2016-02-10 06:50:34 +08:00
; RUN: opt -S -wholeprogramdevirt %s | FileCheck %s
target datalayout = "e-p:64:64"
target triple = "x86_64-unknown-linux-gnu"
2016-06-25 08:23:04 +08:00
; CHECK: [[VT1DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\01\01\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i32 (i8*)* @vf1i32 to i8*)], [0 x i8] zeroinitializer }, section "vt1sec", !type [[T8:![0-9]+]]
2016-02-10 06:50:34 +08:00
@vt1 = constant [ 3 x i8 * ] [
i8 * bitcast ( i1 ( i8 * ) * @vf0i1 to i8 * ) ,
i8 * bitcast ( i1 ( i8 * ) * @vf1i1 to i8 * ) ,
i8 * bitcast ( i32 ( i8 * ) * @vf1i32 to i8 * )
IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
2016-06-25 05:21:32 +08:00
] , section "vt1sec" , !type !0
2016-02-10 06:50:34 +08:00
2016-06-25 08:23:04 +08:00
; CHECK: [[VT2DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\02\02\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i32 (i8*)* @vf2i32 to i8*)], [0 x i8] zeroinitializer }, !type [[T8]]
2016-02-10 06:50:34 +08:00
@vt2 = constant [ 3 x i8 * ] [
i8 * bitcast ( i1 ( i8 * ) * @vf1i1 to i8 * ) ,
i8 * bitcast ( i1 ( i8 * ) * @vf0i1 to i8 * ) ,
i8 * bitcast ( i32 ( i8 * ) * @vf2i32 to i8 * )
IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
2016-06-25 05:21:32 +08:00
] , !type !0
2016-02-10 06:50:34 +08:00
2016-06-25 08:23:04 +08:00
; CHECK: [[VT3DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\01\03\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i32 (i8*)* @vf3i32 to i8*)], [0 x i8] zeroinitializer }, !type [[T8]]
2016-02-10 06:50:34 +08:00
@vt3 = constant [ 3 x i8 * ] [
i8 * bitcast ( i1 ( i8 * ) * @vf0i1 to i8 * ) ,
i8 * bitcast ( i1 ( i8 * ) * @vf1i1 to i8 * ) ,
i8 * bitcast ( i32 ( i8 * ) * @vf3i32 to i8 * )
IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
2016-06-25 05:21:32 +08:00
] , !type !0
2016-02-10 06:50:34 +08:00
2016-06-25 08:23:04 +08:00
; CHECK: [[VT4DATA:@[^ ]*]] = private constant { [8 x i8], [3 x i8*], [0 x i8] } { [8 x i8] c"\00\00\00\02\04\00\00\00", [3 x i8*] [i8* bitcast (i1 (i8*)* @vf1i1 to i8*), i8* bitcast (i1 (i8*)* @vf0i1 to i8*), i8* bitcast (i32 (i8*)* @vf4i32 to i8*)], [0 x i8] zeroinitializer }, !type [[T8]]
2016-02-10 06:50:34 +08:00
@vt4 = constant [ 3 x i8 * ] [
i8 * bitcast ( i1 ( i8 * ) * @vf1i1 to i8 * ) ,
i8 * bitcast ( i1 ( i8 * ) * @vf0i1 to i8 * ) ,
i8 * bitcast ( i32 ( i8 * ) * @vf4i32 to i8 * )
IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
2016-06-25 05:21:32 +08:00
] , !type !0
2016-02-10 06:50:34 +08:00
2016-06-25 08:23:04 +08:00
; CHECK: @vt5 = {{.*}}, !type [[T0:![0-9]+]]
2016-02-10 06:50:34 +08:00
@vt5 = constant [ 3 x i8 * ] [
i8 * bitcast ( void ( ) * @__cxa_pure_virtual to i8 * ) ,
i8 * bitcast ( void ( ) * @__cxa_pure_virtual to i8 * ) ,
i8 * bitcast ( void ( ) * @__cxa_pure_virtual to i8 * )
IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
2016-06-25 05:21:32 +08:00
] , !type !0
2016-02-10 06:50:34 +08:00
; CHECK: @vt1 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT1DATA]], i32 0, i32 1)
; CHECK: @vt2 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT2DATA]], i32 0, i32 1)
; CHECK: @vt3 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT3DATA]], i32 0, i32 1)
; CHECK: @vt4 = alias [3 x i8*], getelementptr inbounds ({ [8 x i8], [3 x i8*], [0 x i8] }, { [8 x i8], [3 x i8*], [0 x i8] }* [[VT4DATA]], i32 0, i32 1)
define i1 @vf0i1 ( i8 * %this ) readnone {
ret i1 0
}
define i1 @vf1i1 ( i8 * %this ) readnone {
ret i1 1
}
define i32 @vf1i32 ( i8 * %this ) readnone {
ret i32 1
}
define i32 @vf2i32 ( i8 * %this ) readnone {
ret i32 2
}
define i32 @vf3i32 ( i8 * %this ) readnone {
ret i32 3
}
define i32 @vf4i32 ( i8 * %this ) readnone {
ret i32 4
}
; CHECK: define i1 @call1(
define i1 @call1 ( i8 * %obj ) {
