llvm-project/compiler-rt/lib/tsan/rtl/tsan_interceptors.cc

1403 lines
38 KiB
C++
Raw Normal View History

//===-- tsan_interceptors_linux.cc ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "interception/interception.h"
#include "tsan_rtl.h"
#include "tsan_interface.h"
#include "tsan_atomic.h"
#include "tsan_platform.h"
#include "tsan_mman.h"
#include "tsan_placement_new.h"
using namespace __tsan; // NOLINT
struct sigset_t {
u64 val[kSigCount / 8 / sizeof(u64)];
};
struct ucontext_t {
u64 opaque[1024];
};
extern "C" int pthread_attr_init(void *attr);
extern "C" int pthread_attr_destroy(void *attr);
extern "C" int pthread_attr_getdetachstate(void *attr, int *v);
extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
extern "C" int pthread_attr_getstacksize(void *attr, uptr *stacksize);
extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
extern "C" int pthread_setspecific(unsigned key, const void *v);
extern "C" int pthread_mutexattr_gettype(void *a, int *type);
extern "C" int pthread_yield();
extern "C" int pthread_sigmask(int how, const sigset_t *set, sigset_t *oldset);
extern "C" int sigfillset(sigset_t *set);
extern "C" void *pthread_self();
extern "C" int getcontext(ucontext_t *ucp);
extern "C" void _exit(int status);
extern "C" int __cxa_atexit(void (*func)(void *arg), void *arg, void *dso);
extern "C" int *__errno_location();
extern "C" int usleep(unsigned usec);
const int PTHREAD_MUTEX_RECURSIVE = 1;
const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
const int kPthreadAttrSize = 56;
const int EINVAL = 22;
const int EBUSY = 16;
const int EPOLL_CTL_ADD = 1;
void *const MAP_FAILED = (void*)-1;
const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
const int MAP_FIXED = 0x10;
typedef long long_t; // NOLINT
typedef void (*sighandler_t)(int sig);
union pthread_attr_t {
char size[kPthreadAttrSize];
void *align;
};
struct sigaction_t {
union {
sighandler_t sa_handler;
void (*sa_sigaction)(int sig, my_siginfo_t *siginfo, void *uctx);
};
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)();
};
const sighandler_t SIG_DFL = (sighandler_t)0;
const sighandler_t SIG_IGN = (sighandler_t)1;
const int SA_SIGINFO = 4;
const int SIG_SETMASK = 2;
static sigaction_t sigactions[kSigCount];
static unsigned g_thread_finalize_key;
static void process_pending_signals(ThreadState *thr);
class ScopedInterceptor {
public:
ScopedInterceptor(ThreadState *thr, const char *fname, uptr pc)
: thr_(thr)
, in_rtl_(thr->in_rtl) {
if (thr_->in_rtl == 0) {
Initialize(thr);
FuncEntry(thr, pc);
thr_->in_rtl++;
DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
} else {
thr_->in_rtl++;
}
}
~ScopedInterceptor() {
thr_->in_rtl--;
if (thr_->in_rtl == 0) {
FuncExit(thr_);
process_pending_signals(thr_);
}
CHECK_EQ(in_rtl_, thr_->in_rtl);
}
private:
ThreadState *const thr_;
const int in_rtl_;
};
#define SCOPED_INTERCEPTOR_RAW(func, ...) \
ThreadState *thr = cur_thread(); \
StatInc(thr, StatInterceptor); \
StatInc(thr, StatInt_##func); \
ScopedInterceptor si(thr, #func, \
(__tsan::uptr)__builtin_return_address(0)); \
const uptr pc = (uptr)&func; \
(void)pc; \
/**/
#define SCOPED_TSAN_INTERCEPTOR(func, ...) \
SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
if (thr->in_rtl > 1) \
return REAL(func)(__VA_ARGS__); \
/**/
#define TSAN_INTERCEPTOR(ret, func, ...) INTERCEPTOR(ret, func, __VA_ARGS__)
#define TSAN_INTERCEPT(func) \
if (!INTERCEPT_FUNCTION(func)) \
Printf("ThreadSanitizer: failed to intercept '" #func "' function\n"); \
/**/
class AtExitContext {
public:
AtExitContext()
: mtx_(MutexTypeAtExit, StatMtxAtExit)
, pos_() {
}
typedef void(*atexit_t)();
int atexit(ThreadState *thr, uptr pc, atexit_t f) {
Lock l(&mtx_);
if (pos_ == kMaxAtExit)
return 1;
Release(thr, pc, (uptr)this);
stack_[pos_] = f;
pos_++;
return 0;
}
void exit(ThreadState *thr, uptr pc) {
CHECK_EQ(thr->in_rtl, 0);
for (;;) {
atexit_t f = 0;
{
Lock l(&mtx_);
if (pos_) {
pos_--;
f = stack_[pos_];
ScopedInRtl in_rtl;
Acquire(thr, pc, (uptr)this);
}
}
if (f == 0)
break;
DPrintf("#%d: executing atexit func %p\n", thr->tid, f);
CHECK_EQ(thr->in_rtl, 0);
f();
}
}
private:
static const int kMaxAtExit = 128;
Mutex mtx_;
atexit_t stack_[kMaxAtExit];
int pos_;
};
static AtExitContext *atexit_ctx;
static void finalize(void *arg) {
