
|
[LVI/CVP] Teach LVI about range metadata
Somewhat shockingly for an analysis pass which is computing constant ranges, LVI did not understand the ranges provided by range metadata.
As part of this change, I included a change to CVP primarily because doing so made it much easier to write small self contained test cases. CVP was previously only handling the non-local operand case, but given that LVI can sometimes figure out information about instructions standalone, I don't see any reason to restrict this. There could possibly be a compile time impact from this, but I suspect it should be minimal. If anyone has an example which substaintially regresses, please let me know. I could restrict the block local handling to ICmps feeding Terminator instructions if needed.
Note that this patch continues a somewhat bad practice in LVI. In many cases, we know facts about values, and separate context sensitive facts about values. LVI makes no effort to distinguish and will frequently cache the same value fact repeatedly for different contexts. I would like to change this, but that's a large enough change that I want it to go in separately with clear documentation of what's changing. Other examples of this include the non-null handling, and arguments.
As a meta comment: the entire motivation of this change was being able to write smaller (aka reasonable sized) test cases for a future patch teaching LVI about select instructions.
Differential Revision: http://reviews.llvm.org/D13543
llvm-svn: 251606
2015-10-29 11:57:17 +08:00
|
|
|
static LVILatticeVal getFromRangeMetadata(Instruction *BBI) {
|
|
|
|
switch (BBI->getOpcode()) {
|
|
|
|
default: break;
|
|
|
|
case Instruction::Load:
|
|
|
|
case Instruction::Call:
|
|
|
|
case Instruction::Invoke:
|
2016-07-25 08:59:46 +08:00
|
|
|
if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
|
2015-10-29 12:21:49 +08:00
|
|
|
if (isa<IntegerType>(BBI->getType())) {
|
2016-02-20 18:40:34 +08:00
|
|
|
return LVILatticeVal::getRange(getConstantRangeFromMetadata(*Ranges));
|
[LVI/CVP] Teach LVI about range metadata
Somewhat shockingly for an analysis pass which is computing constant ranges, LVI did not understand the ranges provided by range metadata.
As part of this change, I included a change to CVP primarily because doing so made it much easier to write small self contained test cases. CVP was previously only handling the non-local operand case, but given that LVI can sometimes figure out information about instructions standalone, I don't see any reason to restrict this. There could possibly be a compile time impact from this, but I suspect it should be minimal. If anyone has an example which substaintially regresses, please let me know. I could restrict the block local handling to ICmps feeding Terminator instructions if needed.
Note that this patch continues a somewhat bad practice in LVI. In many cases, we know facts about values, and separate context sensitive facts about values. LVI makes no effort to distinguish and will frequently cache the same value fact repeatedly for different contexts. I would like to change this, but that's a large enough change that I want it to go in separately with clear documentation of what's changing. Other examples of this include the non-null handling, and arguments.
As a meta comment: the entire motivation of this change was being able to write smaller (aka reasonable sized) test cases for a future patch teaching LVI about select instructions.
Differential Revision: http://reviews.llvm.org/D13543
llvm-svn: 251606
2015-10-29 11:57:17 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
};
|
2016-02-03 05:57:37 +08:00
|
|
|
// Nothing known - will be intersected with other facts
|
|
|
|
return LVILatticeVal::getOverdefined();
|
[LVI/CVP] Teach LVI about range metadata
Somewhat shockingly for an analysis pass which is computing constant ranges, LVI did not understand the ranges provided by range metadata.
As part of this change, I included a change to CVP primarily because doing so made it much easier to write small self contained test cases. CVP was previously only handling the non-local operand case, but given that LVI can sometimes figure out information about instructions standalone, I don't see any reason to restrict this. There could possibly be a compile time impact from this, but I suspect it should be minimal. If anyone has an example which substaintially regresses, please let me know. I could restrict the block local handling to ICmps feeding Terminator instructions if needed.
Note that this patch continues a somewhat bad practice in LVI. In many cases, we know facts about values, and separate context sensitive facts about values. LVI makes no effort to distinguish and will frequently cache the same value fact repeatedly for different contexts. I would like to change this, but that's a large enough change that I want it to go in separately with clear documentation of what's changing. Other examples of this include the non-null handling, and arguments.
As a meta comment: the entire motivation of this change was being able to write smaller (aka reasonable sized) test cases for a future patch teaching LVI about select instructions.
Differential Revision: http://reviews.llvm.org/D13543
llvm-svn: 251606
2015-10-29 11:57:17 +08:00
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
|
2010-12-18 09:00:40 +08:00
|
|
|
if (isa<Constant>(Val))
|
|
|
|
return true;
|
|
|
|
|
2016-09-13 06:38:44 +08:00
|
|
|
if (TheCache.hasCachedValueInfo(Val, BB)) {
|
2014-11-26 01:23:05 +08:00
|
|
|
// If we have a cached value, use that.
|
|
|
|
DEBUG(dbgs() << " reuse BB '" << BB->getName()
|
2016-09-13 06:38:44 +08:00
|
|
|
<< "' val=" << TheCache.getCachedValueInfo(Val, BB) << '\n');
|
2014-11-26 01:23:05 +08:00
|
|
|
|
|
|
|
// Since we're reusing a cached value, we don't need to update the
|
|
|
|
// OverDefinedCache. The cache will have been properly updated whenever the
|
|
|
|
// cached value was inserted.
|
2010-12-18 09:00:40 +08:00
|
|
|
return true;
|
2009-11-16 04:00:52 +08:00
|
|
|
}
|
|
|
|
|
2014-11-26 01:23:05 +08:00
|
|
|
// Hold off inserting this value into the Cache in case we have to return
|
|
|
|
// false and come back later.
|
|
|
|
LVILatticeVal Res;
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2009-11-16 03:59:49 +08:00
|
|
|
Instruction *BBI = dyn_cast<Instruction>(Val);
|
2014-04-15 12:59:12 +08:00
|
|
|
if (!BBI || BBI->getParent() != BB) {
|
2014-11-26 01:23:05 +08:00
|
|
|
if (!solveBlockValueNonLocal(Res, Val, BB))
|
|
|
|
return false;
|
2016-09-13 06:38:44 +08:00
|
|
|
TheCache.insertResult(Val, BB, Res);
|
2014-11-26 01:23:05 +08:00
|
|
|
return true;
|
2009-11-12 06:48:44 +08:00
|
|
|
}
|
2010-12-18 09:00:40 +08:00
|
|
|
|
2009-11-12 06:48:44 +08:00
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
|
2014-11-26 01:23:05 +08:00
|
|
|
if (!solveBlockValuePHINode(Res, PN, BB))
|
|
|
|
return false;
|
2016-09-13 06:38:44 +08:00
|
|
|
TheCache.insertResult(Val, BB, Res);
|
2014-11-26 01:23:05 +08:00
|
|
|
return true;
|
2009-11-12 06:48:44 +08:00
|
|
|
}
|
2009-11-16 04:00:52 +08:00
|
|
|
|
2016-02-02 06:57:53 +08:00
|
|
|
if (auto *SI = dyn_cast<SelectInst>(BBI)) {
|
|
|
|
if (!solveBlockValueSelect(Res, SI, BB))
|
|
|
|
return false;
|
2016-09-13 06:38:44 +08:00
|
|
|
TheCache.insertResult(Val, BB, Res);
|
2016-02-02 06:57:53 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-04-27 09:02:25 +08:00
|
|
|
// If this value is a nonnull pointer, record it's range and bailout. Note
|
|
|
|
// that for all other pointer typed values, we terminate the search at the
|
|
|
|
// definition. We could easily extend this to look through geps, bitcasts,
|
|
|
|
// and the like to prove non-nullness, but it's not clear that's worth it
|
|
|
|
// compile time wise. The context-insensative value walk done inside
|
|
|
|
// isKnownNonNull gets most of the profitable cases at much less expense.
|
|
|
|
// This does mean that we have a sensativity to where the defining
|
|
|
|
// instruction is placed, even if it could legally be hoisted much higher.
|
|
|
|
// That is unfortunate.
|
2015-09-18 21:01:48 +08:00
|
|
|
PointerType *PT = dyn_cast<PointerType>(BBI->getType());
|
|
|
|
if (PT && isKnownNonNull(BBI)) {
|
|
|
|
Res = LVILatticeVal::getNot(ConstantPointerNull::get(PT));
|
2016-09-13 06:38:44 +08:00
|
|
|
TheCache.insertResult(Val, BB, Res);
|
2014-11-26 01:23:05 +08:00
|
|
|
return true;
|
2011-01-15 17:16:12 +08:00
|
|
|
}
|
2016-05-26 06:29:34 +08:00
|
|
|
if (BBI->getType()->isIntegerTy()) {
|
2016-04-27 09:02:25 +08:00
|
|
|
if (isa<CastInst>(BBI)) {
|
|
|
|
if (!solveBlockValueCast(Res, BBI, BB))
|
|
|
|
return false;
|
2016-09-13 06:38:44 +08:00
|
|
|
TheCache.insertResult(Val, BB, Res);
|
2016-04-27 09:02:25 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
|
2016-07-25 08:59:46 +08:00
|
|
|
if (BO && isa<ConstantInt>(BO->getOperand(1))) {
|
2016-04-27 09:02:25 +08:00
|
|
|
if (!solveBlockValueBinaryOp(Res, BBI, BB))
|
|
|
|
return false;
|
2016-09-13 06:38:44 +08:00
|
|
|
TheCache.insertResult(Val, BB, Res);
|
2016-04-27 09:02:25 +08:00
|
|
|
return true;
|
|
|
|
}
|
2010-12-18 09:00:40 +08:00
|
|
|
}
|
|
|
|
|
2016-03-05 06:27:39 +08:00
|
|
|
DEBUG(dbgs() << " compute BB '" << BB->getName()
|
|
|
|
<< "' - unknown inst def found.\n");
|
|
|
|
Res = getFromRangeMetadata(BBI);
|
2016-09-13 06:38:44 +08:00
|
|
|
TheCache.insertResult(Val, BB, Res);
|
2014-11-26 01:23:05 +08:00
|
|
|
return true;
|
2010-12-18 09:00:40 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
|
|
|
|
if (LoadInst *L = dyn_cast<LoadInst>(I)) {
|
|
|
|
return L->getPointerAddressSpace() == 0 &&
|
2015-03-10 10:37:25 +08:00
|
|
|
GetUnderlyingObject(L->getPointerOperand(),
|
|
|
|
L->getModule()->getDataLayout()) == Ptr;
|
2010-12-18 09:00:40 +08:00
|
|
|
}
|
|
|
|
if (StoreInst *S = dyn_cast<StoreInst>(I)) {
|
|
|
|
return S->getPointerAddressSpace() == 0 &&
|
2015-03-10 10:37:25 +08:00
|
|
|
GetUnderlyingObject(S->getPointerOperand(),
|
|
|
|
S->getModule()->getDataLayout()) == Ptr;
|
2010-12-18 09:00:40 +08:00
|
|
|
}
|
2011-01-15 17:16:12 +08:00
|
|
|
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
|
|
|
|
if (MI->isVolatile()) return false;
|
|
|
|
|
|
|
|
// FIXME: check whether it has a valuerange that excludes zero?
