llvm-project/llvm/test/CodeGen/AMDGPU/insert_vector_elt.ll

478 lines
22 KiB
LLVM
Raw Normal View History

AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; RUN: llc -verify-machineinstrs -mtriple=amdgcn-amd-amdhsa -mcpu=kaveri -mattr=-flat-for-global,+max-private-element-size-16 < %s | FileCheck -enable-var-scope -check-prefixes=GCN,SI,GCN-NO-TONGA %s
; RUN: llc -verify-machineinstrs -mtriple=amdgcn-amd-amdhsa -mcpu=tonga -mattr=-flat-for-global -mattr=+max-private-element-size-16 < %s | FileCheck -enable-var-scope -check-prefixes=GCN,VI,GCN-TONGA %s
; FIXME: Broken on evergreen
; FIXME: For some reason the 8 and 16 vectors are being stored as
; individual elements instead of 128-bit stores.
; FIXME: Why is the constant moved into the intermediate register and
; not just directly into the vector component?
; GCN-LABEL: {{^}}insertelement_v4f32_0:
; GCN: s_load_dwordx4
; GCN-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; GCN-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; GCN-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; GCN-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; GCN-DAG: s_mov_b32 [[CONSTREG:s[0-9]+]], 0x40a00000
; GCN-DAG: v_mov_b32_e32 v[[LOW_REG:[0-9]+]], [[CONSTREG]]
; GCN: buffer_store_dwordx4 v{{\[}}[[LOW_REG]]:
define amdgpu_kernel void @insertelement_v4f32_0(<4 x float> addrspace(1)* %out, <4 x float> %a) nounwind {
%vecins = insertelement <4 x float> %a, float 5.000000e+00, i32 0
store <4 x float> %vecins, <4 x float> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}insertelement_v4f32_1:
define amdgpu_kernel void @insertelement_v4f32_1(<4 x float> addrspace(1)* %out, <4 x float> %a) nounwind {
%vecins = insertelement <4 x float> %a, float 5.000000e+00, i32 1
store <4 x float> %vecins, <4 x float> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}insertelement_v4f32_2:
define amdgpu_kernel void @insertelement_v4f32_2(<4 x float> addrspace(1)* %out, <4 x float> %a) nounwind {
%vecins = insertelement <4 x float> %a, float 5.000000e+00, i32 2
store <4 x float> %vecins, <4 x float> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}insertelement_v4f32_3:
define amdgpu_kernel void @insertelement_v4f32_3(<4 x float> addrspace(1)* %out, <4 x float> %a) nounwind {
%vecins = insertelement <4 x float> %a, float 5.000000e+00, i32 3
store <4 x float> %vecins, <4 x float> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}insertelement_v4i32_0:
define amdgpu_kernel void @insertelement_v4i32_0(<4 x i32> addrspace(1)* %out, <4 x i32> %a) nounwind {
%vecins = insertelement <4 x i32> %a, i32 999, i32 0
store <4 x i32> %vecins, <4 x i32> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}insertelement_v3f32_1:
define amdgpu_kernel void @insertelement_v3f32_1(<3 x float> addrspace(1)* %out, <3 x float> %a) nounwind {
%vecins = insertelement <3 x float> %a, float 5.000000e+00, i32 1
store <3 x float> %vecins, <3 x float> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}insertelement_v3f32_2:
define amdgpu_kernel void @insertelement_v3f32_2(<3 x float> addrspace(1)* %out, <3 x float> %a) nounwind {
%vecins = insertelement <3 x float> %a, float 5.000000e+00, i32 2
store <3 x float> %vecins, <3 x float> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}insertelement_v3f32_3:
define amdgpu_kernel void @insertelement_v3f32_3(<3 x float> addrspace(1)* %out, <3 x float> %a) nounwind {
%vecins = insertelement <3 x float> %a, float 5.000000e+00, i32 3
store <3 x float> %vecins, <3 x float> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}insertelement_to_sgpr:
; GCN-NOT: v_readfirstlane
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