ThreadState * thr = cur_thread();
uptr pc = 0;
atexit_ctx->exit(thr, pc);
{
ScopedInRtl in_rtl;
DestroyAndFree(atexit_ctx);
usleep(flags()->atexit_sleep_ms * 1000);
}
int status = Finalize(cur_thread());
_exit(status);
}
TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
SCOPED_TSAN_INTERCEPTOR(atexit, f);
return atexit_ctx->atexit(thr, pc, f);
return 0;
}
static uptr fd2addr(int fd) {
(void)fd;
static u64 addr;
return (uptr)&addr;
}
static uptr epollfd2addr(int fd) {
(void)fd;
static u64 addr;
return (uptr)&addr;
}
static uptr file2addr(char *path) {
(void)path;
static u64 addr;
return (uptr)&addr;
}
static uptr dir2addr(char *path) {
(void)path;
static u64 addr;
return (uptr)&addr;
}
TSAN_INTERCEPTOR(void*, malloc, uptr size) {
SCOPED_INTERCEPTOR_RAW(malloc, size);
return user_alloc(thr, pc, size);
}
TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
SCOPED_INTERCEPTOR_RAW(calloc, size, n);
void *p = user_alloc(thr, pc, n * size);
internal_memset(p, 0, n * size);
return p;
}
TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
SCOPED_INTERCEPTOR_RAW(realloc, p, size);
return user_realloc(thr, pc, p, size);
}
TSAN_INTERCEPTOR(void, free, void *p) {
if (p == 0)
return;
SCOPED_INTERCEPTOR_RAW(free, p);
user_free(thr, pc, p);
}
TSAN_INTERCEPTOR(void, cfree, void *p) {
if (p == 0)
return;
SCOPED_INTERCEPTOR_RAW(cfree, p);
user_free(thr, pc, p);
}
TSAN_INTERCEPTOR(uptr, strlen, const void *s) {
SCOPED_TSAN_INTERCEPTOR(strlen, s);
uptr len = REAL(strlen)(s);
MemoryAccessRange(thr, pc, (uptr)s, len + 1, false);
return len;
}
TSAN_INTERCEPTOR(void*, memset, void *dst, int v, uptr size) {
SCOPED_TSAN_INTERCEPTOR(memset, dst, v, size);
MemoryAccessRange(thr, pc, (uptr)dst, size, true);
return REAL(memset)(dst, v, size);
}
TSAN_INTERCEPTOR(void*, memcpy, void *dst, const void *src, uptr size) {
SCOPED_TSAN_INTERCEPTOR(memcpy, dst, src, size);
MemoryAccessRange(thr, pc, (uptr)dst, size, true);
MemoryAccessRange(thr, pc, (uptr)src, size, false);
return REAL(memcpy)(dst, src, size);
}
TSAN_INTERCEPTOR(int, strcmp, const char *s1, const char *s2) {
SCOPED_TSAN_INTERCEPTOR(strcmp, s1, s2);
uptr len = 0;
for (; s1[len] && s2[len]; len++) {
if (s1[len] != s2[len])
break;
}
MemoryAccessRange(thr, pc, (uptr)s1, len + 1, false);
MemoryAccessRange(thr, pc, (uptr)s2, len + 1, false);
return s1[len] - s2[len];
}
TSAN_INTERCEPTOR(int, strncmp, const char *s1, const char *s2, uptr n) {
SCOPED_TSAN_INTERCEPTOR(strncmp, s1, s2, n);
uptr len = 0;
for (; s1[len] && s2[len] && len < n; len++) {
if (s1[len] != s2[len])
break;
}
MemoryAccessRange(thr, pc, (uptr)s1, len < n ? len + 1 : n, false);
MemoryAccessRange(thr, pc, (uptr)s2, len < n ? len + 1 : n, false);
return len == n ? 0 : s1[len] - s2[len];
}
TSAN_INTERCEPTOR(void*, memchr, void *s, int c, uptr n) {
SCOPED_TSAN_INTERCEPTOR(memchr, s, c, n);
void *res = REAL(memchr)(s, c, n);
uptr len = res ? (char*)res - (char*)s + 1 : n;
MemoryAccessRange(thr, pc, (uptr)s, len, false);
return res;
}
TSAN_INTERCEPTOR(void*, memrchr, char *s, int c, uptr n) {
SCOPED_TSAN_INTERCEPTOR(memrchr, s, c, n);
MemoryAccessRange(thr, pc, (uptr)s, n, false);
return REAL(memrchr)(s, c, n);
}
TSAN_INTERCEPTOR(void*, memmove, void *dst, void *src, uptr n) {
SCOPED_TSAN_INTERCEPTOR(memmove, dst, src, n);
MemoryAccessRange(thr, pc, (uptr)dst, n, true);
MemoryAccessRange(thr, pc, (uptr)src, n, false);
return REAL(memmove)(dst, src, n);
}
TSAN_INTERCEPTOR(int, memcmp, const void *s1, const void *s2, uptr n) {
SCOPED_TSAN_INTERCEPTOR(memcmp, s1, s2, n);
int res = 0;
uptr len = 0;
for (; len < n; len++) {
if ((res = ((unsigned char*)s1)[len] - ((unsigned char*)s2)[len]))
break;
}
MemoryAccessRange(thr, pc, (uptr)s1, len < n ? len + 1 : n, false);
MemoryAccessRange(thr, pc, (uptr)s2, len < n ? len + 1 : n, false);
return res;
}
TSAN_INTERCEPTOR(void*, strchr, void *s, int c) {
SCOPED_TSAN_INTERCEPTOR(strchr, s, c);
void *res = REAL(strchr)(s, c);
uptr len = res ? (char*)res - (char*)s + 1 : REAL(strlen)(s) + 1;
MemoryAccessRange(thr, pc, (uptr)s, len, false);
return res;
}
TSAN_INTERCEPTOR(void*, strchrnul, void *s, int c) {
SCOPED_TSAN_INTERCEPTOR(strchrnul, s, c);
void *res = REAL(strchrnul)(s, c);
uptr len = (char*)res - (char*)s + 1;
MemoryAccessRange(thr, pc, (uptr)s, len, false);