|
|
|
|
ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
|
|
|
|
if (!Len || Len->isZero()) return false;
|
|
|
|
|
2011-06-01 04:40:16 +08:00
|
|
|
if (MI->getDestAddressSpace() == 0)
|
2015-03-10 10:37:25 +08:00
|
|
|
if (GetUnderlyingObject(MI->getRawDest(),
|
|
|
|
MI->getModule()->getDataLayout()) == Ptr)
|
2011-06-01 04:40:16 +08:00
|
|
|
return true;
|
2011-01-15 17:16:12 +08:00
|
|
|
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
|
2011-06-01 04:40:16 +08:00
|
|
|
if (MTI->getSourceAddressSpace() == 0)
|
2015-03-10 10:37:25 +08:00
|
|
|
if (GetUnderlyingObject(MTI->getRawSource(),
|
|
|
|
MTI->getModule()->getDataLayout()) == Ptr)
|
2011-06-01 04:40:16 +08:00
|
|
|
return true;
|
2011-01-15 17:16:12 +08:00
|
|
|
}
|
2010-12-18 09:00:40 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-04-27 08:30:55 +08:00
|
|
|
/// Return true if the allocation associated with Val is ever dereferenced
|
|
|
|
/// within the given basic block. This establishes the fact Val is not null,
|
|
|
|
/// but does not imply that the memory at Val is dereferenceable. (Val may
|
|
|
|
/// point off the end of the dereferenceable part of the object.)
|
|
|
|
static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
|
|
|
|
assert(Val->getType()->isPointerTy());
|
|
|
|
|
|
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
|
|
|
Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
|
|
|
|
// If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
|
|
|
|
// inside InstructionDereferencesPointer either.
|
|
|
|
if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1))
|
|
|
|
for (Instruction &I : *BB)
|
|
|
|
if (InstructionDereferencesPointer(&I, UnderlyingVal))
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
bool LazyValueInfoImpl::solveBlockValueNonLocal(LVILatticeVal &BBLV,
|
2010-12-21 02:18:16 +08:00
|
|
|
Value *Val, BasicBlock *BB) {
|
2010-12-18 09:00:40 +08:00
|
|
|
LVILatticeVal Result; // Start Undefined.
|
|
|
|
|
|
|
|
// If this is the entry block, we must be asking about an argument. The
|
|
|
|
// value is overdefined.
|
|
|
|
if (BB == &BB->getParent()->getEntryBlock()) {
|
|
|
|
assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
|
2016-04-27 08:30:55 +08:00
|
|
|
// Bofore giving up, see if we can prove the pointer non-null local to
|
|
|
|
// this particular block.
|
|
|
|
if (Val->getType()->isPointerTy() &&
|
|
|
|
(isKnownNonNull(Val) || isObjectDereferencedInBlock(Val, BB))) {
|
2011-07-18 12:54:35 +08:00
|
|
|
PointerType *PTy = cast<PointerType>(Val->getType());
|
2010-12-18 09:00:40 +08:00
|
|
|
Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
|
|
|
|
} else {
|
|
|
|
Result.markOverdefined();
|
|
|
|
}
|
2010-12-21 02:18:16 +08:00
|
|
|
BBLV = Result;
|
2010-12-18 09:00:40 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Loop over all of our predecessors, merging what we know from them into
|
|
|
|
// result.
|
|
|
|
bool EdgesMissing = false;
|
2014-07-22 01:06:51 +08:00
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
2010-12-18 09:00:40 +08:00
|
|
|
LVILatticeVal EdgeResult;
|
2014-07-22 01:06:51 +08:00
|
|
|
EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
|
2010-12-18 09:00:40 +08:00
|
|
|
if (EdgesMissing)
|
|
|
|
continue;
|
|
|
|
|
2015-03-10 10:37:25 +08:00
|
|
|
Result.mergeIn(EdgeResult, DL);
|
2010-12-18 09:00:40 +08:00
|
|
|
|
|
|
|
// If we hit overdefined, exit early. The BlockVals entry is already set
|
|
|
|
// to overdefined.
|
|
|
|
if (Result.isOverdefined()) {
|
|
|
|
DEBUG(dbgs() << " compute BB '" << BB->getName()
|
2016-02-03 06:43:08 +08:00
|
|
|
<< "' - overdefined because of pred (non local).\n");
|
2016-08-09 17:14:29 +08:00
|
|
|
// Before giving up, see if we can prove the pointer non-null local to
|
2016-04-27 08:30:55 +08:00
|
|
|
// this particular block.
|
|
|
|
if (Val->getType()->isPointerTy() &&
|
|
|
|
isObjectDereferencedInBlock(Val, BB)) {
|
2011-07-18 12:54:35 +08:00
|
|
|
PointerType *PTy = cast<PointerType>(Val->getType());
|
2010-12-18 09:00:40 +08:00
|
|
|
Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
|
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-12-21 02:18:16 +08:00
|
|
|
BBLV = Result;
|
2010-12-18 09:00:40 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (EdgesMissing)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Return the merged value, which is more precise than 'overdefined'.
|
|
|
|
assert(!Result.isOverdefined());
|
2010-12-21 02:18:16 +08:00
|
|
|
BBLV = Result;
|
2010-12-18 09:00:40 +08:00
|
|
|
return true;
|
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
bool LazyValueInfoImpl::solveBlockValuePHINode(LVILatticeVal &BBLV,
|
2010-12-21 02:18:16 +08:00
|
|
|
PHINode *PN, BasicBlock *BB) {
|
2010-12-18 09:00:40 +08:00
|
|
|
LVILatticeVal Result; // Start Undefined.
|
|
|
|
|
|
|
|
// Loop over all of our predecessors, merging what we know from them into
|
|
|
|
// result.
|
|
|
|
bool EdgesMissing = false;
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
|
|
BasicBlock *PhiBB = PN->getIncomingBlock(i);
|
|
|
|
Value *PhiVal = PN->getIncomingValue(i);
|
|
|
|
LVILatticeVal EdgeResult;
|
2014-10-16 08:40:05 +08:00
|
|
|
// Note that we can provide PN as the context value to getEdgeValue, even
|
|
|
|
// though the results will be cached, because PN is the value being used as
|
|
|
|
// the cache key in the caller.
|
2014-09-08 04:29:59 +08:00
|
|
|
EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
|
2010-12-18 09:00:40 +08:00
|
|
|
if (EdgesMissing)
|
|
|
|
continue;
|
|
|
|
|
2015-03-10 10:37:25 +08:00
|
|
|
Result.mergeIn(EdgeResult, DL);
|
2010-12-18 09:00:40 +08:00
|
|
|
|
|
|
|
// If we hit overdefined, exit early. The BlockVals entry is already set
|
|
|
|
// to overdefined.
|
|
|
|
if (Result.isOverdefined()) {
|
|
|
|
DEBUG(dbgs() << " compute BB '" << BB->getName()
|
2016-02-03 06:43:08 +08:00
|
|
|
<< "' - overdefined because of pred (local).\n");
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-12-21 02:18:16 +08:00
|
|
|
BBLV = Result;
|
2010-12-18 09:00:40 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (EdgesMissing)
|
|
|
|
return false;
|
2010-08-19 05:11:37 +08:00
|
|
|
|
2010-12-18 09:00:40 +08:00
|
|
|
// Return the merged value, which is more precise than 'overdefined'.
