[X86] Teach the DAGCombiner how to fold a OR of two shufflevector nodes.
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
llvm-svn: 203156
2014-03-07 04:19:52 +08:00
|
|
|
; RUN: llc < %s -mtriple=x86_64-unknown-linux-gnu -mcpu=corei7 | FileCheck %s
|
|
|
|
|
|
|
|
|
|
|
|
; Verify that each of the following test cases is folded into a single
|
|
|
|
; instruction which performs a blend operation.
|
|
|
|
|
|
|
|
define <2 x i64> @test1(<2 x i64> %a, <2 x i64> %b) {
|
|
|
|
%shuf1 = shufflevector <2 x i64> %a, <2 x i64> zeroinitializer, <2 x i32><i32 0, i32 2>
|
|
|
|
%shuf2 = shufflevector <2 x i64> %b, <2 x i64> zeroinitializer, <2 x i32><i32 2, i32 1>
|
|
|
|
%or = or <2 x i64> %shuf1, %shuf2
|
|
|
|
ret <2 x i64> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test1
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: movsd
|
|
|
|
; CHECK-NOT: orps
|
|
|
|
; CHECK: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test2(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%shuf1 = shufflevector <4 x i32> %a, <4 x i32> zeroinitializer, <4 x i32><i32 4, i32 4, i32 2, i32 3>
|
|
|
|
%shuf2 = shufflevector <4 x i32> %b, <4 x i32> zeroinitializer, <4 x i32><i32 0, i32 1, i32 4, i32 4>
|
|
|
|
%or = or <4 x i32> %shuf1, %shuf2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test2
|
|
|
|
; CHECK-NOT: xorps
|
2014-05-31 05:31:21 +08:00
|
|
|
; CHECK: movsd
|
[X86] Teach the DAGCombiner how to fold a OR of two shufflevector nodes.
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
llvm-svn: 203156
2014-03-07 04:19:52 +08:00
|
|
|
; CHECK: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <2 x i64> @test3(<2 x i64> %a, <2 x i64> %b) {
|
|
|
|
%shuf1 = shufflevector <2 x i64> %a, <2 x i64> zeroinitializer, <2 x i32><i32 2, i32 1>
|
|
|
|
%shuf2 = shufflevector <2 x i64> %b, <2 x i64> zeroinitializer, <2 x i32><i32 0, i32 2>
|
|
|
|
%or = or <2 x i64> %shuf1, %shuf2
|
|
|
|
ret <2 x i64> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test3
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: movsd
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test4(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%shuf1 = shufflevector <4 x i32> %a, <4 x i32> zeroinitializer, <4 x i32><i32 0, i32 4, i32 4, i32 4>
|
|
|
|
%shuf2 = shufflevector <4 x i32> %b, <4 x i32> zeroinitializer, <4 x i32><i32 4, i32 1, i32 2, i32 3>
|
|
|
|
%or = or <4 x i32> %shuf1, %shuf2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test4
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: movss
|
|
|
|
; CHECK-NOT: orps
|
|
|
|
; CHECK: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test5(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%shuf1 = shufflevector <4 x i32> %a, <4 x i32> zeroinitializer, <4 x i32><i32 4, i32 1, i32 2, i32 3>
|
|
|
|
%shuf2 = shufflevector <4 x i32> %b, <4 x i32> zeroinitializer, <4 x i32><i32 0, i32 4, i32 4, i32 4>
|
|
|
|
%or = or <4 x i32> %shuf1, %shuf2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test5
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: movss
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test6(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%shuf1 = shufflevector <4 x i32> %a, <4 x i32> zeroinitializer, <4 x i32><i32 0, i32 1, i32 4, i32 4>
|
|
|
|
%shuf2 = shufflevector <4 x i32> %b, <4 x i32> zeroinitializer, <4 x i32><i32 4, i32 4, i32 2, i32 3>
|
|
|
|
%or = or <4 x i32> %shuf1, %shuf2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test6
|
|
|
|
; CHECK-NOT: xorps
|
2014-06-26 01:41:58 +08:00
|
|
|
; CHECK: blendps $12
|
[X86] Teach the DAGCombiner how to fold a OR of two shufflevector nodes.