return res;
}
TSAN_INTERCEPTOR(void*, strrchr, void *s, int c) {
SCOPED_TSAN_INTERCEPTOR(strrchr, s, c);
MemoryAccessRange(thr, pc, (uptr)s, REAL(strlen)(s) + 1, false);
return REAL(strrchr)(s, c);
}
TSAN_INTERCEPTOR(void*, strcpy, void *dst, const void *src) { // NOLINT
SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); // NOLINT
uptr srclen = REAL(strlen)(src);
MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
return REAL(strcpy)(dst, src); // NOLINT
}
TSAN_INTERCEPTOR(void*, strncpy, void *dst, void *src, uptr n) {
SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
uptr srclen = REAL(strlen)(src);
MemoryAccessRange(thr, pc, (uptr)dst, n, true);
MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
return REAL(strncpy)(dst, src, n);
}
TSAN_INTERCEPTOR(const char*, strstr, const char *s1, const char *s2) {
SCOPED_TSAN_INTERCEPTOR(strstr, s1, s2);
const char *res = REAL(strstr)(s1, s2);
uptr len1 = REAL(strlen)(s1);
uptr len2 = REAL(strlen)(s2);
MemoryAccessRange(thr, pc, (uptr)s1, len1 + 1, false);
MemoryAccessRange(thr, pc, (uptr)s2, len2 + 1, false);
return res;
}
static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
if (*addr) {
if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
if (flags & MAP_FIXED) {
*__errno_location() = EINVAL;
return false;
} else {
*addr = 0;
}
}
}
return true;
}
TSAN_INTERCEPTOR(void*, mmap, void *addr, long_t sz, int prot,
int flags, int fd, unsigned off) {
SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off);
if (!fix_mmap_addr(&addr, sz, flags))
return MAP_FAILED;
void *res = REAL(mmap)(addr, sz, prot, flags, fd, off);
if (res != MAP_FAILED) {
MemoryResetRange(thr, pc, (uptr)res, sz);
}
return res;
}
TSAN_INTERCEPTOR(void*, mmap64, void *addr, long_t sz, int prot,
int flags, int fd, u64 off) {
SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off);
if (!fix_mmap_addr(&addr, sz, flags))
return MAP_FAILED;
void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off);
if (res != MAP_FAILED) {
MemoryResetRange(thr, pc, (uptr)res, sz);
}
return res;
}
TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
int res = REAL(munmap)(addr, sz);
return res;
}
#ifdef __LP64__
// void *operator new(size_t)
TSAN_INTERCEPTOR(void*, _Znwm, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(_Znwm, sz);
return user_alloc(thr, pc, sz);
}
// void *operator new(size_t, nothrow_t)
TSAN_INTERCEPTOR(void*, _ZnwmRKSt9nothrow_t, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(_ZnwmRKSt9nothrow_t, sz);
return user_alloc(thr, pc, sz);
}
// void *operator new[](size_t)
TSAN_INTERCEPTOR(void*, _Znam, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(_Znam, sz);
return user_alloc(thr, pc, sz);
}
// void *operator new[](size_t, nothrow_t)
TSAN_INTERCEPTOR(void*, _ZnamRKSt9nothrow_t, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(_ZnamRKSt9nothrow_t, sz);
return user_alloc(thr, pc, sz);
}
#else
#error "Not implemented"
#endif
// void operator delete(void*)
TSAN_INTERCEPTOR(void, _ZdlPv, void *p) {
if (p == 0)
return;
SCOPED_TSAN_INTERCEPTOR(_ZdlPv, p);
user_free(thr, pc, p);
}
// void operator delete(void*, nothrow_t)
TSAN_INTERCEPTOR(void, _ZdlPvRKSt9nothrow_t, void *p) {
if (p == 0)
return;
SCOPED_TSAN_INTERCEPTOR(_ZdlPvRKSt9nothrow_t, p);
user_free(thr, pc, p);
}
// void operator delete[](void*)
TSAN_INTERCEPTOR(void, _ZdaPv, void *p) {
if (p == 0)
return;
SCOPED_TSAN_INTERCEPTOR(_ZdaPv, p);
user_free(thr, pc, p);
}
// void operator delete[](void*, nothrow_t)
TSAN_INTERCEPTOR(void, _ZdaPvRKSt9nothrow_t, void *p) {
if (p == 0)
return;
SCOPED_TSAN_INTERCEPTOR(_ZdaPvRKSt9nothrow_t, p);
user_free(thr, pc, p);
}
TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(memalign, align, sz);
return user_alloc_aligned(thr, pc, sz, align);
}
TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(valloc, sz);
return user_alloc_aligned(thr, pc, sz, kPageSize);
}
TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(pvalloc, sz);
sz = RoundUp(sz, kPageSize);
return user_alloc_aligned(thr, pc, sz, kPageSize);
}
TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(posix_memalign, memptr, align, sz);
*memptr = user_alloc_aligned(thr, pc, sz, align);
return 0;
}
// Used in thread-safe function static initialization.