|
|
|
|
assert(!Result.isOverdefined() && "Possible PHI in entry block?");
|
2010-12-21 02:18:16 +08:00
|
|
|
BBLV = Result;
|
2010-12-18 09:00:40 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-08-10 21:38:07 +08:00
|
|
|
static LVILatticeVal getValueFromCondition(Value *Val, Value *Cond,
|
|
|
|
bool isTrueDest = true);
|
2014-09-08 04:29:59 +08:00
|
|
|
|
2016-02-03 05:57:37 +08:00
|
|
|
// If we can determine a constraint on the value given conditions assumed by
|
|
|
|
// the program, intersect those constraints with BBLV
|
2016-09-13 05:46:58 +08:00
|
|
|
void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
|
2016-08-12 23:52:23 +08:00
|
|
|
Value *Val, LVILatticeVal &BBLV, Instruction *BBI) {
|
2014-09-08 04:29:59 +08:00
|
|
|
BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
|
|
|
|
if (!BBI)
|
|
|
|
return;
|
|
|
|
|
2015-01-04 20:03:27 +08:00
|
|
|
for (auto &AssumeVH : AC->assumptions()) {
|
|
|
|
if (!AssumeVH)
|
|
|
|
continue;
|
|
|
|
auto *I = cast<CallInst>(AssumeVH);
|
2015-03-10 10:37:25 +08:00
|
|
|
if (!isValidAssumeForContext(I, BBI, DT))
|
2014-09-08 04:29:59 +08:00
|
|
|
continue;
|
|
|
|
|
2016-08-10 21:38:07 +08:00
|
|
|
BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
|
2014-09-08 04:29:59 +08:00
|
|
|
}
|
2016-08-12 23:52:23 +08:00
|
|
|
|
|
|
|
// If guards are not used in the module, don't spend time looking for them
|
|
|
|
auto *GuardDecl = BBI->getModule()->getFunction(
|
|
|
|
Intrinsic::getName(Intrinsic::experimental_guard));
|
|
|
|
if (!GuardDecl || GuardDecl->use_empty())
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (BasicBlock::iterator I = BBI->getIterator(),
|
|
|
|
E = BBI->getParent()->begin(); I != E; I--) {
|
|
|
|
Value *Cond = nullptr;
|
|
|
|
if (!match(&*I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
|
|
|
|
continue;
|
|
|
|
BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
|
|
|
|
}
|
2014-09-08 04:29:59 +08:00
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
bool LazyValueInfoImpl::solveBlockValueSelect(LVILatticeVal &BBLV,
|
2016-02-02 06:57:53 +08:00
|
|
|
SelectInst *SI, BasicBlock *BB) {
|
|
|
|
|
|
|
|
// Recurse on our inputs if needed
|
|
|
|
if (!hasBlockValue(SI->getTrueValue(), BB)) {
|
|
|
|
if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
|
|
|
|
return false;
|
|
|
|
BBLV.markOverdefined();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
LVILatticeVal TrueVal = getBlockValue(SI->getTrueValue(), BB);
|
|
|
|
// If we hit overdefined, don't ask more queries. We want to avoid poisoning
|
|
|
|
// extra slots in the table if we can.
|
|
|
|
if (TrueVal.isOverdefined()) {
|
|
|
|
BBLV.markOverdefined();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!hasBlockValue(SI->getFalseValue(), BB)) {
|
|
|
|
if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
|
|
|
|
return false;
|
|
|
|
BBLV.markOverdefined();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
LVILatticeVal FalseVal = getBlockValue(SI->getFalseValue(), BB);
|
|
|
|
// If we hit overdefined, don't ask more queries. We want to avoid poisoning
|
|
|
|
// extra slots in the table if we can.
|
|
|
|
if (FalseVal.isOverdefined()) {
|
|
|
|
BBLV.markOverdefined();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-02-27 06:53:59 +08:00
|
|
|
if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
|
|
|
|
ConstantRange TrueCR = TrueVal.getConstantRange();
|
|
|
|
ConstantRange FalseCR = FalseVal.getConstantRange();
|
|
|
|
Value *LHS = nullptr;
|
|
|
|
Value *RHS = nullptr;
|
|
|
|
SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
|
|
|
|
// Is this a min specifically of our two inputs? (Avoid the risk of
|
|
|
|
// ValueTracking getting smarter looking back past our immediate inputs.)
|
|
|
|
if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
|
|
|
|
LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
|
|
|
|
switch (SPR.Flavor) {
|
|
|
|
default:
|
|
|
|
llvm_unreachable("unexpected minmax type!");
|
|
|
|
case SPF_SMIN: /// Signed minimum
|
|
|
|
BBLV.markConstantRange(TrueCR.smin(FalseCR));
|
|
|
|
return true;
|
|
|
|
case SPF_UMIN: /// Unsigned minimum
|
|
|
|
BBLV.markConstantRange(TrueCR.umin(FalseCR));
|
|
|
|
return true;
|
|
|
|
case SPF_SMAX: /// Signed maximum
|
|
|
|
BBLV.markConstantRange(TrueCR.smax(FalseCR));
|
|
|
|
return true;
|
2016-07-04 09:26:27 +08:00
|
|
|
case SPF_UMAX: /// Unsigned maximum
|
2016-02-27 06:53:59 +08:00
|
|
|
BBLV.markConstantRange(TrueCR.umax(FalseCR));
|
|
|
|
return true;
|
|
|
|
};
|
|
|
|
}
|
2016-07-04 09:26:33 +08:00
|
|
|
|
2016-02-27 06:53:59 +08:00
|
|
|
// TODO: ABS, NABS from the SelectPatternResult
|
|
|
|
}
|
|
|
|
|
2016-02-12 08:09:18 +08:00
|
|
|
// Can we constrain the facts about the true and false values by using the
|
|
|
|
// condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
|
|
|
|
// TODO: We could potentially refine an overdefined true value above.
|
2016-08-03 00:20:48 +08:00
|
|
|
Value *Cond = SI->getCondition();
|
2016-08-10 21:38:07 +08:00
|
|
|
TrueVal = intersect(TrueVal,
|
|
|
|
getValueFromCondition(SI->getTrueValue(), Cond, true));
|
|
|
|
FalseVal = intersect(FalseVal,
|
|
|
|
getValueFromCondition(SI->getFalseValue(), Cond, false));
|
2016-08-03 00:20:48 +08:00
|
|
|
|
|
|
|
// Handle clamp idioms such as:
|
|
|
|
// %24 = constantrange<0, 17>
|
|
|
|
// %39 = icmp eq i32 %24, 0
|
|
|
|
// %40 = add i32 %24, -1
|
|
|
|
// %siv.next = select i1 %39, i32 16, i32 %40
|
|
|
|
// %siv.next = constantrange<0, 17> not <-1, 17>
|
|
|
|
// In general, this can handle any clamp idiom which tests the edge
|
|
|
|
// condition via an equality or inequality.
|
|
|
|
if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
|
2016-02-27 06:53:59 +08:00
|
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
|
|
Value *A = ICI->getOperand(0);
|
|
|
|
if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
|
|
|
|
auto addConstants = [](ConstantInt *A, ConstantInt *B) {
|
|
|
|
assert(A->getType() == B->getType());
|
|
|
|
return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
|
|
|
|
};
|
|
|
|
// See if either input is A + C2, subject to the constraint from the
|
|
|
|
// condition that A != C when that input is used. We can assume that
|
|
|
|
// that input doesn't include C + C2.
|
|
|
|
ConstantInt *CIAdded;
|
|
|
|
switch (Pred) {
|
2016-02-27 13:18:30 +08:00
|
|
|
default: break;
|
2016-02-27 06:53:59 +08:00
|
|
|
case ICmpInst::ICMP_EQ:
|
|
|
|
if (match(SI->getFalseValue(), m_Add(m_Specific(A),
|
|
|
|
m_ConstantInt(CIAdded)))) {
|
|
|
|
auto ResNot = addConstants(CIBase, CIAdded);
|
|
|
|
FalseVal = intersect(FalseVal,
|
|
|
|
LVILatticeVal::getNot(ResNot));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_NE:
|
|
|
|
if (match(SI->getTrueValue(), m_Add(m_Specific(A),
|
|
|
|
m_ConstantInt(CIAdded)))) {
|
|
|
|
auto ResNot = addConstants(CIBase, CIAdded);
|
|
|
|
TrueVal = intersect(TrueVal,
|
|
|
|
LVILatticeVal::getNot(ResNot));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|
2016-07-04 09:26:33 +08:00
|
|
|
|
2016-02-02 06:57:53 +08:00
|
|
|
LVILatticeVal Result; // Start Undefined.
|
|
|
|
Result.mergeIn(TrueVal, DL);
|
|
|
|
Result.mergeIn(FalseVal, DL);
|
|
|
|
BBLV = Result;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
bool LazyValueInfoImpl::solveBlockValueCast(LVILatticeVal &BBLV,
|
2016-04-26 02:30:31 +08:00
|
|
|
Instruction *BBI,
|
2016-04-27 06:52:30 +08:00
|
|
|
BasicBlock *BB) {
|
|
|
|
if (!BBI->getOperand(0)->getType()->isSized()) {
|
|
|
|
// Without knowing how wide the input is, we can't analyze it in any useful
|
|
|
|
// way.
|
|
|
|
BBLV.markOverdefined();
|
|
|
|
return true;
|
|
|
|
}
|
2016-04-27 07:27:33 +08:00
|
|
|
|
|
|
|
// Filter out casts we don't know how to reason about before attempting to
|
|
|
|
// recurse on our operand. This can cut a long search short if we know we're
|
|
|
|
// not going to be able to get any useful information anways.
|
|
|
|
switch (BBI->getOpcode()) {
|
|
|
|
case Instruction::Trunc:
|
|
|
|
case Instruction::SExt:
|
|
|
|
case Instruction::ZExt:
|
|
|
|
case Instruction::BitCast:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
// Unhandled instructions are overdefined.
|
|
|
|
DEBUG(dbgs() << " compute BB '" << BB->getName()
|
|
|
|
<< "' - overdefined (unknown cast).\n");
|
|
|
|
BBLV.markOverdefined();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-04-27 05:48:16 +08:00
|
|
|
// Figure out the range of the LHS. If that fails, we still apply the
|
|
|
|
// transfer rule on the full set since we may be able to locally infer
|
|
|
|
// interesting facts.
