forked from OSchip/llvm-project
277 lines
10 KiB
C++
277 lines
10 KiB
C++
|
//===--- NoRecursionCheck.cpp - clang-tidy --------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "NoRecursionCheck.h"
|
||
|
#include "clang/AST/ASTContext.h"
|
||
|
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
||
|
#include "clang/Analysis/CallGraph.h"
|
||
|
#include "llvm/ADT/DenseMapInfo.h"
|
||
|
#include "llvm/ADT/SCCIterator.h"
|
||
|
|
||
|
using namespace clang::ast_matchers;
|
||
|
|
||
|
namespace clang {
|
||
|
namespace tidy {
|
||
|
namespace misc {
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
/// Much like SmallSet, with two differences:
|
||
|
/// 1. It can *only* be constructed from an ArrayRef<>. If the element count
|
||
|
/// is small, there is no copy and said storage *must* outlive us.
|
||
|
/// 2. it is immutable, the way it was constructed it will stay.
|
||
|
template <typename T, unsigned SmallSize> class ImmutableSmallSet {
|
||
|
ArrayRef<T> Vector;
|
||
|
llvm::DenseSet<T> Set;
|
||
|
|
||
|
static_assert(SmallSize <= 32, "N should be small");
|
||
|
|
||
|
bool isSmall() const { return Set.empty(); }
|
||
|
|
||
|
public:
|
||
|
using size_type = size_t;
|
||
|
|
||
|
ImmutableSmallSet() = delete;
|
||
|
ImmutableSmallSet(const ImmutableSmallSet &) = delete;
|
||
|
ImmutableSmallSet(ImmutableSmallSet &&) = delete;
|
||
|
T &operator=(const ImmutableSmallSet &) = delete;
|
||
|
T &operator=(ImmutableSmallSet &&) = delete;
|
||
|
|
||
|
// WARNING: Storage *must* outlive us if we decide that the size is small.
|
||
|
ImmutableSmallSet(ArrayRef<T> Storage) {
|
||
|
// Is size small-enough to just keep using the existing storage?
|
||
|
if (Storage.size() <= SmallSize) {
|
||
|
Vector = Storage;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// We've decided that it isn't performant to keep using vector.
|
||
|
// Let's migrate the data into Set.
|
||
|
Set.reserve(Storage.size());
|
||
|
Set.insert(Storage.begin(), Storage.end());
|
||
|
}
|
||
|
|
||
|
/// count - Return 1 if the element is in the set, 0 otherwise.
|
||
|
size_type count(const T &V) const {
|
||
|
if (isSmall()) {
|
||
|
// Since the collection is small, just do a linear search.
|
||
|
return llvm::find(Vector, V) == Vector.end() ? 0 : 1;
|
||
|
}
|
||
|
|
||
|
return Set.count(V);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// Much like SmallSetVector, but with one difference:
|
||
|
/// when the size is \p SmallSize or less, when checking whether an element is
|
||
|
/// already in the set or not, we perform linear search over the vector,
|
||
|
/// but if the size is larger than \p SmallSize, we look in set.
|
||
|
/// FIXME: upstream this into SetVector/SmallSetVector itself.
|
||
|
template <typename T, unsigned SmallSize> class SmartSmallSetVector {
|
||
|
public:
|
||
|
using size_type = size_t;
|
||
|
|
||
|
private:
|
||
|
SmallVector<T, SmallSize> Vector;
|
||
|
llvm::DenseSet<T> Set;
|
||
|
|
||
|
static_assert(SmallSize <= 32, "N should be small");
|
||
|
|
||
|
// Are we still using Vector for uniqness tracking?
|
||
|
bool isSmall() const { return Set.empty(); }
|
||
|
|
||
|
// Will one more entry cause Vector to switch away from small-size storage?
|
||
|
bool entiretyOfVectorSmallSizeIsOccupied() const {
|
||
|
assert(isSmall() && Vector.size() <= SmallSize &&
|
||
|
"Shouldn't ask if we have already [should have] migrated into Set.");
|
||
|
return Vector.size() == SmallSize;
|
||
|
}
|
||
|
|
||
|
void populateSet() {
|
||
|
assert(Set.empty() && "Should not have already utilized the Set.");
|
||
|
// Magical growth factor prediction - to how many elements do we expect to
|
||
|
// sanely grow after switching away from small-size storage?
|
||
|
const size_t NewMaxElts = 4 * Vector.size();
|
||
|
Vector.reserve(NewMaxElts);
|
||
|
Set.reserve(NewMaxElts);
|
||
|
Set.insert(Vector.begin(), Vector.end());
|
||
|
}
|
||
|
|
||
|
/// count - Return 1 if the element is in the set, 0 otherwise.