TSAN_INTERCEPTOR(int, __cxa_guard_acquire, char *m) {
SCOPED_TSAN_INTERCEPTOR(__cxa_guard_acquire, m);
int res = REAL(__cxa_guard_acquire)(m);
if (res) {
// This thread does the init.
} else {
Acquire(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(void, __cxa_guard_release, char *m) {
SCOPED_TSAN_INTERCEPTOR(__cxa_guard_release, m);
Release(thr, pc, (uptr)m);
REAL(__cxa_guard_release)(m);
}
static void thread_finalize(void *v) {
uptr iter = (uptr)v;
if (iter > 1) {
if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
Printf("ThreadSanitizer: failed to set thread key\n");
Die();
}
return;
}
{
ScopedInRtl in_rtl;
ThreadFinish(cur_thread());
}
}
struct ThreadParam {
void* (*callback)(void *arg);
void *param;
atomic_uintptr_t tid;
};
extern "C" void *__tsan_thread_start_func(void *arg) {
ThreadParam *p = (ThreadParam*)arg;
void* (*callback)(void *arg) = p->callback;
void *param = p->param;
int tid = 0;
{
ThreadState *thr = cur_thread();
ScopedInRtl in_rtl;
if (pthread_setspecific(g_thread_finalize_key, (void*)4)) {
Printf("ThreadSanitizer: failed to set thread key\n");
Die();
}
while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
pthread_yield();
atomic_store(&p->tid, 0, memory_order_release);
ThreadStart(thr, tid);
CHECK_EQ(thr->in_rtl, 1);
}
void *res = callback(param);
// Prevent the callback from being tail called,
// it mixes up stack traces.
volatile int foo = 42;
foo++;
return res;
}
TSAN_INTERCEPTOR(int, pthread_create,
void *th, void *attr, void *(*callback)(void*), void * param) {
SCOPED_TSAN_INTERCEPTOR(pthread_create, th, attr, callback, param);
pthread_attr_t myattr;
if (attr == 0) {
pthread_attr_init(&myattr);
attr = &myattr;
}
int detached = 0;
pthread_attr_getdetachstate(attr, &detached);
uptr stacksize = 0;
pthread_attr_getstacksize(attr, &stacksize);
// We place the huge ThreadState object into TLS, account for that.
const uptr minstacksize = GetTlsSize() + 128*1024;
if (stacksize < minstacksize) {
DPrintf("ThreadSanitizer: stacksize %lu->%lu\n", stacksize, minstacksize);
pthread_attr_setstacksize(attr, minstacksize);
}
ThreadParam p;
p.callback = callback;
p.param = param;
atomic_store(&p.tid, 0, memory_order_relaxed);
int res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
if (res == 0) {
int tid = ThreadCreate(cur_thread(), pc, *(uptr*)th, detached);
CHECK_NE(tid, 0);
atomic_store(&p.tid, tid, memory_order_release);
while (atomic_load(&p.tid, memory_order_acquire) != 0)
pthread_yield();
}
if (attr == &myattr)
pthread_attr_destroy(&myattr);
return res;
}
TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
SCOPED_TSAN_INTERCEPTOR(pthread_join, th, ret);
int tid = ThreadTid(thr, pc, (uptr)th);
int res = REAL(pthread_join)(th, ret);
if (res == 0) {
ThreadJoin(cur_thread(), pc, tid);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
int tid = ThreadTid(thr, pc, (uptr)th);
int res = REAL(pthread_detach)(th);
if (res == 0) {
ThreadDetach(cur_thread(), pc, tid);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
int res = REAL(pthread_mutex_init)(m, a);
if (res == 0) {
bool recursive = false;
if (a) {
int type = 0;
if (pthread_mutexattr_gettype(a, &type) == 0)
recursive = (type == PTHREAD_MUTEX_RECURSIVE
|| type == PTHREAD_MUTEX_RECURSIVE_NP);
}
MutexCreate(cur_thread(), pc, (uptr)m, false, recursive);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
int res = REAL(pthread_mutex_destroy)(m);
if (res == 0 || res == EBUSY) {
MutexDestroy(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_lock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_lock, m);
int res = REAL(pthread_mutex_lock)(m);
if (res == 0) {
MutexLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
int res = REAL(pthread_mutex_trylock)(m);
if (res == 0) {
MutexLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
int res = REAL(pthread_mutex_timedlock)(m, abstime);
if (res == 0) {
MutexLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_unlock, m);
MutexUnlock(cur_thread(), pc, (uptr)m);
int res = REAL(pthread_mutex_unlock)(m);
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
int res = REAL(pthread_spin_init)(m, pshared);