|
|
|
|
if (!hasBlockValue(BBI->getOperand(0), BB))
|
2014-11-26 01:23:05 +08:00
|
|
|
if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
|
2016-04-27 05:48:16 +08:00
|
|
|
// More work to do before applying this transfer rule.
|
2014-11-26 01:23:05 +08:00
|
|
|
return false;
|
2010-12-18 09:00:40 +08:00
|
|
|
|
2016-04-27 05:48:16 +08:00
|
|
|
const unsigned OperandBitWidth =
|
2016-04-27 06:52:30 +08:00
|
|
|
DL.getTypeSizeInBits(BBI->getOperand(0)->getType());
|
2016-04-27 05:48:16 +08:00
|
|
|
ConstantRange LHSRange = ConstantRange(OperandBitWidth);
|
|
|
|
if (hasBlockValue(BBI->getOperand(0), BB)) {
|
|
|
|
LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
|
2016-08-12 23:52:23 +08:00
|
|
|
intersectAssumeOrGuardBlockValueConstantRange(BBI->getOperand(0), LHSVal,
|
|
|
|
BBI);
|
2016-04-27 05:48:16 +08:00
|
|
|
if (LHSVal.isConstantRange())
|
|
|
|
LHSRange = LHSVal.getConstantRange();
|
2010-08-19 05:11:37 +08:00
|
|
|
}
|
2016-04-26 02:30:31 +08:00
|
|
|
|
2016-04-27 05:48:16 +08:00
|
|
|
const unsigned ResultBitWidth =
|
|
|
|
cast<IntegerType>(BBI->getType())->getBitWidth();
|
2016-04-26 02:30:31 +08:00
|
|
|
|
|
|
|
// NOTE: We're currently limited by the set of operations that ConstantRange
|
|
|
|
// can evaluate symbolically. Enhancing that set will allows us to analyze
|
|
|
|
// more definitions.
|
|
|
|
LVILatticeVal Result;
|
|
|
|
switch (BBI->getOpcode()) {
|
|
|
|
case Instruction::Trunc:
|
2016-04-27 05:48:16 +08:00
|
|
|
Result.markConstantRange(LHSRange.truncate(ResultBitWidth));
|
2016-04-26 02:30:31 +08:00
|
|
|
break;
|
|
|
|
case Instruction::SExt:
|
2016-04-27 05:48:16 +08:00
|
|
|
Result.markConstantRange(LHSRange.signExtend(ResultBitWidth));
|
2016-04-26 02:30:31 +08:00
|
|
|
break;
|
|
|
|
case Instruction::ZExt:
|
2016-04-27 05:48:16 +08:00
|
|
|
Result.markConstantRange(LHSRange.zeroExtend(ResultBitWidth));
|
2016-04-26 02:30:31 +08:00
|
|
|
break;
|
|
|
|
case Instruction::BitCast:
|
|
|
|
Result.markConstantRange(LHSRange);
|
|
|
|
break;
|
|
|
|
default:
|
2016-04-27 07:27:33 +08:00
|
|
|
// Should be dead if the code above is correct
|
|
|
|
llvm_unreachable("inconsistent with above");
|
2016-04-26 02:30:31 +08:00
|
|
|
break;
|
2010-08-19 05:11:37 +08:00
|
|
|
}
|
2010-12-18 09:00:40 +08:00
|
|
|
|
2016-04-26 02:30:31 +08:00
|
|
|
BBLV = Result;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
bool LazyValueInfoImpl::solveBlockValueBinaryOp(LVILatticeVal &BBLV,
|
2016-04-26 02:30:31 +08:00
|
|
|
Instruction *BBI,
|
2016-04-27 06:52:30 +08:00
|
|
|
BasicBlock *BB) {
|
2016-04-27 07:10:35 +08:00
|
|
|
|
|
|
|
assert(BBI->getOperand(0)->getType()->isSized() &&
|
|
|
|
"all operands to binary operators are sized");
|
2016-04-27 07:27:33 +08:00
|
|
|
|
|
|
|
// Filter out operators we don't know how to reason about before attempting to
|
|
|
|
// recurse on our operand(s). This can cut a long search short if we know
|
|
|
|
// we're not going to be able to get any useful information anways.
|
|
|
|
switch (BBI->getOpcode()) {
|
|
|
|
case Instruction::Add:
|
|
|
|
case Instruction::Sub:
|
|
|
|
case Instruction::Mul:
|
|
|
|
case Instruction::UDiv:
|
|
|
|
case Instruction::Shl:
|
|
|
|
case Instruction::LShr:
|
|
|
|
case Instruction::And:
|
|
|
|
case Instruction::Or:
|
|
|
|
// continue into the code below
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
// Unhandled instructions are overdefined.
|
|
|
|
DEBUG(dbgs() << " compute BB '" << BB->getName()
|
|
|
|
<< "' - overdefined (unknown binary operator).\n");
|
|
|
|
BBLV.markOverdefined();
|
|
|
|
return true;
|
|
|
|
};
|
2016-07-04 09:26:33 +08:00
|
|
|
|
2016-04-27 07:10:35 +08:00
|
|
|
// Figure out the range of the LHS. If that fails, use a conservative range,
|
|
|
|
// but apply the transfer rule anyways. This lets us pick up facts from
|
|
|
|
// expressions like "and i32 (call i32 @foo()), 32"
|
|
|
|
if (!hasBlockValue(BBI->getOperand(0), BB))
|
2016-04-26 02:30:31 +08:00
|
|
|
if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
|
2016-04-27 07:10:35 +08:00
|
|
|
// More work to do before applying this transfer rule.
|
2016-04-26 02:30:31 +08:00
|
|
|
return false;
|
|
|
|
|
2016-04-27 07:10:35 +08:00
|
|
|
const unsigned OperandBitWidth =
|
|
|
|
DL.getTypeSizeInBits(BBI->getOperand(0)->getType());
|
|
|
|
ConstantRange LHSRange = ConstantRange(OperandBitWidth);
|
|
|
|
if (hasBlockValue(BBI->getOperand(0), BB)) {
|
|
|
|
LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
|
2016-08-12 23:52:23 +08:00
|
|
|
intersectAssumeOrGuardBlockValueConstantRange(BBI->getOperand(0), LHSVal,
|
|
|
|
BBI);
|
2016-04-27 07:10:35 +08:00
|
|
|
if (LHSVal.isConstantRange())
|
|
|
|
LHSRange = LHSVal.getConstantRange();
|
2016-04-26 02:30:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ConstantInt *RHS = cast<ConstantInt>(BBI->getOperand(1));
|
|
|
|
ConstantRange RHSRange = ConstantRange(RHS->getValue());
|
|
|
|
|
2010-08-19 05:11:37 +08:00
|
|
|
// NOTE: We're currently limited by the set of operations that ConstantRange
|
|
|
|
// can evaluate symbolically. Enhancing that set will allows us to analyze
|
|
|
|
// more definitions.
|
2010-12-21 02:18:16 +08:00
|
|
|
LVILatticeVal Result;
|
2010-08-19 05:11:37 +08:00
|
|
|
switch (BBI->getOpcode()) {
|
|
|
|
case Instruction::Add:
|
|
|
|
Result.markConstantRange(LHSRange.add(RHSRange));
|
|
|
|
break;
|
|
|
|
case Instruction::Sub:
|
|
|
|
Result.markConstantRange(LHSRange.sub(RHSRange));
|
|
|
|
break;
|
|
|
|
case Instruction::Mul:
|
|
|
|
Result.markConstantRange(LHSRange.multiply(RHSRange));
|
|
|
|
break;
|
|
|
|
case Instruction::UDiv:
|
|
|
|
Result.markConstantRange(LHSRange.udiv(RHSRange));
|
|
|
|
break;
|
|
|
|
case Instruction::Shl:
|
|
|
|
Result.markConstantRange(LHSRange.shl(RHSRange));
|
|
|
|
break;
|
|
|
|
case Instruction::LShr:
|
|
|
|
Result.markConstantRange(LHSRange.lshr(RHSRange));
|
|
|
|
break;
|
2010-09-07 13:39:02 +08:00
|
|
|
case Instruction::And:
|
|
|
|
Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
|
|
|
|
break;
|
|
|
|
case Instruction::Or:
|
|
|
|
Result.markConstantRange(LHSRange.binaryOr(RHSRange));
|
|
|
|
break;
|
2010-08-19 05:11:37 +08:00
|
|
|
default:
|
2016-04-27 07:27:33 +08:00
|
|
|
// Should be dead if the code above is correct
|
|
|
|
llvm_unreachable("inconsistent with above");
|
2010-08-19 05:11:37 +08:00
|
|
|
break;
|
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-12-21 02:18:16 +08:00
|
|
|
BBLV = Result;
|
2010-12-18 09:00:40 +08:00
|
|
|
return true;
|
2009-11-12 06:48:44 +08:00
|
|
|
}
|
|
|
|
|
2016-08-10 23:13:15 +08:00
|
|
|
static LVILatticeVal getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
|
|
|
|
bool isTrueDest) {
|
2016-08-08 22:08:37 +08:00
|
|
|
Value *LHS = ICI->getOperand(0);
|
|
|
|
Value *RHS = ICI->getOperand(1);
|
|
|
|
CmpInst::Predicate Predicate = ICI->getPredicate();
|
|
|
|
|
|
|
|
if (isa<Constant>(RHS)) {
|
|
|
|
if (ICI->isEquality() && LHS == Val) {
|
2014-09-08 04:29:59 +08:00
|
|
|
// We know that V has the RHS constant if this is a true SETEQ or
|
2016-07-04 09:26:27 +08:00
|
|
|
// false SETNE.