|
||
|
size_type count(const T &V) const {
|
||
|
if (isSmall()) {
|
||
|
// Since the collection is small, just do a linear search.
|
||
|
return llvm::find(Vector, V) == Vector.end() ? 0 : 1;
|
||
|
}
|
||
|
// Look-up in the Set.
|
||
|
return Set.count(V);
|
||
|
}
|
||
|
|
||
|
bool setInsert(const T &V) {
|
||
|
if (count(V) != 0)
|
||
|
return false; // Already exists.
|
||
|
// Does not exist, Can/need to record it.
|
||
|
if (isSmall()) { // Are we still using Vector for uniqness tracking?
|
||
|
// Will one more entry fit within small-sized Vector?
|
||
|
if (!entiretyOfVectorSmallSizeIsOccupied())
|
||
|
return true; // We'll insert into vector right afterwards anyway.
|
||
|
// Time to switch to Set.
|
||
|
populateSet();
|
||
|
}
|
||
|
// Set time!
|
||
|
// Note that this must be after `populateSet()` might have been called.
|
||
|
bool SetInsertionSucceeded = Set.insert(V).second;
|
||
|
(void)SetInsertionSucceeded;
|
||
|
assert(SetInsertionSucceeded && "We did check that no such value existed");
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
/// Insert a new element into the SmartSmallSetVector.
|
||
|
/// \returns true if the element was inserted into the SmartSmallSetVector.
|
||
|
bool insert(const T &X) {
|
||
|
bool result = setInsert(X);
|
||
|
if (result)
|
||
|
Vector.push_back(X);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/// Clear the SmartSmallSetVector and return the underlying vector.
|
||
|
decltype(Vector) takeVector() {
|
||
|
Set.clear();
|
||
|
return std::move(Vector);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
constexpr unsigned SmallCallStackSize = 16;
|
||
|
constexpr unsigned SmallSCCSize = 32;
|
||
|
|
||
|
using CallStackTy =
|
||
|
llvm::SmallVector<CallGraphNode::CallRecord, SmallCallStackSize>;
|
||
|
|
||
|
// In given SCC, find *some* call stack that will be cyclic.
|
||
|
// This will only find *one* such stack, it might not be the smallest one,
|
||
|
// and there may be other loops.
|
||
|
CallStackTy PathfindSomeCycle(ArrayRef<CallGraphNode *> SCC) {
|
||
|
// We'll need to be able to performantly look up whether some CallGraphNode
|
||
|
// is in SCC or not, so cache all the SCC elements in a set.
|
||
|
const ImmutableSmallSet<CallGraphNode *, SmallSCCSize> SCCElts(SCC);
|
||
|
|
||
|
// Is node N part if the current SCC?
|
||
|
auto NodeIsPartOfSCC = [&SCCElts](CallGraphNode *N) {
|
||
|
return SCCElts.count(N) != 0;
|
||
|
};
|
||
|
|
||
|
// Track the call stack that will cause a cycle.
|
||
|
SmartSmallSetVector<CallGraphNode::CallRecord, SmallCallStackSize>
|
||
|
CallStackSet;
|
||
|
|
||
|
// Arbitrairly take the first element of SCC as entry point.
|
||
|
CallGraphNode::CallRecord EntryNode(SCC.front(), /*CallExpr=*/nullptr);
|
||
|
// Continue recursing into subsequent callees that are part of this SCC,
|
||
|
// and are thus known to be part of the call graph loop, until loop forms.
|
||
|
CallGraphNode::CallRecord *Node = &EntryNode;
|
||
|
while (true) {
|
||
|
// Did we see this node before?
|
||
|
if (!CallStackSet.insert(*Node))
|
||
|
break; // Cycle completed! Note that didn't insert the node into stack!
|
||
|
// Else, perform depth-first traversal: out of all callees, pick first one
|
||
|
// that is part of this SCC. This is not guaranteed to yield shortest cycle.
|
||
|
Node = llvm::find_if(Node->Callee->callees(), NodeIsPartOfSCC);
|
||
|
}
|
||
|
|
||
|
// Note that we failed to insert the last node, that completes the cycle.
|
||
|
// But we really want to have it. So insert it manually into stack only.
|
||
|
CallStackTy CallStack = CallStackSet.takeVector();
|
||
|
CallStack.emplace_back(*Node);
|
||
|
|
||
|
return CallStack;
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
void NoRecursionCheck::registerMatchers(MatchFinder *Finder) {
|
||
|
Finder->addMatcher(translationUnitDecl().bind("TUDecl"), this);
|
||
|
}
|
||
|
|
||
|
void NoRecursionCheck::handleSCC(ArrayRef<CallGraphNode *> SCC) {
|
||
|
assert(!SCC.empty() && "Empty SCC does not make sense.");
|
||
|
|
||
|
// First of all, call out every stongly connected function.