if (res == 0) {
MutexCreate(cur_thread(), pc, (uptr)m, false, false);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
int res = REAL(pthread_spin_destroy)(m);
if (res == 0) {
MutexDestroy(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
int res = REAL(pthread_spin_lock)(m);
if (res == 0) {
MutexLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
int res = REAL(pthread_spin_trylock)(m);
if (res == 0) {
MutexLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
MutexUnlock(cur_thread(), pc, (uptr)m);
int res = REAL(pthread_spin_unlock)(m);
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
int res = REAL(pthread_rwlock_init)(m, a);
if (res == 0) {
MutexCreate(cur_thread(), pc, (uptr)m, true, false);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
int res = REAL(pthread_rwlock_destroy)(m);
if (res == 0) {
MutexDestroy(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
int res = REAL(pthread_rwlock_rdlock)(m);
if (res == 0) {
MutexReadLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
int res = REAL(pthread_rwlock_tryrdlock)(m);
if (res == 0) {
MutexReadLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
if (res == 0) {
MutexReadLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
int res = REAL(pthread_rwlock_wrlock)(m);
if (res == 0) {
MutexLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
int res = REAL(pthread_rwlock_trywrlock)(m);
if (res == 0) {
MutexLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
if (res == 0) {
MutexLock(cur_thread(), pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
MutexReadOrWriteUnlock(cur_thread(), pc, (uptr)m);
int res = REAL(pthread_rwlock_unlock)(m);
return res;
}
TSAN_INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, c, a);
int res = REAL(pthread_cond_init)(c, a);
return res;
}
TSAN_INTERCEPTOR(int, pthread_cond_destroy, void *c) {
SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, c);
int res = REAL(pthread_cond_destroy)(c);
return res;
}
TSAN_INTERCEPTOR(int, pthread_cond_signal, void *c) {
SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, c);
int res = REAL(pthread_cond_signal)(c);
return res;
}
TSAN_INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, c);
int res = REAL(pthread_cond_broadcast)(c);
return res;
}
TSAN_INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, c, m);
MutexUnlock(cur_thread(), pc, (uptr)m);
int res = REAL(pthread_cond_wait)(c, m);
MutexLock(cur_thread(), pc, (uptr)m);
return res;
}
TSAN_INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, c, m, abstime);
MutexUnlock(cur_thread(), pc, (uptr)m);
int res = REAL(pthread_cond_timedwait)(c, m, abstime);
MutexLock(cur_thread(), pc, (uptr)m);
return res;
}
TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
MemoryWrite1Byte(thr, pc, (uptr)b);
int res = REAL(pthread_barrier_init)(b, a, count);
return res;
}
TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
MemoryWrite1Byte(thr, pc, (uptr)b);
int res = REAL(pthread_barrier_destroy)(b);
return res;
}
TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
Release(cur_thread(), pc, (uptr)b);
MemoryRead1Byte(thr, pc, (uptr)b);
int res = REAL(pthread_barrier_wait)(b);
MemoryRead1Byte(thr, pc, (uptr)b);
if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
Acquire(cur_thread(), pc, (uptr)b);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
SCOPED_TSAN_INTERCEPTOR(pthread_once, o, f);
if (o == 0 || f == 0)
return EINVAL;
atomic_uint32_t *a = static_cast<atomic_uint32_t*>(o);
u32 v = atomic_load(a, memory_order_acquire);
if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
memory_order_relaxed)) {
const int old_in_rtl = thr->in_rtl;
thr->in_rtl = 0;
(*f)();
CHECK_EQ(thr->in_rtl, 0);
thr->in_rtl = old_in_rtl;
Release(cur_thread(), pc, (uptr)o);
atomic_store(a, 2, memory_order_release);
} else {
while (v != 2) {
pthread_yield();
v = atomic_load(a, memory_order_acquire);
}
Acquire(cur_thread(), pc, (uptr)o);
}
return 0;
}
TSAN_INTERCEPTOR(int, sem_init, void *s, int pshared, unsigned value) {
SCOPED_TSAN_INTERCEPTOR(sem_init, s, pshared, value);
int res = REAL(sem_init)(s, pshared, value);
return res;
}