|
2016-08-08 22:08:37 +08:00
|
|
|
if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ))
|
2016-08-10 21:38:07 +08:00
|
|
|
return LVILatticeVal::get(cast<Constant>(RHS));
|
2014-09-08 04:29:59 +08:00
|
|
|
else
|
2016-08-10 21:38:07 +08:00
|
|
|
return LVILatticeVal::getNot(cast<Constant>(RHS));
|
2014-09-08 04:29:59 +08:00
|
|
|
}
|
2016-08-09 22:50:08 +08:00
|
|
|
}
|
2014-09-08 04:29:59 +08:00
|
|
|
|
2016-08-09 22:50:08 +08:00
|
|
|
if (!Val->getType()->isIntegerTy())
|
2016-08-10 21:38:07 +08:00
|
|
|
return LVILatticeVal::getOverdefined();
|
2016-08-08 22:33:11 +08:00
|
|
|
|
2016-08-09 22:50:08 +08:00
|
|
|
// Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
|
|
|
|
// range of Val guaranteed by the condition. Recognize comparisons in the from
|
|
|
|
// of:
|
|
|
|
// icmp <pred> Val, ...
|
2016-08-12 18:05:11 +08:00
|
|
|
// icmp <pred> (add Val, Offset), ...
|
2016-08-09 22:50:08 +08:00
|
|
|
// The latter is the range checking idiom that InstCombine produces. Subtract
|
|
|
|
// the offset from the allowed range for RHS in this case.
|
|
|
|
|
|
|
|
// Val or (add Val, Offset) can be on either hand of the comparison
|
|
|
|
if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) {
|
|
|
|
std::swap(LHS, RHS);
|
|
|
|
Predicate = CmpInst::getSwappedPredicate(Predicate);
|
|
|
|
}
|
2014-09-08 04:29:59 +08:00
|
|
|
|
2016-08-09 22:50:08 +08:00
|
|
|
ConstantInt *Offset = nullptr;
|
2016-08-12 18:05:11 +08:00
|
|
|
if (LHS != Val)
|
2016-08-09 22:50:08 +08:00
|
|
|
match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset)));
|
2014-09-08 04:29:59 +08:00
|
|
|
|
2016-08-09 22:50:08 +08:00
|
|
|
if (LHS == Val || Offset) {
|
|
|
|
// Calculate the range of values that are allowed by the comparison
|
|
|
|
ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
|
|
|
|
/*isFullSet=*/true);
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
|
|
|
|
RHSRange = ConstantRange(CI->getValue());
|
2016-08-12 18:14:11 +08:00
|
|
|
else if (Instruction *I = dyn_cast<Instruction>(RHS))
|
|
|
|
if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
|
|
|
|
RHSRange = getConstantRangeFromMetadata(*Ranges);
|
2016-08-09 17:41:34 +08:00
|
|
|
|
2016-08-09 22:50:08 +08:00
|
|
|
// If we're interested in the false dest, invert the condition
|
|
|
|
CmpInst::Predicate Pred =
|
|
|
|
isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate);
|
|
|
|
ConstantRange TrueValues =
|
|
|
|
ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
|
|
|
|
|
|
|
|
if (Offset) // Apply the offset from above.
|
|
|
|
TrueValues = TrueValues.subtract(Offset->getValue());
|
|
|
|
|
2016-08-10 21:38:07 +08:00
|
|
|
return LVILatticeVal::getRange(std::move(TrueValues));
|
2014-09-08 04:29:59 +08:00
|
|
|
}
|
2016-07-04 09:26:33 +08:00
|
|
|
|
2016-08-10 21:38:07 +08:00
|
|
|
return LVILatticeVal::getOverdefined();
|
2014-09-08 04:29:59 +08:00
|
|
|
}
|
|
|
|
|
2016-08-10 23:13:15 +08:00
|
|
|
static LVILatticeVal
|
|
|
|
getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
|
|
|
|
DenseMap<Value*, LVILatticeVal> &Visited);
|
|
|
|
|
|
|
|
static LVILatticeVal
|
|
|
|
getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
|
|
|
|
DenseMap<Value*, LVILatticeVal> &Visited) {
|
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
|
|
|
|
return getValueFromICmpCondition(Val, ICI, isTrueDest);
|
|
|
|
|
|
|
|
// Handle conditions in the form of (cond1 && cond2), we know that on the
|
|
|
|
// true dest path both of the conditions hold.
|
|
|
|
if (!isTrueDest)
|
|
|
|
return LVILatticeVal::getOverdefined();
|
|
|
|
|
|
|
|
BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
|
|
|
|
if (!BO || BO->getOpcode() != BinaryOperator::And)
|
|
|
|
return LVILatticeVal::getOverdefined();
|
|
|
|
|
|
|
|
auto RHS = getValueFromCondition(Val, BO->getOperand(0), isTrueDest, Visited);
|
|
|
|
auto LHS = getValueFromCondition(Val, BO->getOperand(1), isTrueDest, Visited);
|
|
|
|
return intersect(RHS, LHS);
|
|
|
|
}
|
|
|
|
|
|
|
|
static LVILatticeVal
|
|
|
|
getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
|
|
|
|
DenseMap<Value*, LVILatticeVal> &Visited) {
|
|
|
|
auto I = Visited.find(Cond);
|
|
|
|
if (I != Visited.end())
|
|
|
|
return I->second;
|
2016-08-12 23:08:15 +08:00
|
|
|
|
|
|
|
auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
|
|
|
|
Visited[Cond] = Result;
|
|
|
|
return Result;
|
2016-08-10 23:13:15 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
LVILatticeVal getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest) {
|
|
|
|
assert(Cond && "precondition");
|
|
|
|
DenseMap<Value*, LVILatticeVal> Visited;
|
|
|
|
return getValueFromCondition(Val, Cond, isTrueDest, Visited);
|
|
|
|
}
|
|
|
|
|
2012-06-28 09:16:18 +08:00
|
|
|
/// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
|
2016-02-02 07:21:11 +08:00
|
|
|
/// Val is not constrained on the edge. Result is unspecified if return value
|
|
|
|
/// is false.
|
2012-06-28 09:16:18 +08:00
|
|
|
static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
|
|
|
|
BasicBlock *BBTo, LVILatticeVal &Result) {
|
2015-07-28 23:53:21 +08:00
|
|
|
// TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
|
2009-11-16 04:02:12 +08:00
|
|
|
// know that v != 0.
|
2009-11-16 03:59:49 +08:00
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
|
|
|
|
// If this is a conditional branch and only one successor goes to BBTo, then
|
2015-01-10 00:35:37 +08:00
|
|
|
// we may be able to infer something from the condition.
|
2009-11-16 03:59:49 +08:00
|
|
|
if (BI->isConditional() &&
|
|
|
|
BI->getSuccessor(0) != BI->getSuccessor(1)) {
|
|
|
|
bool isTrueDest = BI->getSuccessor(0) == BBTo;
|
|
|
|
assert(BI->getSuccessor(!isTrueDest) == BBTo &&
|
|
|
|
"BBTo isn't a successor of BBFrom");
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2009-11-16 03:59:49 +08:00
|
|
|
// If V is the condition of the branch itself, then we know exactly what
|
|
|
|
// it is.
|
2010-12-18 09:00:40 +08:00
|
|
|
if (BI->getCondition() == Val) {
|
|
|
|
Result = LVILatticeVal::get(ConstantInt::get(
|
2010-08-11 04:03:09 +08:00
|
|
|
Type::getInt1Ty(Val->getContext()), isTrueDest));
|
2010-12-18 09:00:40 +08:00
|
|
|
return true;
|
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2009-11-16 03:59:49 +08:00
|
|
|
// If the condition of the branch is an equality comparison, we may be
|
|
|
|
// able to infer the value.
|
2016-08-10 21:38:07 +08:00
|
|
|
Result = getValueFromCondition(Val, BI->getCondition(), isTrueDest);
|
|
|
|
if (!Result.isOverdefined())
|
2016-08-03 00:20:48 +08:00
|
|
|
return true;
|
2009-11-16 03:59:49 +08:00
|
|
|
}
|
|
|
|
}
|
2009-11-16 04:02:12 +08:00
|
|
|
|
|
|
|
// If the edge was formed by a switch on the value, then we may know exactly
|
|
|
|
// what it is.
|
|
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
|
2012-06-29 00:13:37 +08:00
|
|
|
if (SI->getCondition() != Val)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
bool DefaultCase = SI->getDefaultDest() == BBTo;
|
|
|
|
unsigned BitWidth = Val->getType()->getIntegerBitWidth();
|
|
|
|
ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
|
|
|
|
|
2014-11-22 03:07:46 +08:00
|
|
|
for (SwitchInst::CaseIt i : SI->cases()) {
|
2012-06-29 00:13:37 +08:00
|
|
|
ConstantRange EdgeVal(i.getCaseValue()->getValue());
|
2012-09-06 07:45:58 +08:00
|
|
|
if (DefaultCase) {
|
|
|
|
// It is possible that the default destination is the destination of
|
|
|
|
// some cases. There is no need to perform difference for those cases.
|
|
|
|
if (i.getCaseSuccessor() != BBTo)
|
|
|
|
EdgesVals = EdgesVals.difference(EdgeVal);
|
|
|
|
} else if (i.getCaseSuccessor() == BBTo)
|
2012-05-19 05:02:10 +08:00
|
|
|
EdgesVals = EdgesVals.unionWith(EdgeVal);
|
2009-11-16 04:02:12 +08:00
|
|
|
}
|
2016-02-20 18:40:34 +08:00
|
|
|
Result = LVILatticeVal::getRange(std::move(EdgesVals));
|
2012-06-29 00:13:37 +08:00
|
|
|
return true;
|
2009-11-16 04:02:12 +08:00
|
|
|
}
|
2012-06-28 09:16:18 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2015-01-10 00:35:37 +08:00
|
|
|
/// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
|
|
|
|
/// the basic block if the edge does not constrain Val.
