llvm-project/llvm/test/CodeGen/AArch64/bitfield.ll

219 lines
5.8 KiB
LLVM
Raw Normal View History

; RUN: llc -verify-machineinstrs < %s -mtriple=aarch64-none-linux-gnu | FileCheck %s
@var32 = global i32 0
@var64 = global i64 0
define void @test_extendb(i8 %var) {
; CHECK: test_extendb:
%sxt32 = sext i8 %var to i32
store volatile i32 %sxt32, i32* @var32
; CHECK: sxtb {{w[0-9]+}}, {{w[0-9]+}}
%sxt64 = sext i8 %var to i64
store volatile i64 %sxt64, i64* @var64
; CHECK: sxtb {{x[0-9]+}}, {{w[0-9]+}}
; N.b. this doesn't actually produce a bitfield instruction at the
; moment, but it's still a good test to have and the semantics are
; correct.
%uxt32 = zext i8 %var to i32
store volatile i32 %uxt32, i32* @var32
; CHECK: and {{w[0-9]+}}, {{w[0-9]+}}, #0xff
%uxt64 = zext i8 %var to i64
store volatile i64 %uxt64, i64* @var64
; CHECK: uxtb {{x[0-9]+}}, {{w[0-9]+}}
ret void
}
define void @test_extendh(i16 %var) {
; CHECK: test_extendh:
%sxt32 = sext i16 %var to i32
store volatile i32 %sxt32, i32* @var32
; CHECK: sxth {{w[0-9]+}}, {{w[0-9]+}}
%sxt64 = sext i16 %var to i64
store volatile i64 %sxt64, i64* @var64
; CHECK: sxth {{x[0-9]+}}, {{w[0-9]+}}
; N.b. this doesn't actually produce a bitfield instruction at the
; moment, but it's still a good test to have and the semantics are
; correct.
%uxt32 = zext i16 %var to i32
store volatile i32 %uxt32, i32* @var32
; CHECK: and {{w[0-9]+}}, {{w[0-9]+}}, #0xffff
%uxt64 = zext i16 %var to i64
store volatile i64 %uxt64, i64* @var64
; CHECK: uxth {{x[0-9]+}}, {{w[0-9]+}}
ret void
}
define void @test_extendw(i32 %var) {
; CHECK: test_extendw:
%sxt64 = sext i32 %var to i64
store volatile i64 %sxt64, i64* @var64
; CHECK: sxtw {{x[0-9]+}}, {{w[0-9]+}}
%uxt64 = zext i32 %var to i64
store volatile i64 %uxt64, i64* @var64
; CHECK: ubfx {{w[0-9]+}}, {{w[0-9]+}}, #0, #32
ret void
}
define void @test_shifts(i32 %val32, i64 %val64) {
; CHECK: test_shifts:
%shift1 = ashr i32 %val32, 31
store volatile i32 %shift1, i32* @var32
; CHECK: asr {{w[0-9]+}}, {{w[0-9]+}}, #31
%shift2 = lshr i32 %val32, 8
store volatile i32 %shift2, i32* @var32
; CHECK: lsr {{w[0-9]+}}, {{w[0-9]+}}, #8
%shift3 = shl i32 %val32, 1
store volatile i32 %shift3, i32* @var32
; CHECK: lsl {{w[0-9]+}}, {{w[0-9]+}}, #1
%shift4 = ashr i64 %val64, 31
store volatile i64 %shift4, i64* @var64
; CHECK: asr {{x[0-9]+}}, {{x[0-9]+}}, #31
%shift5 = lshr i64 %val64, 8
store volatile i64 %shift5, i64* @var64
; CHECK: lsr {{x[0-9]+}}, {{x[0-9]+}}, #8
%shift6 = shl i64 %val64, 63
store volatile i64 %shift6, i64* @var64
; CHECK: lsl {{x[0-9]+}}, {{x[0-9]+}}, #63
%shift7 = ashr i64 %val64, 63
store volatile i64 %shift7, i64* @var64
; CHECK: asr {{x[0-9]+}}, {{x[0-9]+}}, #63
%shift8 = lshr i64 %val64, 63
store volatile i64 %shift8, i64* @var64
; CHECK: lsr {{x[0-9]+}}, {{x[0-9]+}}, #63
%shift9 = lshr i32 %val32, 31
store volatile i32 %shift9, i32* @var32
; CHECK: lsr {{w[0-9]+}}, {{w[0-9]+}}, #31
%shift10 = shl i32 %val32, 31
store volatile i32 %shift10, i32* @var32
; CHECK: lsl {{w[0-9]+}}, {{w[0-9]+}}, #31
ret void
}
; LLVM can produce in-register extensions taking place entirely with
; 64-bit registers too.
define void @test_sext_inreg_64(i64 %in) {
; CHECK: test_sext_inreg_64:
; i1 doesn't have an official alias, but crops up and is handled by
; the bitfield ops.