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
llvm-svn: 203156
2014-03-07 04:19:52 +08:00
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test7(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%and1 = and <4 x i32> %a, <i32 -1, i32 -1, i32 0, i32 0>
|
|
|
|
%and2 = and <4 x i32> %b, <i32 0, i32 0, i32 -1, i32 -1>
|
|
|
|
%or = or <4 x i32> %and1, %and2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test7
|
|
|
|
; CHECK-NOT: xorps
|
2014-06-26 01:41:58 +08:00
|
|
|
; CHECK: blendps $12
|
[X86] Teach the DAGCombiner how to fold a OR of two shufflevector nodes.
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
llvm-svn: 203156
2014-03-07 04:19:52 +08:00
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <2 x i64> @test8(<2 x i64> %a, <2 x i64> %b) {
|
|
|
|
%and1 = and <2 x i64> %a, <i64 -1, i64 0>
|
|
|
|
%and2 = and <2 x i64> %b, <i64 0, i64 -1>
|
|
|
|
%or = or <2 x i64> %and1, %and2
|
|
|
|
ret <2 x i64> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test8
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: movsd
|
|
|
|
; CHECK-NOT: orps
|
|
|
|
; CHECK: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test9(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%and1 = and <4 x i32> %a, <i32 0, i32 0, i32 -1, i32 -1>
|
|
|
|
%and2 = and <4 x i32> %b, <i32 -1, i32 -1, i32 0, i32 0>
|
|
|
|
%or = or <4 x i32> %and1, %and2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test9
|
|
|
|
; CHECK-NOT: xorps
|
2014-05-31 05:31:21 +08:00
|
|
|
; CHECK: movsd
|
[X86] Teach the DAGCombiner how to fold a OR of two shufflevector nodes.
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
llvm-svn: 203156
2014-03-07 04:19:52 +08:00
|
|
|
; CHECK: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <2 x i64> @test10(<2 x i64> %a, <2 x i64> %b) {
|
|
|
|
%and1 = and <2 x i64> %a, <i64 0, i64 -1>
|
|
|
|
%and2 = and <2 x i64> %b, <i64 -1, i64 0>
|
|
|
|
%or = or <2 x i64> %and1, %and2
|
|
|
|
ret <2 x i64> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test10
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: movsd
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test11(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 0>
|
|
|
|
%and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 -1, i32 -1>
|
|
|
|
%or = or <4 x i32> %and1, %and2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test11
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: movss
|
|
|
|
; CHECK-NOT: orps
|
|
|
|
; CHECK: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test12(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%and1 = and <4 x i32> %a, <i32 0, i32 -1, i32 -1, i32 -1>
|
|
|
|
%and2 = and <4 x i32> %b, <i32 -1, i32 0, i32 0, i32 0>
|
|
|
|
%or = or <4 x i32> %and1, %and2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test12
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: movss
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
; Verify that the following test cases are folded into single shuffles.
|
|
|
|
|
|
|
|
define <4 x i32> @test13(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%shuf1 = shufflevector <4 x i32> %a, <4 x i32> zeroinitializer, <4 x i32><i32 1, i32 1, i32 4, i32 4>
|
|
|
|
%shuf2 = shufflevector <4 x i32> %b, <4 x i32> zeroinitializer, <4 x i32><i32 4, i32 4, i32 2, i32 3>
|
|
|
|
%or = or <4 x i32> %shuf1, %shuf2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test13
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: shufps
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <2 x i64> @test14(<2 x i64> %a, <2 x i64> %b) {
|
|
|
|
%shuf1 = shufflevector <2 x i64> %a, <2 x i64> zeroinitializer, <2 x i32><i32 0, i32 2>
|
|
|
|
%shuf2 = shufflevector <2 x i64> %b, <2 x i64> zeroinitializer, <2 x i32><i32 2, i32 0>
|
|
|
|
%or = or <2 x i64> %shuf1, %shuf2
|
|
|
|
ret <2 x i64> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test14