|
2016-09-13 05:46:58 +08:00
|
|
|
bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
|
2014-09-08 04:29:59 +08:00
|
|
|
BasicBlock *BBTo, LVILatticeVal &Result,
|
|
|
|
Instruction *CxtI) {
|
2012-06-28 09:16:18 +08:00
|
|
|
// If already a constant, there is nothing to compute.
|
|
|
|
if (Constant *VC = dyn_cast<Constant>(Val)) {
|
|
|
|
Result = LVILatticeVal::get(VC);
|
2010-12-18 09:00:40 +08:00
|
|
|
return true;
|
|
|
|
}
|
2012-06-28 09:16:18 +08:00
|
|
|
|
2016-02-02 11:15:40 +08:00
|
|
|
LVILatticeVal LocalResult;
|
|
|
|
if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
|
|
|
|
// If we couldn't constrain the value on the edge, LocalResult doesn't
|
|
|
|
// provide any information.
|
|
|
|
LocalResult.markOverdefined();
|
2016-07-04 09:26:33 +08:00
|
|
|
|
2016-02-02 11:15:40 +08:00
|
|
|
if (hasSingleValue(LocalResult)) {
|
|
|
|
// Can't get any more precise here
|
|
|
|
Result = LocalResult;
|
2012-06-28 09:16:18 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!hasBlockValue(Val, BBFrom)) {
|
2014-11-26 01:23:05 +08:00
|
|
|
if (pushBlockValue(std::make_pair(BBFrom, Val)))
|
|
|
|
return false;
|
2016-02-02 11:15:40 +08:00
|
|
|
// No new information.
|
|
|
|
Result = LocalResult;
|
2014-11-26 01:23:05 +08:00
|
|
|
return true;
|
2012-06-28 09:16:18 +08:00
|
|
|
}
|
|
|
|
|
2016-02-02 11:15:40 +08:00
|
|
|
// Try to intersect ranges of the BB and the constraint on the edge.
|
|
|
|
LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
|
2016-08-12 23:52:23 +08:00
|
|
|
intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
|
|
|
|
BBFrom->getTerminator());
|
2014-10-16 08:40:05 +08:00
|
|
|
// We can use the context instruction (generically the ultimate instruction
|
|
|
|
// the calling pass is trying to simplify) here, even though the result of
|
|
|
|
// this function is generally cached when called from the solve* functions
|
|
|
|
// (and that cached result might be used with queries using a different
|
|
|
|
// context instruction), because when this function is called from the solve*
|
|
|
|
// functions, the context instruction is not provided. When called from
|
2016-09-13 05:46:58 +08:00
|
|
|
// LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
|
2014-10-16 08:40:05 +08:00
|
|
|
// but then the result is not cached.
|
2016-08-12 23:52:23 +08:00
|
|
|
intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
|
2016-02-02 11:15:40 +08:00
|
|
|
|
|
|
|
Result = intersect(LocalResult, InBlock);
|
2012-06-28 09:16:18 +08:00
|
|
|
return true;
|
2009-11-16 03:59:49 +08:00
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
LVILatticeVal LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
|
2014-09-08 04:29:59 +08:00
|
|
|
Instruction *CxtI) {
|
2009-12-24 04:43:58 +08:00
|
|
|
DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
|
2009-11-16 03:59:49 +08:00
|
|
|
<< BB->getName() << "'\n");
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2014-11-26 01:23:05 +08:00
|
|
|
assert(BlockValueStack.empty() && BlockValueSet.empty());
|
2016-02-11 05:46:32 +08:00
|
|
|
if (!hasBlockValue(V, BB)) {
|
2016-07-25 08:59:46 +08:00
|
|
|
pushBlockValue(std::make_pair(BB, V));
|
2016-02-11 05:46:32 +08:00
|
|
|
solve();
|
|
|
|
}
|
2010-12-09 14:14:58 +08:00
|
|
|
LVILatticeVal Result = getBlockValue(V, BB);
|
2016-08-12 23:52:23 +08:00
|
|
|
intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
|
2014-09-08 04:29:59 +08:00
|
|
|
|
|
|
|
DEBUG(dbgs() << " Result = " << Result << "\n");
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
LVILatticeVal LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
|
2014-09-08 04:29:59 +08:00
|
|
|
DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
|
|
|
|
<< CxtI->getName() << "'\n");
|
|
|
|
|
2016-02-11 05:46:32 +08:00
|
|
|
if (auto *C = dyn_cast<Constant>(V))
|
|
|
|
return LVILatticeVal::get(C);
|
|
|
|
|
2016-02-03 05:57:37 +08:00
|
|
|
LVILatticeVal Result = LVILatticeVal::getOverdefined();
|
[LVI/CVP] Teach LVI about range metadata
Somewhat shockingly for an analysis pass which is computing constant ranges, LVI did not understand the ranges provided by range metadata.
As part of this change, I included a change to CVP primarily because doing so made it much easier to write small self contained test cases. CVP was previously only handling the non-local operand case, but given that LVI can sometimes figure out information about instructions standalone, I don't see any reason to restrict this. There could possibly be a compile time impact from this, but I suspect it should be minimal. If anyone has an example which substaintially regresses, please let me know. I could restrict the block local handling to ICmps feeding Terminator instructions if needed.
Note that this patch continues a somewhat bad practice in LVI. In many cases, we know facts about values, and separate context sensitive facts about values. LVI makes no effort to distinguish and will frequently cache the same value fact repeatedly for different contexts. I would like to change this, but that's a large enough change that I want it to go in separately with clear documentation of what's changing. Other examples of this include the non-null handling, and arguments.
As a meta comment: the entire motivation of this change was being able to write smaller (aka reasonable sized) test cases for a future patch teaching LVI about select instructions.
Differential Revision: http://reviews.llvm.org/D13543
llvm-svn: 251606
2015-10-29 11:57:17 +08:00
|
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
|
|
Result = getFromRangeMetadata(I);
|
2016-08-12 23:52:23 +08:00
|
|
|
intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
|
2016-02-02 08:45:30 +08:00
|
|
|
|
2009-12-24 04:43:58 +08:00
|
|
|
DEBUG(dbgs() << " Result = " << Result << "\n");
|
2009-11-16 03:59:49 +08:00
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
LVILatticeVal LazyValueInfoImpl::
|
2014-09-08 04:29:59 +08:00
|
|
|
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
|
|
|
|
Instruction *CxtI) {
|
2009-12-24 04:43:58 +08:00
|
|
|
DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
|
2009-11-16 03:59:49 +08:00
|
|
|
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-12-18 09:00:40 +08:00
|
|
|
LVILatticeVal Result;
|
2014-09-08 04:29:59 +08:00
|
|
|
if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
|
2010-12-18 09:00:40 +08:00
|
|
|
solve();
|
2014-09-08 04:29:59 +08:00
|
|
|
bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
|
2010-12-18 09:00:40 +08:00
|
|
|
(void)WasFastQuery;
|
|
|
|
assert(WasFastQuery && "More work to do after problem solved?");
|
|
|
|
}
|
|
|
|
|
2009-12-24 04:43:58 +08:00
|
|
|
DEBUG(dbgs() << " Result = " << Result << "\n");
|
2009-11-16 03:59:49 +08:00
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
|
2016-09-13 06:38:44 +08:00
|
|
|
BasicBlock *NewSucc) {
|
|
|
|
TheCache.threadEdgeImpl(OldSucc, NewSucc);
|
2010-07-27 02:48:03 +08:00
|
|
|
}
|
|
|
|
|
2009-11-16 03:59:49 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// LazyValueInfo Impl
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2016-09-13 05:46:58 +08:00
|
|
|
/// This lazily constructs the LazyValueInfoImpl.
|
|
|
|
static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
|
|
|
|
const DataLayout *DL,
|
|
|
|
DominatorTree *DT = nullptr) {
|
2015-03-10 10:37:25 +08:00
|
|
|
if (!PImpl) {
|
|
|
|
assert(DL && "getCache() called with a null DataLayout");
|
2016-09-13 05:46:58 +08:00
|
|
|
PImpl = new LazyValueInfoImpl(AC, *DL, DT);
|
2015-03-10 10:37:25 +08:00
|
|
|
}
|
2016-09-13 05:46:58 +08:00
|
|
|
return *static_cast<LazyValueInfoImpl*>(PImpl);
|
2009-11-16 03:59:49 +08:00
|
|
|
}
|
|
|
|
|
2016-06-14 06:01:25 +08:00
|
|
|
bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
|
|
|
|
Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
2015-03-10 10:37:25 +08:00
|
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
2014-09-08 04:29:59 +08:00
|
|
|
|
|
|
|
DominatorTreeWrapperPass *DTWP =
|
|
|
|
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
2016-06-14 06:01:25 +08:00
|
|
|
Info.DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
|
|
Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
2011-12-02 09:26:24 +08:00
|
|
|
|
2016-06-14 06:01:25 +08:00
|
|
|
if (Info.PImpl)
|
2016-09-13 05:46:58 +08:00
|
|
|
getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear();
|
2014-09-08 04:29:59 +08:00
|
|
|
|
2010-08-19 02:39:01 +08:00
|
|
|
// Fully lazy.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-06-14 06:01:25 +08:00
|
|
|
void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
2011-12-02 09:26:24 +08:00
|
|
|
AU.setPreservesAll();
|
2015-01-04 20:03:27 +08:00
|
|
|
AU.addRequired<AssumptionCacheTracker>();
|
2015-01-15 18:41:28 +08:00
|
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
2011-12-02 09:26:24 +08:00
|
|
|
}
|
|
|
|
|
2016-06-14 06:01:25 +08:00
|
|
|
LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
|
|
|
|
|
|
|
|
LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
|
|
|
|
|
2009-11-16 03:59:49 +08:00
|
|
|
void LazyValueInfo::releaseMemory() {
|
|
|
|
// If the cache was allocated, free it.