TSAN_INTERCEPTOR(int, sem_destroy, void *s) {
SCOPED_TSAN_INTERCEPTOR(sem_destroy, s);
int res = REAL(sem_destroy)(s);
return res;
}
TSAN_INTERCEPTOR(int, sem_wait, void *s) {
SCOPED_TSAN_INTERCEPTOR(sem_wait, s);
int res = REAL(sem_wait)(s);
if (res == 0) {
Acquire(cur_thread(), pc, (uptr)s);
}
return res;
}
TSAN_INTERCEPTOR(int, sem_trywait, void *s) {
SCOPED_TSAN_INTERCEPTOR(sem_trywait, s);
int res = REAL(sem_trywait)(s);
if (res == 0) {
Acquire(cur_thread(), pc, (uptr)s);
}
return res;
}
TSAN_INTERCEPTOR(int, sem_timedwait, void *s, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(sem_timedwait, s, abstime);
int res = REAL(sem_timedwait)(s, abstime);
if (res == 0) {
Acquire(cur_thread(), pc, (uptr)s);
}
return res;
}
TSAN_INTERCEPTOR(int, sem_post, void *s) {
SCOPED_TSAN_INTERCEPTOR(sem_post, s);
Release(cur_thread(), pc, (uptr)s);
int res = REAL(sem_post)(s);
return res;
}
TSAN_INTERCEPTOR(int, sem_getvalue, void *s, int *sval) {
SCOPED_TSAN_INTERCEPTOR(sem_getvalue, s, sval);
int res = REAL(sem_getvalue)(s, sval);
if (res == 0) {
Acquire(cur_thread(), pc, (uptr)s);
}
return res;
}
TSAN_INTERCEPTOR(long_t, read, int fd, void *buf, long_t sz) {
SCOPED_TSAN_INTERCEPTOR(read, fd, buf, sz);
int res = REAL(read)(fd, buf, sz);
if (res >= 0) {
Acquire(cur_thread(), pc, fd2addr(fd));
}
return res;
}
TSAN_INTERCEPTOR(long_t, pread, int fd, void *buf, long_t sz, unsigned off) {
SCOPED_TSAN_INTERCEPTOR(pread, fd, buf, sz, off);
int res = REAL(pread)(fd, buf, sz, off);
if (res >= 0) {
Acquire(cur_thread(), pc, fd2addr(fd));
}
return res;
}
TSAN_INTERCEPTOR(long_t, pread64, int fd, void *buf, long_t sz, u64 off) {
SCOPED_TSAN_INTERCEPTOR(pread64, fd, buf, sz, off);
int res = REAL(pread64)(fd, buf, sz, off);
if (res >= 0) {
Acquire(cur_thread(), pc, fd2addr(fd));
}
return res;
}
TSAN_INTERCEPTOR(long_t, readv, int fd, void *vec, int cnt) {
SCOPED_TSAN_INTERCEPTOR(readv, fd, vec, cnt);
int res = REAL(readv)(fd, vec, cnt);
if (res >= 0) {
Acquire(cur_thread(), pc, fd2addr(fd));
}
return res;
}
TSAN_INTERCEPTOR(long_t, preadv64, int fd, void *vec, int cnt, u64 off) {
SCOPED_TSAN_INTERCEPTOR(preadv64, fd, vec, cnt, off);
int res = REAL(preadv64)(fd, vec, cnt, off);
if (res >= 0) {
Acquire(cur_thread(), pc, fd2addr(fd));
}
return res;
}
TSAN_INTERCEPTOR(long_t, write, int fd, void *buf, long_t sz) {
SCOPED_TSAN_INTERCEPTOR(write, fd, buf, sz);
Release(cur_thread(), pc, fd2addr(fd));
int res = REAL(write)(fd, buf, sz);
return res;
}
TSAN_INTERCEPTOR(long_t, pwrite, int fd, void *buf, long_t sz, unsigned off) {
SCOPED_TSAN_INTERCEPTOR(pwrite, fd, buf, sz, off);
Release(cur_thread(), pc, fd2addr(fd));
int res = REAL(pwrite)(fd, buf, sz, off);
return res;
}
TSAN_INTERCEPTOR(long_t, pwrite64, int fd, void *buf, long_t sz, unsigned off) {
SCOPED_TSAN_INTERCEPTOR(pwrite64, fd, buf, sz, off);
Release(cur_thread(), pc, fd2addr(fd));
int res = REAL(pwrite64)(fd, buf, sz, off);
return res;
}
TSAN_INTERCEPTOR(long_t, writev, int fd, void *vec, int cnt) {
SCOPED_TSAN_INTERCEPTOR(writev, fd, vec, cnt);
Release(cur_thread(), pc, fd2addr(fd));
int res = REAL(writev)(fd, vec, cnt);
return res;
}
TSAN_INTERCEPTOR(long_t, pwritev64, int fd, void *vec, int cnt, u64 off) {
SCOPED_TSAN_INTERCEPTOR(pwritev64, fd, vec, cnt, off);
Release(cur_thread(), pc, fd2addr(fd));
int res = REAL(pwritev64)(fd, vec, cnt, off);
return res;
}
TSAN_INTERCEPTOR(long_t, send, int fd, void *buf, long_t len, int flags) {
SCOPED_TSAN_INTERCEPTOR(send, fd, buf, len, flags);
Release(cur_thread(), pc, fd2addr(fd));
int res = REAL(send)(fd, buf, len, flags);
return res;
}
TSAN_INTERCEPTOR(long_t, sendmsg, int fd, void *msg, int flags) {
SCOPED_TSAN_INTERCEPTOR(sendmsg, fd, msg, flags);
Release(cur_thread(), pc, fd2addr(fd));
int res = REAL(sendmsg)(fd, msg, flags);
return res;
}
TSAN_INTERCEPTOR(long_t, recv, int fd, void *buf, long_t len, int flags) {
SCOPED_TSAN_INTERCEPTOR(recv, fd, buf, len, flags);
int res = REAL(recv)(fd, buf, len, flags);
if (res >= 0) {
Acquire(cur_thread(), pc, fd2addr(fd));
}
return res;
}
TSAN_INTERCEPTOR(long_t, recvmsg, int fd, void *msg, int flags) {
SCOPED_TSAN_INTERCEPTOR(recvmsg, fd, msg, flags);