|
|
|
|
; CHECK-NOT: pslldq
|
|
|
|
; CHECK-NOT: por
|
|
|
|
; CHECK: punpcklqdq
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test15(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%shuf1 = shufflevector <4 x i32> %a, <4 x i32> zeroinitializer, <4 x i32><i32 4, i32 4, i32 2, i32 1>
|
|
|
|
%shuf2 = shufflevector <4 x i32> %b, <4 x i32> zeroinitializer, <4 x i32><i32 2, i32 1, i32 4, i32 4>
|
|
|
|
%or = or <4 x i32> %shuf1, %shuf2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test15
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: shufps
|
|
|
|
; CHECK-NOT: shufps
|
|
|
|
; CHECK-NOT: orps
|
|
|
|
; CHECK: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <2 x i64> @test16(<2 x i64> %a, <2 x i64> %b) {
|
|
|
|
%shuf1 = shufflevector <2 x i64> %a, <2 x i64> zeroinitializer, <2 x i32><i32 2, i32 0>
|
|
|
|
%shuf2 = shufflevector <2 x i64> %b, <2 x i64> zeroinitializer, <2 x i32><i32 0, i32 2>
|
|
|
|
%or = or <2 x i64> %shuf1, %shuf2
|
|
|
|
ret <2 x i64> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test16
|
|
|
|
; CHECK-NOT: pslldq
|
|
|
|
; CHECK-NOT: por
|
|
|
|
; CHECK: punpcklqdq
|
|
|
|
; CHECK: ret
|
|
|
|
|
|
|
|
|
|
|
|
; Verify that the dag-combiner does not fold a OR of two shuffles into a single
|
|
|
|
; shuffle instruction when the shuffle indexes are not compatible.
|
|
|
|
|
|
|
|
define <4 x i32> @test17(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%shuf1 = shufflevector <4 x i32> %a, <4 x i32> zeroinitializer, <4 x i32><i32 4, i32 0, i32 4, i32 2>
|
|
|
|
%shuf2 = shufflevector <4 x i32> %b, <4 x i32> zeroinitializer, <4 x i32><i32 0, i32 1, i32 4, i32 4>
|
|
|
|
%or = or <4 x i32> %shuf1, %shuf2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test17
|
|
|
|
; CHECK: por
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test18(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%shuf1 = shufflevector <4 x i32> %a, <4 x i32> zeroinitializer, <4 x i32><i32 4, i32 0, i32 4, i32 4>
|
|
|
|
%shuf2 = shufflevector <4 x i32> %b, <4 x i32> zeroinitializer, <4 x i32><i32 0, i32 4, i32 4, i32 4>
|
|
|
|
%or = or <4 x i32> %shuf1, %shuf2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test18
|
|
|
|
; CHECK: orps
|
|
|
|
; CHECK: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <4 x i32> @test19(<4 x i32> %a, <4 x i32> %b) {
|
|
|
|
%shuf1 = shufflevector <4 x i32> %a, <4 x i32> zeroinitializer, <4 x i32><i32 4, i32 0, i32 4, i32 3>
|
|
|
|
%shuf2 = shufflevector <4 x i32> %b, <4 x i32> zeroinitializer, <4 x i32><i32 0, i32 4, i32 2, i32 2>
|
|
|
|
%or = or <4 x i32> %shuf1, %shuf2
|
|
|
|
ret <4 x i32> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test19
|
|
|
|
; CHECK: por
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <2 x i64> @test20(<2 x i64> %a, <2 x i64> %b) {
|
|
|
|
%shuf1 = shufflevector <2 x i64> %a, <2 x i64> zeroinitializer, <2 x i32><i32 0, i32 2>
|
|
|
|
%shuf2 = shufflevector <2 x i64> %b, <2 x i64> zeroinitializer, <2 x i32><i32 0, i32 2>
|
|
|
|
%or = or <2 x i64> %shuf1, %shuf2
|
|
|
|
ret <2 x i64> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test20
|
|
|
|
; CHECK-NOT: xorps
|
|
|
|
; CHECK: orps
|
[DAGCombiner] teach how to simplify xor/and/or nodes according to the following rules:
1) (AND (shuf (A, C, Mask), shuf (B, C, Mask)) -> shuf (AND (A, B), C, Mask)
2) (OR (shuf (A, C, Mask), shuf (B, C, Mask)) -> shuf (OR (A, B), C, Mask)
3) (XOR (shuf (A, C, Mask), shuf (B, C, Mask)) -> shuf (XOR (A, B), V_0, Mask)
4) (AND (shuf (C, A, Mask), shuf (C, B, Mask)) -> shuf (C, AND (A, B), Mask)
5) (OR (shuf (C, A, Mask), shuf (C, B, Mask)) -> shuf (C, OR (A, B), Mask)
6) (XOR (shuf (C, A, Mask), shuf (C, B, Mask)) -> shuf (V_0, XOR (A, B), Mask)
llvm-svn: 204160
2014-03-19 01:12:59 +08:00
|
|
|
; CHECK-NEXT: movq
|
[X86] Teach the DAGCombiner how to fold a OR of two shufflevector nodes.