|
||
|
for (CallGraphNode *N : SCC) {
|
||
|
Decl *D = N->getDecl();
|
||
|
diag(D->getLocation(), "function %0 is within a recursive call chain")
|
||
|
<< cast<NamedDecl>(D);
|
||
|
}
|
||
|
|
||
|
// Now, SCC only tells us about strongly connected function declarations in
|
||
|
// the call graph. It doesn't *really* tell us about the cycles they form.
|
||
|
// And there may be more than one cycle in SCC.
|
||
|
// So let's form a call stack that eventually exposes *some* cycle.
|
||
|
const CallStackTy EventuallyCyclicCallStack = PathfindSomeCycle(SCC);
|
||
|
assert(!EventuallyCyclicCallStack.empty() && "We should've found the cycle");
|
||
|
|
||
|
// While last node of the call stack does cause a loop, due to the way we
|
||
|
// pathfind the cycle, the loop does not nessesairly begin at the first node
|
||
|
// of the call stack, so drop front nodes of the call stack until it does.
|
||
|
const auto CyclicCallStack =
|
||
|
ArrayRef<CallGraphNode::CallRecord>(EventuallyCyclicCallStack)
|
||
|
.drop_until([LastNode = EventuallyCyclicCallStack.back()](
|
||
|
CallGraphNode::CallRecord FrontNode) {
|
||
|
return FrontNode == LastNode;
|
||
|
});
|
||
|
assert(CyclicCallStack.size() >= 2 && "Cycle requires at least 2 frames");
|
||
|
|
||
|
// Which function we decided to be the entry point that lead to the recursion?
|
||
|
Decl *CycleEntryFn = CyclicCallStack.front().Callee->getDecl();
|
||
|
// And now, for ease of understanding, let's print the call sequence that
|
||
|
// forms the cycle in question.
|
||
|
diag(CycleEntryFn->getLocation(),
|
||
|
"example recursive call chain, starting from function %0",
|
||
|
DiagnosticIDs::Note)
|
||
|
<< cast<NamedDecl>(CycleEntryFn);
|
||
|
for (int CurFrame = 1, NumFrames = CyclicCallStack.size();
|
||
|
CurFrame != NumFrames; ++CurFrame) {
|
||
|
CallGraphNode::CallRecord PrevNode = CyclicCallStack[CurFrame - 1];
|
||
|
CallGraphNode::CallRecord CurrNode = CyclicCallStack[CurFrame];
|
||
|
|
||
|
Decl *PrevDecl = PrevNode.Callee->getDecl();
|
||
|
Decl *CurrDecl = CurrNode.Callee->getDecl();
|
||
|
|
||
|
diag(CurrNode.CallExpr->getBeginLoc(),
|
||
|
"Frame #%0: function %1 calls function %2 here:", DiagnosticIDs::Note)
|
||
|
<< CurFrame << cast<NamedDecl>(PrevDecl) << cast<NamedDecl>(CurrDecl);
|
||
|
}
|
||
|
|
||
|
diag(CyclicCallStack.back().CallExpr->getBeginLoc(),
|
||
|
"... which was the starting point of the recursive call chain; there "
|
||
|
"may be other cycles",
|
||
|
DiagnosticIDs::Note);
|
||
|
}
|
||
|
|
||
|
void NoRecursionCheck::check(const MatchFinder::MatchResult &Result) {
|
||
|
// Build call graph for the entire translation unit.
|
||
|
const auto *TU = Result.Nodes.getNodeAs<TranslationUnitDecl>("TUDecl");
|
||
|
CallGraph CG;
|
||
|
CG.addToCallGraph(const_cast<TranslationUnitDecl *>(TU));
|
||
|
|
||
|
// Look for cycles in call graph,
|
||
|
// by looking for Strongly Connected Comonents (SCC's)
|
||
|
for (llvm::scc_iterator<CallGraph *> SCCI = llvm::scc_begin(&CG),
|
||
|
SCCE = llvm::scc_end(&CG);
|
||
|
SCCI != SCCE; ++SCCI) {
|
||
|
if (!SCCI.hasLoop()) // We only care about cycles, not standalone nodes.
|
||
|
continue;
|
||
|
handleSCC(*SCCI);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace misc
|
||
|
} // namespace tidy
|
||
|
} // namespace clang
|