int res = REAL(recvmsg)(fd, msg, flags);
if (res >= 0) {
Acquire(cur_thread(), pc, fd2addr(fd));
}
return res;
}
TSAN_INTERCEPTOR(int, unlink, char *path) {
SCOPED_TSAN_INTERCEPTOR(unlink, path);
Release(cur_thread(), pc, file2addr(path));
int res = REAL(unlink)(path);
return res;
}
TSAN_INTERCEPTOR(void*, fopen, char *path, char *mode) {
SCOPED_TSAN_INTERCEPTOR(fopen, path, mode);
void *res = REAL(fopen)(path, mode);
Acquire(cur_thread(), pc, file2addr(path));
return res;
}
TSAN_INTERCEPTOR(uptr, fread, void *ptr, uptr size, uptr nmemb, void *f) {
SCOPED_TSAN_INTERCEPTOR(fread, ptr, size, nmemb, f);
MemoryAccessRange(thr, pc, (uptr)ptr, size * nmemb, true);
return REAL(fread)(ptr, size, nmemb, f);
}
TSAN_INTERCEPTOR(uptr, fwrite, const void *p, uptr size, uptr nmemb, void *f) {
SCOPED_TSAN_INTERCEPTOR(fwrite, p, size, nmemb, f);
MemoryAccessRange(thr, pc, (uptr)p, size * nmemb, false);
return REAL(fwrite)(p, size, nmemb, f);
}
TSAN_INTERCEPTOR(int, puts, const char *s) {
SCOPED_TSAN_INTERCEPTOR(puts, s);
MemoryAccessRange(thr, pc, (uptr)s, REAL(strlen)(s), false);
return REAL(puts)(s);
}
TSAN_INTERCEPTOR(int, rmdir, char *path) {
SCOPED_TSAN_INTERCEPTOR(rmdir, path);
Release(cur_thread(), pc, dir2addr(path));
int res = REAL(rmdir)(path);
return res;
}
TSAN_INTERCEPTOR(void*, opendir, char *path) {
SCOPED_TSAN_INTERCEPTOR(opendir, path);
void *res = REAL(opendir)(path);
Acquire(cur_thread(), pc, dir2addr(path));
return res;
}
TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
if (op == EPOLL_CTL_ADD) {
Release(cur_thread(), pc, epollfd2addr(epfd));
}
int res = REAL(epoll_ctl)(epfd, op, fd, ev);
return res;
}
TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
int res = REAL(epoll_wait)(epfd, ev, cnt, timeout);
if (res > 0) {
Acquire(cur_thread(), pc, epollfd2addr(epfd));
}
return res;
}
static void rtl_sighandler(int sig) {
ThreadState *thr = cur_thread();
SignalDesc *signal = &thr->pending_signals[sig];
if (signal->armed == false) {
signal->armed = true;
signal->sigaction = false;
thr->pending_signal_count++;
}
}
static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) {
ThreadState *thr = cur_thread();
SignalDesc *signal = &thr->pending_signals[sig];
if (signal->armed == false) {
signal->armed = true;
signal->sigaction = true;
signal->siginfo = *info;
thr->pending_signal_count++;
}
}
TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) {
SCOPED_TSAN_INTERCEPTOR(sigaction, sig, act, old);
int res = 0;
if (act == 0 || act->sa_handler == SIG_IGN || act->sa_handler == SIG_DFL) {
res = REAL(sigaction)(sig, act, old);
} else {
sigactions[sig] = *act;
sigaction_t newact = *act;
if (newact.sa_flags & SA_SIGINFO)
newact.sa_sigaction = rtl_sigaction;
else
newact.sa_handler = rtl_sighandler;
res = REAL(sigaction)(sig, &newact, old);
}
return res;
}
static void process_pending_signals(ThreadState *thr) {
CHECK_EQ(thr->in_rtl, 0);
if (thr->pending_signal_count == 0 || thr->in_signal_handler)
return;
thr->in_signal_handler = true;
thr->pending_signal_count = 0;
// These are too big for stack.
static THREADLOCAL ucontext_t uctx;
static THREADLOCAL sigset_t emptyset, oldset;
getcontext(&uctx);
sigfillset(&emptyset);
pthread_sigmask(SIG_SETMASK, &emptyset, &oldset);
for (int sig = 0; sig < kSigCount; sig++) {
SignalDesc *signal = &thr->pending_signals[sig];
if (signal->armed) {
signal->armed = false;
if (signal->sigaction)
sigactions[sig].sa_sigaction(sig, &signal->siginfo, &uctx);
else
sigactions[sig].sa_handler(sig);
}
}
pthread_sigmask(SIG_SETMASK, &oldset, 0);
CHECK_EQ(thr->in_signal_handler, true);
thr->in_signal_handler = false;
}
namespace __tsan {
// Used until we obtain real efficient functions.
static void* poormans_memset(void *dst, int v, uptr size) {
for (uptr i = 0; i < size; i++)
((char*)dst)[i] = (char)v;
return dst;
}
static void* poormans_memcpy(void *dst, const void *src, uptr size) {
for (uptr i = 0; i < size; i++)
((char*)dst)[i] = ((char*)src)[i];
return dst;
}
void InitializeInterceptors() {
CHECK_GT(cur_thread()->in_rtl, 0);
// We need to setup it early, because functions like dlsym() can call it.