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
llvm-svn: 203156
2014-03-07 04:19:52 +08:00
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
|
|
|
|
|
|
|
define <2 x i64> @test21(<2 x i64> %a, <2 x i64> %b) {
|
|
|
|
%shuf1 = shufflevector <2 x i64> %a, <2 x i64> zeroinitializer, <2 x i32><i32 2, i32 0>
|
|
|
|
%shuf2 = shufflevector <2 x i64> %b, <2 x i64> zeroinitializer, <2 x i32><i32 2, i32 0>
|
|
|
|
%or = or <2 x i64> %shuf1, %shuf2
|
|
|
|
ret <2 x i64> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test21
|
|
|
|
; CHECK: por
|
[DAGCombiner] teach how to simplify xor/and/or nodes according to the following rules:
1) (AND (shuf (A, C, Mask), shuf (B, C, Mask)) -> shuf (AND (A, B), C, Mask)
2) (OR (shuf (A, C, Mask), shuf (B, C, Mask)) -> shuf (OR (A, B), C, Mask)
3) (XOR (shuf (A, C, Mask), shuf (B, C, Mask)) -> shuf (XOR (A, B), V_0, Mask)
4) (AND (shuf (C, A, Mask), shuf (C, B, Mask)) -> shuf (C, AND (A, B), Mask)
5) (OR (shuf (C, A, Mask), shuf (C, B, Mask)) -> shuf (C, OR (A, B), Mask)
6) (XOR (shuf (C, A, Mask), shuf (C, B, Mask)) -> shuf (V_0, XOR (A, B), Mask)
llvm-svn: 204160
2014-03-19 01:12:59 +08:00
|
|
|
; CHECK-NEXT: pslldq
|
[X86] Teach the DAGCombiner how to fold a OR of two shufflevector nodes.
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
llvm-svn: 203156
2014-03-07 04:19:52 +08:00
|
|
|
; CHECK-NEXT: ret
|
|
|
|
|
2014-07-15 08:02:32 +08:00
|
|
|
; Verify that the DAGCombiner doesn't crash in the attempt to check if a shuffle
|
|
|
|
; with illegal type has a legal mask. Method 'isShuffleMaskLegal' only knows how to
|
|
|
|
; handle legal vector value types.
|
|
|
|
define <4 x i8> @test_crash(<4 x i8> %a, <4 x i8> %b) {
|
|
|
|
%shuf1 = shufflevector <4 x i8> %a, <4 x i8> zeroinitializer, <4 x i32><i32 4, i32 4, i32 2, i32 3>
|
|
|
|
%shuf2 = shufflevector <4 x i8> %b, <4 x i8> zeroinitializer, <4 x i32><i32 0, i32 1, i32 4, i32 4>
|
|
|
|
%or = or <4 x i8> %shuf1, %shuf2
|
|
|
|
ret <4 x i8> %or
|
|
|
|
}
|
|
|
|
; CHECK-LABEL: test_crash
|
|
|
|
; CHECK: movsd
|
|
|
|
; CHECK: ret
|
[X86] Teach the DAGCombiner how to fold a OR of two shufflevector nodes.
This patch teaches the DAGCombiner how to fold a binary OR between two
shufflevector into a single shuffle vector when possible.
The rules are:
1. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
2. fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
The DAGCombiner can take advantage of the fact that OR is commutative and
compute two possible shuffle masks (Mask1 and Mask2) for the resulting
shuffle node.
Before folding a dag according to either rule 1 or 2, DAGCombiner verifies
that the resulting shuffle mask is legal for the target.
DAGCombiner would firstly try to fold according to 1.; If not possible
then it will try to fold according to 2.
If both Mask1 and Mask2 are illegal then we conservatively don't fold
the OR instruction.
llvm-svn: 203156
2014-03-07 04:19:52 +08:00
|
|
|
|