%vtableptr = bitcast i8 * %obj to [ 3 x i8 * ] * *
%vtable = load [ 3 x i8 * ] * , [ 3 x i8 * ] * * %vtableptr
2017-08-23 05:41:19 +08:00
; CHECK: {{.*}} = bitcast [3 x i8*]* {{.*}} to i8*
2016-02-10 06:50:34 +08:00
; CHECK: [[VT1:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [ 3 x i8 * ] * %vtable to i8 *
IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
2016-06-25 05:21:32 +08:00
%p = call i1 @llvm.type.test ( i8 * %vtablei8 , metadata !"typeid" )
2016-02-10 06:50:34 +08:00
call void @llvm.assume ( i1 %p )
%fptrptr = getelementptr [ 3 x i8 * ] , [ 3 x i8 * ] * %vtable , i32 0 , i32 0
%fptr = load i8 * , i8 * * %fptrptr
%fptr_casted = bitcast i8 * %fptr to i1 ( i8 * ) *
2017-02-18 03:43:45 +08:00
; CHECK: [[VTGEP1:%[^ ]*]] = getelementptr i8, i8* [[VT1]], i32 -5
2016-02-10 06:50:34 +08:00
; CHECK: [[VTLOAD1:%[^ ]*]] = load i8, i8* [[VTGEP1]]
; CHECK: [[VTAND1:%[^ ]*]] = and i8 [[VTLOAD1]], 2
; CHECK: [[VTCMP1:%[^ ]*]] = icmp ne i8 [[VTAND1]], 0
%result = call i1 %fptr_casted ( i8 * %obj )
; CHECK: ret i1 [[VTCMP1]]
ret i1 %result
}
; CHECK: define i1 @call2(
define i1 @call2 ( i8 * %obj ) {
%vtableptr = bitcast i8 * %obj to [ 3 x i8 * ] * *
%vtable = load [ 3 x i8 * ] * , [ 3 x i8 * ] * * %vtableptr
2017-08-23 05:41:19 +08:00
; CHECK: {{.*}} = bitcast [3 x i8*]* {{.*}} to i8*
2016-02-10 06:50:34 +08:00
; CHECK: [[VT2:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [ 3 x i8 * ] * %vtable to i8 *
IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
2016-06-25 05:21:32 +08:00
%p = call i1 @llvm.type.test ( i8 * %vtablei8 , metadata !"typeid" )
2016-02-10 06:50:34 +08:00
call void @llvm.assume ( i1 %p )
%fptrptr = getelementptr [ 3 x i8 * ] , [ 3 x i8 * ] * %vtable , i32 0 , i32 1
%fptr = load i8 * , i8 * * %fptrptr
%fptr_casted = bitcast i8 * %fptr to i1 ( i8 * ) *
2017-02-18 03:43:45 +08:00
; CHECK: [[VTGEP2:%[^ ]*]] = getelementptr i8, i8* [[VT2]], i32 -5
2016-02-10 06:50:34 +08:00
; CHECK: [[VTLOAD2:%[^ ]*]] = load i8, i8* [[VTGEP2]]
; CHECK: [[VTAND2:%[^ ]*]] = and i8 [[VTLOAD2]], 1
; CHECK: [[VTCMP2:%[^ ]*]] = icmp ne i8 [[VTAND2]], 0
%result = call i1 %fptr_casted ( i8 * %obj )
; CHECK: ret i1 [[VTCMP2]]
ret i1 %result
}
; CHECK: define i32 @call3(
define i32 @call3 ( i8 * %obj ) {
%vtableptr = bitcast i8 * %obj to [ 3 x i8 * ] * *
%vtable = load [ 3 x i8 * ] * , [ 3 x i8 * ] * * %vtableptr
2017-08-23 05:41:19 +08:00
; CHECK: {{.*}} = bitcast [3 x i8*]* {{.*}} to i8*
2016-02-10 06:50:34 +08:00
; CHECK: [[VT3:%[^ ]*]] = bitcast [3 x i8*]* {{.*}} to i8*
%vtablei8 = bitcast [ 3 x i8 * ] * %vtable to i8 *
IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
2016-06-25 05:21:32 +08:00
%p = call i1 @llvm.type.test ( i8 * %vtablei8 , metadata !"typeid" )
2016-02-10 06:50:34 +08:00
call void @llvm.assume ( i1 %p )
%fptrptr = getelementptr [ 3 x i8 * ] , [ 3 x i8 * ] * %vtable , i32 0 , i32 2
%fptr = load i8 * , i8 * * %fptrptr
%fptr_casted = bitcast i8 * %fptr to i32 ( i8 * ) *
2017-02-18 03:43:45 +08:00
; CHECK: [[VTGEP3:%[^ ]*]] = getelementptr i8, i8* [[VT3]], i32 -4
2016-02-10 06:50:34 +08:00
; CHECK: [[VTBC3:%[^ ]*]] = bitcast i8* [[VTGEP3]] to i32*
; CHECK: [[VTLOAD3:%[^ ]*]] = load i32, i32* [[VTBC3]]
%result = call i32 %fptr_casted ( i8 * %obj )
; CHECK: ret i32 [[VTLOAD3]]
ret i32 %result
}
IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
2016-06-25 05:21:32 +08:00
declare i1 @llvm.type.test ( i8 * , metadata )
2016-02-10 06:50:34 +08:00
declare void @llvm.assume ( i1 )
declare void @__cxa_pure_virtual ( )
2016-06-25 08:23:04 +08:00
; CHECK: [[T8]] = !{i32 8, !"typeid"}
; CHECK: [[T0]] = !{i32 0, !"typeid"}
IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
2016-06-25 05:21:32 +08:00
!0 = ! { i32 0 , !"typeid" }