%trunc_i1 = trunc i64 %in to i1
%sext_i1 = sext i1 %trunc_i1 to i64
store volatile i64 %sext_i1, i64* @var64
; CHECK: sbfx {{x[0-9]+}}, {{x[0-9]+}}, #0, #1
%trunc_i8 = trunc i64 %in to i8
%sext_i8 = sext i8 %trunc_i8 to i64
store volatile i64 %sext_i8, i64* @var64
; CHECK: sxtb {{x[0-9]+}}, {{w[0-9]+}}
%trunc_i16 = trunc i64 %in to i16
%sext_i16 = sext i16 %trunc_i16 to i64
store volatile i64 %sext_i16, i64* @var64
; CHECK: sxth {{x[0-9]+}}, {{w[0-9]+}}
%trunc_i32 = trunc i64 %in to i32
%sext_i32 = sext i32 %trunc_i32 to i64
store volatile i64 %sext_i32, i64* @var64
; CHECK: sxtw {{x[0-9]+}}, {{w[0-9]+}}
ret void
}
; These instructions don't actually select to official bitfield
; operations, but it's important that we select them somehow:
define void @test_zext_inreg_64(i64 %in) {
; CHECK: test_zext_inreg_64:
%trunc_i8 = trunc i64 %in to i8
%zext_i8 = zext i8 %trunc_i8 to i64
store volatile i64 %zext_i8, i64* @var64
; CHECK: and {{x[0-9]+}}, {{x[0-9]+}}, #0xff
%trunc_i16 = trunc i64 %in to i16
%zext_i16 = zext i16 %trunc_i16 to i64
store volatile i64 %zext_i16, i64* @var64
; CHECK: and {{x[0-9]+}}, {{x[0-9]+}}, #0xffff
%trunc_i32 = trunc i64 %in to i32
%zext_i32 = zext i32 %trunc_i32 to i64
store volatile i64 %zext_i32, i64* @var64
; CHECK: and {{x[0-9]+}}, {{x[0-9]+}}, #0xffffffff
ret void
}
define i64 @test_sext_inreg_from_32(i32 %in) {
; CHECK: test_sext_inreg_from_32:
%small = trunc i32 %in to i1
%ext = sext i1 %small to i64
; Different registers are of course, possible, though suboptimal. This is
; making sure that a 64-bit "(sext_inreg (anyext GPR32), i1)" uses the 64-bit
; sbfx rather than just 32-bits.
; CHECK: sbfx x0, x0, #0, #1
ret i64 %ext
}
define i32 @test_ubfx32(i32* %addr) {
; CHECK: test_ubfx32:
; CHECK: ubfx {{w[0-9]+}}, {{w[0-9]+}}, #23, #3
%fields = load i32* %addr
%shifted = lshr i32 %fields, 23
%masked = and i32 %shifted, 7
ret i32 %masked
}
define i64 @test_ubfx64(i64* %addr) {
; CHECK: test_ubfx64:
; CHECK: ubfx {{x[0-9]+}}, {{x[0-9]+}}, #25, #10
%fields = load i64* %addr
%shifted = lshr i64 %fields, 25
%masked = and i64 %shifted, 1023
ret i64 %masked
}
define i32 @test_sbfx32(i32* %addr) {
; CHECK: test_sbfx32:
; CHECK: sbfx {{w[0-9]+}}, {{w[0-9]+}}, #6, #3
%fields = load i32* %addr
%shifted = shl i32 %fields, 23
%extended = ashr i32 %shifted, 29
ret i32 %extended
}
define i64 @test_sbfx64(i64* %addr) {
; CHECK: test_sbfx64:
; CHECK: sbfx {{x[0-9]+}}, {{x[0-9]+}}, #0, #63
%fields = load i64* %addr
%shifted = shl i64 %fields, 1
%extended = ashr i64 %shifted, 1
ret i64 %extended
}