|
|
|
|
if (PImpl) {
|
2016-09-13 05:46:58 +08:00
|
|
|
delete &getImpl(PImpl, AC, nullptr);
|
2014-04-15 12:59:12 +08:00
|
|
|
PImpl = nullptr;
|
2009-11-16 03:59:49 +08:00
|
|
|
}
|
|
|
|
}
|
2009-11-12 06:48:44 +08:00
|
|
|
|
2016-06-14 06:01:25 +08:00
|
|
|
void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
|
|
|
|
|
|
|
|
LazyValueInfo LazyValueAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
|
|
|
|
auto &AC = FAM.getResult<AssumptionAnalysis>(F);
|
|
|
|
auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
|
|
|
|
auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
|
|
|
|
|
|
|
|
return LazyValueInfo(&AC, &TLI, DT);
|
|
|
|
}
|
|
|
|
|
2016-09-15 14:28:34 +08:00
|
|
|
/// Returns true if we can statically tell that this value will never be a
|
|
|
|
/// "useful" constant. In practice, this means we've got something like an
|
|
|
|
/// alloca or a malloc call for which a comparison against a constant can
|
|
|
|
/// only be guarding dead code. Note that we are potentially giving up some
|
|
|
|
/// precision in dead code (a constant result) in favour of avoiding a
|
|
|
|
/// expensive search for a easily answered common query.
|
|
|
|
static bool isKnownNonConstant(Value *V) {
|
|
|
|
V = V->stripPointerCasts();
|
|
|
|
// The return val of alloc cannot be a Constant.
|
|
|
|
if (isa<AllocaInst>(V))
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2014-09-08 04:29:59 +08:00
|
|
|
Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
|
|
|
|
Instruction *CxtI) {
|
2016-09-15 14:28:34 +08:00
|
|
|
// Bail out early if V is known not to be a Constant.
|
|
|
|
if (isKnownNonConstant(V))
|
|
|
|
return nullptr;
|
|
|
|
|
2015-03-10 10:37:25 +08:00
|
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
2014-09-08 04:29:59 +08:00
|
|
|
LVILatticeVal Result =
|
2016-09-13 05:46:58 +08:00
|
|
|
getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
|
2015-01-04 20:03:27 +08:00
|
|
|
|
2009-11-12 06:48:44 +08:00
|
|
|
if (Result.isConstant())
|
|
|
|
return Result.getConstant();
|
2010-12-16 02:57:18 +08:00
|
|
|
if (Result.isConstantRange()) {
|
2010-08-28 07:29:38 +08:00
|
|
|
ConstantRange CR = Result.getConstantRange();
|
|
|
|
if (const APInt *SingleVal = CR.getSingleElement())
|
|
|
|
return ConstantInt::get(V->getContext(), *SingleVal);
|
|
|
|
}
|
2014-04-15 12:59:12 +08:00
|
|
|
return nullptr;
|
2009-11-12 06:48:44 +08:00
|
|
|
}
|
2009-11-11 10:08:33 +08:00
|
|
|
|
2016-05-03 03:58:00 +08:00
|
|
|
ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
|
2016-07-04 09:26:21 +08:00
|
|
|
Instruction *CxtI) {
|
2016-05-03 03:58:00 +08:00
|
|
|
assert(V->getType()->isIntegerTy());
|
|
|
|
unsigned Width = V->getType()->getIntegerBitWidth();
|
|
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
|
|
|
LVILatticeVal Result =
|
2016-09-13 05:46:58 +08:00
|
|
|
getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
|
2016-05-03 03:58:00 +08:00
|
|
|
if (Result.isUndefined())
|
|
|
|
return ConstantRange(Width, /*isFullSet=*/false);
|
|
|
|
if (Result.isConstantRange())
|
|
|
|
return Result.getConstantRange();
|
2016-08-10 20:54:54 +08:00
|
|
|
// We represent ConstantInt constants as constant ranges but other kinds
|
|
|
|
// of integer constants, i.e. ConstantExpr will be tagged as constants
|
|
|
|
assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
|
|
|
|
"ConstantInt value must be represented as constantrange");
|
2016-05-26 06:29:34 +08:00
|
|
|
return ConstantRange(Width, /*isFullSet=*/true);
|
2016-05-03 03:58:00 +08:00
|
|
|
}
|
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// Determine whether the specified value is known to be a
|
2015-07-28 23:53:21 +08:00
|
|
|
/// constant on the specified edge. Return null if not.
|
2009-11-12 09:29:10 +08:00
|
|
|
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
|
2014-09-08 04:29:59 +08:00
|
|
|
BasicBlock *ToBB,
|
|
|
|
Instruction *CxtI) {
|
2015-03-10 10:37:25 +08:00
|
|
|
const DataLayout &DL = FromBB->getModule()->getDataLayout();
|
2014-09-08 04:29:59 +08:00
|
|
|
LVILatticeVal Result =
|
2016-09-13 05:46:58 +08:00
|
|
|
getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
|
2015-01-04 20:03:27 +08:00
|
|
|
|
2009-11-12 09:29:10 +08:00
|
|
|
if (Result.isConstant())
|
|
|
|
return Result.getConstant();
|
2010-12-16 02:57:18 +08:00
|
|
|
if (Result.isConstantRange()) {
|
2010-08-11 04:03:09 +08:00
|
|
|
ConstantRange CR = Result.getConstantRange();
|
|
|
|
if (const APInt *SingleVal = CR.getSingleElement())
|
|
|
|
return ConstantInt::get(V->getContext(), *SingleVal);
|
|
|
|
}
|
2014-04-15 12:59:12 +08:00
|
|
|
return nullptr;
|
2009-11-12 09:29:10 +08:00
|
|
|
}
|
|
|
|
|
2015-03-10 10:37:25 +08:00
|
|
|
static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
|
|
|
|
LVILatticeVal &Result,
|
|
|
|
const DataLayout &DL,
|
|
|
|
TargetLibraryInfo *TLI) {
|
2014-09-08 04:29:59 +08:00
|
|
|
|
2009-11-12 12:36:58 +08:00
|
|
|
// If we know the value is a constant, evaluate the conditional.
|
2014-04-15 12:59:12 +08:00
|
|
|
Constant *Res = nullptr;
|
2009-11-12 12:36:58 +08:00
|
|
|
if (Result.isConstant()) {
|
2014-02-18 23:33:12 +08:00
|
|
|
Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
|
2011-12-02 09:26:24 +08:00
|
|
|
TLI);
|
2010-12-16 02:57:18 +08:00
|
|
|
if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
|
2014-09-08 04:29:59 +08:00
|
|
|
return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
|
|
|
|
return LazyValueInfo::Unknown;
|
2009-11-16 03:59:49 +08:00
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-08-11 04:03:09 +08:00
|
|
|
if (Result.isConstantRange()) {
|
2010-08-24 15:55:44 +08:00
|
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(C);
|
2014-09-08 04:29:59 +08:00
|
|
|
if (!CI) return LazyValueInfo::Unknown;
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-08-11 04:03:09 +08:00
|
|
|
ConstantRange CR = Result.getConstantRange();
|
|
|
|
if (Pred == ICmpInst::ICMP_EQ) {
|
|
|
|
if (!CR.contains(CI->getValue()))
|
2014-09-08 04:29:59 +08:00
|
|
|
return LazyValueInfo::False;
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-08-11 04:03:09 +08:00
|
|
|
if (CR.isSingleElement() && CR.contains(CI->getValue()))
|
2014-09-08 04:29:59 +08:00
|
|
|
return LazyValueInfo::True;
|
2010-08-11 04:03:09 +08:00
|
|
|
} else if (Pred == ICmpInst::ICMP_NE) {
|
|
|
|
if (!CR.contains(CI->getValue()))
|
2014-09-08 04:29:59 +08:00
|
|
|
return LazyValueInfo::True;
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-08-11 04:03:09 +08:00
|
|
|
if (CR.isSingleElement() && CR.contains(CI->getValue()))
|
2014-09-08 04:29:59 +08:00
|
|
|
return LazyValueInfo::False;
|
2010-08-11 04:03:09 +08:00
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2010-08-11 04:03:09 +08:00
|
|
|
// Handle more complex predicates.
|
2016-10-02 08:09:57 +08:00
|
|
|
ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
|
|
|
|
(ICmpInst::Predicate)Pred, CI->getValue());
|
2010-12-16 02:57:18 +08:00
|
|
|
if (TrueValues.contains(CR))
|
2014-09-08 04:29:59 +08:00
|
|
|
return LazyValueInfo::True;
|
2010-12-16 02:57:18 +08:00
|
|
|
if (TrueValues.inverse().contains(CR))
|
2014-09-08 04:29:59 +08:00
|
|
|
return LazyValueInfo::False;
|
|
|
|
return LazyValueInfo::Unknown;
|
2010-08-11 04:03:09 +08:00
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2009-11-16 03:59:49 +08:00
|
|
|
if (Result.isNotConstant()) {
|
2009-11-12 12:36:58 +08:00
|
|
|
// If this is an equality comparison, we can try to fold it knowing that
|
|
|
|
// "V != C1".