REAL(memset) = poormans_memset;
REAL(memcpy) = poormans_memcpy;
TSAN_INTERCEPT(malloc);
TSAN_INTERCEPT(calloc);
TSAN_INTERCEPT(realloc);
TSAN_INTERCEPT(free);
TSAN_INTERCEPT(cfree);
TSAN_INTERCEPT(mmap);
TSAN_INTERCEPT(mmap64);
TSAN_INTERCEPT(munmap);
TSAN_INTERCEPT(memalign);
TSAN_INTERCEPT(valloc);
TSAN_INTERCEPT(pvalloc);
TSAN_INTERCEPT(posix_memalign);
TSAN_INTERCEPT(_Znwm);
TSAN_INTERCEPT(_ZnwmRKSt9nothrow_t);
TSAN_INTERCEPT(_Znam);
TSAN_INTERCEPT(_ZnamRKSt9nothrow_t);
TSAN_INTERCEPT(_ZdlPv);
TSAN_INTERCEPT(_ZdlPvRKSt9nothrow_t);
TSAN_INTERCEPT(_ZdaPv);
TSAN_INTERCEPT(_ZdaPvRKSt9nothrow_t);
TSAN_INTERCEPT(strlen);
TSAN_INTERCEPT(memset);
TSAN_INTERCEPT(memcpy);
TSAN_INTERCEPT(strcmp);
TSAN_INTERCEPT(memchr);
TSAN_INTERCEPT(memrchr);
TSAN_INTERCEPT(memmove);
TSAN_INTERCEPT(memcmp);
TSAN_INTERCEPT(strchr);
TSAN_INTERCEPT(strchrnul);
TSAN_INTERCEPT(strrchr);
TSAN_INTERCEPT(strncmp);
TSAN_INTERCEPT(strcpy); // NOLINT
TSAN_INTERCEPT(strncpy);
TSAN_INTERCEPT(strstr);
TSAN_INTERCEPT(__cxa_guard_acquire);
TSAN_INTERCEPT(__cxa_guard_release);
TSAN_INTERCEPT(pthread_create);
TSAN_INTERCEPT(pthread_join);
TSAN_INTERCEPT(pthread_detach);
TSAN_INTERCEPT(pthread_mutex_init);
TSAN_INTERCEPT(pthread_mutex_destroy);
TSAN_INTERCEPT(pthread_mutex_lock);
TSAN_INTERCEPT(pthread_mutex_trylock);
TSAN_INTERCEPT(pthread_mutex_timedlock);
TSAN_INTERCEPT(pthread_mutex_unlock);
TSAN_INTERCEPT(pthread_spin_init);
TSAN_INTERCEPT(pthread_spin_destroy);
TSAN_INTERCEPT(pthread_spin_lock);
TSAN_INTERCEPT(pthread_spin_trylock);
TSAN_INTERCEPT(pthread_spin_unlock);
TSAN_INTERCEPT(pthread_rwlock_init);
TSAN_INTERCEPT(pthread_rwlock_destroy);
TSAN_INTERCEPT(pthread_rwlock_rdlock);
TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
TSAN_INTERCEPT(pthread_rwlock_wrlock);
TSAN_INTERCEPT(pthread_rwlock_trywrlock);
TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
TSAN_INTERCEPT(pthread_rwlock_unlock);
TSAN_INTERCEPT(pthread_cond_init);
TSAN_INTERCEPT(pthread_cond_destroy);
TSAN_INTERCEPT(pthread_cond_signal);
TSAN_INTERCEPT(pthread_cond_broadcast);
TSAN_INTERCEPT(pthread_cond_wait);
TSAN_INTERCEPT(pthread_cond_timedwait);
TSAN_INTERCEPT(pthread_barrier_init);
TSAN_INTERCEPT(pthread_barrier_destroy);
TSAN_INTERCEPT(pthread_barrier_wait);
TSAN_INTERCEPT(pthread_once);
TSAN_INTERCEPT(sem_init);
TSAN_INTERCEPT(sem_destroy);
TSAN_INTERCEPT(sem_wait);
TSAN_INTERCEPT(sem_trywait);
TSAN_INTERCEPT(sem_timedwait);
TSAN_INTERCEPT(sem_post);
TSAN_INTERCEPT(sem_getvalue);
TSAN_INTERCEPT(read);
TSAN_INTERCEPT(pread);
TSAN_INTERCEPT(pread64);
TSAN_INTERCEPT(readv);
TSAN_INTERCEPT(preadv64);
TSAN_INTERCEPT(write);
TSAN_INTERCEPT(pwrite);
TSAN_INTERCEPT(pwrite64);
TSAN_INTERCEPT(writev);
TSAN_INTERCEPT(pwritev64);
TSAN_INTERCEPT(send);
TSAN_INTERCEPT(sendmsg);
TSAN_INTERCEPT(recv);
TSAN_INTERCEPT(recvmsg);
TSAN_INTERCEPT(unlink);
TSAN_INTERCEPT(fopen);
TSAN_INTERCEPT(fread);
TSAN_INTERCEPT(fwrite);
TSAN_INTERCEPT(puts);
TSAN_INTERCEPT(rmdir);
TSAN_INTERCEPT(opendir);
TSAN_INTERCEPT(epoll_ctl);
TSAN_INTERCEPT(epoll_wait);
TSAN_INTERCEPT(sigaction);
atexit_ctx = new(internal_alloc(MBlockAtExit, sizeof(AtExitContext)))
AtExitContext();
if (__cxa_atexit(&finalize, 0, 0)) {
Printf("ThreadSanitizer: failed to setup atexit callback\n");
Die();
}
if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
Printf("ThreadSanitizer: failed to create thread key\n");
Die();
}
}
void internal_memset(void *ptr, int c, uptr size) {
REAL(memset)(ptr, c, size);
}
void internal_memcpy(void *dst, const void *src, uptr size) {
REAL(memcpy)(dst, src, size);
}
int internal_memcmp(const void *s1, const void *s2, uptr size) {
return REAL(memcmp)(s1, s2, size);
}
int internal_strcmp(const char *s1, const char *s2) {
return REAL(strcmp)(s1, s2);
}
int internal_strncmp(const char *s1, const char *s2, uptr size) {
return REAL(strncmp)(s1, s2, size);
}
void internal_strcpy(char *s1, const char *s2) {
REAL(strcpy)(s1, s2); // NOLINT
}
uptr internal_strlen(const char *s) {
return REAL(strlen)(s);
}
char* internal_strdup(const char *s) {
uptr len = internal_strlen(s);
char *s2 = (char*)internal_alloc(MBlockString, len + 1);
internal_memcpy(s2, s, len);
s2[len] = 0;
return s2;
}
const char *internal_strstr(const char *where, const char *what) {
return REAL(strstr)(where, what);
}
const char *internal_strchr(const char *where, char what) {
return (const char*)REAL(strchr)((void*)where, what);
}
} // namespace __tsan