|
|
|
|
if (Pred == ICmpInst::ICMP_EQ) {
|
2012-09-27 18:14:43 +08:00
|
|
|
// !C1 == C -> false iff C1 == C.
|
2009-11-12 12:36:58 +08:00
|
|
|
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
|
2014-02-18 23:33:12 +08:00
|
|
|
Result.getNotConstant(), C, DL,
|
2011-12-02 09:26:24 +08:00
|
|
|
TLI);
|
2009-11-12 12:36:58 +08:00
|
|
|
if (Res->isNullValue())
|
2014-09-08 04:29:59 +08:00
|
|
|
return LazyValueInfo::False;
|
2009-11-12 12:36:58 +08:00
|
|
|
} else if (Pred == ICmpInst::ICMP_NE) {
|
2012-09-27 18:14:43 +08:00
|
|
|
// !C1 != C -> true iff C1 == C.
|
2009-11-16 04:01:24 +08:00
|
|
|
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
|
2014-02-18 23:33:12 +08:00
|
|
|
Result.getNotConstant(), C, DL,
|
2011-12-02 09:26:24 +08:00
|
|
|
TLI);
|
2009-11-12 12:36:58 +08:00
|
|
|
if (Res->isNullValue())
|
2014-09-08 04:29:59 +08:00
|
|
|
return LazyValueInfo::True;
|
2009-11-12 12:36:58 +08:00
|
|
|
}
|
2014-09-08 04:29:59 +08:00
|
|
|
return LazyValueInfo::Unknown;
|
2009-11-11 10:08:33 +08:00
|
|
|
}
|
2015-07-28 23:53:21 +08:00
|
|
|
|
2014-09-08 04:29:59 +08:00
|
|
|
return LazyValueInfo::Unknown;
|
|
|
|
}
|
|
|
|
|
2015-01-10 00:47:20 +08:00
|
|
|
/// Determine whether the specified value comparison with a constant is known to
|
|
|
|
/// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
|
2014-09-08 04:29:59 +08:00
|
|
|
LazyValueInfo::Tristate
|
|
|
|
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
|
|
|
|
BasicBlock *FromBB, BasicBlock *ToBB,
|
|
|
|
Instruction *CxtI) {
|
2015-03-10 10:37:25 +08:00
|
|
|
const DataLayout &DL = FromBB->getModule()->getDataLayout();
|
2014-09-08 04:29:59 +08:00
|
|
|
LVILatticeVal Result =
|
2016-09-13 05:46:58 +08:00
|
|
|
getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
|
2014-09-08 04:29:59 +08:00
|
|
|
|
|
|
|
return getPredicateResult(Pred, C, Result, DL, TLI);
|
|
|
|
}
|
|
|
|
|
|
|
|
LazyValueInfo::Tristate
|
|
|
|
LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
|
|
|
|
Instruction *CxtI) {
|
2016-09-15 14:28:34 +08:00
|
|
|
// Is or is not NonNull are common predicates being queried. If
|
|
|
|
// isKnownNonNull can tell us the result of the predicate, we can
|
|
|
|
// return it quickly. But this is only a fastpath, and falling
|
|
|
|
// through would still be correct.
|
|
|
|
if (V->getType()->isPointerTy() && C->isNullValue() &&
|
|
|
|
isKnownNonNull(V->stripPointerCasts())) {
|
|
|
|
if (Pred == ICmpInst::ICMP_EQ)
|
|
|
|
return LazyValueInfo::False;
|
|
|
|
else if (Pred == ICmpInst::ICMP_NE)
|
|
|
|
return LazyValueInfo::True;
|
|
|
|
}
|
2015-03-10 10:37:25 +08:00
|
|
|
const DataLayout &DL = CxtI->getModule()->getDataLayout();
|
2016-09-13 05:46:58 +08:00
|
|
|
LVILatticeVal Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
|
2015-06-16 08:49:59 +08:00
|
|
|
Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
|
|
|
|
if (Ret != Unknown)
|
|
|
|
return Ret;
|
|
|
|
|
2015-11-04 09:47:04 +08:00
|
|
|
// Note: The following bit of code is somewhat distinct from the rest of LVI;
|
|
|
|
// LVI as a whole tries to compute a lattice value which is conservatively
|
|
|
|
// correct at a given location. In this case, we have a predicate which we
|
|
|
|
// weren't able to prove about the merged result, and we're pushing that
|
|
|
|
// predicate back along each incoming edge to see if we can prove it
|
|
|
|
// separately for each input. As a motivating example, consider:
|
|
|
|
// bb1:
|
|
|
|
// %v1 = ... ; constantrange<1, 5>
|
|
|
|
// br label %merge
|
|
|
|
// bb2:
|
|
|
|
// %v2 = ... ; constantrange<10, 20>
|
|
|
|
// br label %merge
|
|
|
|
// merge:
|
|
|
|
// %phi = phi [%v1, %v2] ; constantrange<1,20>
|
|
|
|
// %pred = icmp eq i32 %phi, 8
|
|
|
|
// We can't tell from the lattice value for '%phi' that '%pred' is false
|
|
|
|
// along each path, but by checking the predicate over each input separately,
|
|
|
|
// we can.
|
|
|
|
// We limit the search to one step backwards from the current BB and value.
|
|
|
|
// We could consider extending this to search further backwards through the
|
|
|
|
// CFG and/or value graph, but there are non-obvious compile time vs quality
|
2016-07-04 09:26:27 +08:00
|
|
|
// tradeoffs.
|
2015-06-16 08:49:59 +08:00
|
|
|
if (CxtI) {
|
2015-09-01 02:31:48 +08:00
|
|
|
BasicBlock *BB = CxtI->getParent();
|
|
|
|
|
|
|
|
// Function entry or an unreachable block. Bail to avoid confusing
|
|
|
|
// analysis below.
|
|
|
|
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
|
|
if (PI == PE)
|
|
|
|
return Unknown;
|
|
|
|
|
|
|
|
// If V is a PHI node in the same block as the context, we need to ask
|
|
|
|
// questions about the predicate as applied to the incoming value along
|
|
|
|
// each edge. This is useful for eliminating cases where the predicate is
|
|
|
|
// known along all incoming edges.
|
|
|
|
if (auto *PHI = dyn_cast<PHINode>(V))
|
|
|
|
if (PHI->getParent() == BB) {
|
|
|
|
Tristate Baseline = Unknown;
|
|
|
|
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
|
|
|
|
Value *Incoming = PHI->getIncomingValue(i);
|
|
|
|
BasicBlock *PredBB = PHI->getIncomingBlock(i);
|
2016-07-04 09:26:27 +08:00
|
|
|
// Note that PredBB may be BB itself.
|
2015-09-01 02:31:48 +08:00
|
|
|
Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
|
|
|
|
CxtI);
|
2016-07-04 09:26:33 +08:00
|
|
|
|
2015-09-01 02:31:48 +08:00
|
|
|
// Keep going as long as we've seen a consistent known result for
|
|
|
|
// all inputs.
|
|
|
|
Baseline = (i == 0) ? Result /* First iteration */
|
|
|
|
: (Baseline == Result ? Baseline : Unknown); /* All others */
|
|
|
|
if (Baseline == Unknown)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (Baseline != Unknown)
|
|
|
|
return Baseline;
|
2016-07-25 08:59:46 +08:00
|
|
|
}
|
2015-09-01 02:31:48 +08:00
|
|
|
|
2015-06-16 08:49:59 +08:00
|
|
|
// For a comparison where the V is outside this block, it's possible
|
2015-07-28 23:53:21 +08:00
|
|
|
// that we've branched on it before. Look to see if the value is known
|
2015-06-16 08:49:59 +08:00
|
|
|
// on all incoming edges.
|
2015-09-01 02:31:48 +08:00
|
|
|
if (!isa<Instruction>(V) ||
|
|
|
|
cast<Instruction>(V)->getParent() != BB) {
|
2015-06-16 08:49:59 +08:00
|
|
|
// For predecessor edge, determine if the comparison is true or false
|
2015-07-28 23:53:21 +08:00
|
|
|
// on that edge. If they're all true or all false, we can conclude
|
2015-06-16 08:49:59 +08:00
|
|
|
// the value of the comparison in this block.
|
|
|
|
Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
|
|
|
|
if (Baseline != Unknown) {
|
|
|
|
// Check that all remaining incoming values match the first one.
|
|
|
|
while (++PI != PE) {
|
|
|
|
Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
|
|
|
|
if (Ret != Baseline) break;
|
|
|
|
}
|
|
|
|
// If we terminated early, then one of the values didn't match.
|
|
|
|
if (PI == PE) {
|
|
|
|
return Baseline;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Unknown;
|
2009-11-11 08:22:30 +08:00
|
|
|
}
|
2009-11-11 10:08:33 +08:00
|
|
|
|
2010-07-27 02:48:03 +08:00
|
|
|
void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
|
2010-12-16 02:57:18 +08:00
|
|
|
BasicBlock *NewSucc) {
|
2015-03-10 10:37:25 +08:00
|
|
|
if (PImpl) {
|
|
|
|
const DataLayout &DL = PredBB->getModule()->getDataLayout();
|
2016-09-13 05:46:58 +08:00
|
|
|
getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
|
2015-03-10 10:37:25 +08:00
|
|
|
}
|
2010-08-19 02:39:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void LazyValueInfo::eraseBlock(BasicBlock *BB) {
|
2015-03-10 10:37:25 +08:00
|
|
|
if (PImpl) {
|
|
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
2016-09-13 05:46:58 +08:00
|
|
|
getImpl(PImpl, AC, &DL, DT).eraseBlock(BB);
|
2015-03-10 10:37:25 +08:00
|
|
|
}
|
2010-07-27 02:48:03 +08:00
|
|
|
}
|