define <4 x float> @insertelement_to_sgpr() nounwind {
%tmp = load <4 x i32>, <4 x i32> addrspace(4)* undef
%tmp1 = insertelement <4 x i32> %tmp, i32 0, i32 0
%tmp2 = call <4 x float> @llvm.amdgcn.image.gather4.lz.2d.v4f32.f32(i32 1, float undef, float undef, <8 x i32> undef, <4 x i32> %tmp1, i1 0, i32 0, i32 0)
ret <4 x float> %tmp2
}
; GCN-LABEL: {{^}}dynamic_insertelement_v2f32:
; GCN-DAG: v_mov_b32_e32 [[CONST:v[0-9]+]], 0x40a00000
; GCN-DAG: v_cmp_ne_u32_e64 [[CC2:[^,]+]], [[IDX:s[0-9]+]], 1
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, [[CONST]], v{{[0-9]+}}, [[CC2]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v[[LOW_RESULT_REG:[0-9]+]], [[CONST]], v{{[0-9]+}}, [[CC1]]
; GCN: buffer_store_dwordx2 {{v\[}}[[LOW_RESULT_REG]]:
define amdgpu_kernel void @dynamic_insertelement_v2f32(<2 x float> addrspace(1)* %out, <2 x float> %a, i32 %b) nounwind {
%vecins = insertelement <2 x float> %a, float 5.000000e+00, i32 %b
store <2 x float> %vecins, <2 x float> addrspace(1)* %out, align 8
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v3f32:
; GCN-DAG: v_mov_b32_e32 [[CONST:v[0-9]+]], 0x40a00000
; GCN-DAG: v_cmp_ne_u32_e64 [[CC3:[^,]+]], [[IDX:s[0-9]+]], 2
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, [[CONST]], v{{[0-9]+}}, [[CC3]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC2:[^,]+]], [[IDX]], 1
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, [[CONST]], v{{[0-9]+}}, [[CC2]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, [[CONST]], v{{[0-9]+}}, [[CC1]]
; GCN-DAG: buffer_store_dwordx3 v
define amdgpu_kernel void @dynamic_insertelement_v3f32(<3 x float> addrspace(1)* %out, <3 x float> %a, i32 %b) nounwind {
%vecins = insertelement <3 x float> %a, float 5.000000e+00, i32 %b
store <3 x float> %vecins, <3 x float> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v4f32:
; GCN-DAG: v_mov_b32_e32 [[CONST:v[0-9]+]], 0x40a00000
; GCN-DAG: v_cmp_ne_u32_e64 [[CC4:[^,]+]], [[IDX:s[0-9]+]], 3
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, [[CONST]], v{{[0-9]+}}, [[CC4]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC3:[^,]+]], [[IDX]], 2
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, [[CONST]], v{{[0-9]+}}, [[CC3]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC2:[^,]+]], [[IDX]], 1
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, [[CONST]], v{{[0-9]+}}, [[CC2]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v[[LOW_RESULT_REG:[0-9]+]], [[CONST]], v{{[0-9]+}}, [[CC1]]
; GCN: buffer_store_dwordx4 {{v\[}}[[LOW_RESULT_REG]]:
define amdgpu_kernel void @dynamic_insertelement_v4f32(<4 x float> addrspace(1)* %out, <4 x float> %a, i32 %b) nounwind {
%vecins = insertelement <4 x float> %a, float 5.000000e+00, i32 %b
store <4 x float> %vecins, <4 x float> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v8f32:
; GCN-DAG: v_mov_b32_e32 [[CONST:v[0-9]+]], 0x40a00000
; GCN-DAG: v_cmp_ne_u32_e64 [[CCL:[^,]+]], [[IDX:s[0-9]+]], 7
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, [[CONST]], v{{[0-9]+}}, [[CCL]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, [[CONST]], v{{[0-9]+}}, [[CC1]]
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
define amdgpu_kernel void @dynamic_insertelement_v8f32(<8 x float> addrspace(1)* %out, <8 x float> %a, i32 %b) nounwind {
%vecins = insertelement <8 x float> %a, float 5.000000e+00, i32 %b
store <8 x float> %vecins, <8 x float> addrspace(1)* %out, align 32
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v16f32:
; GCN: v_movreld_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
define amdgpu_kernel void @dynamic_insertelement_v16f32(<16 x float> addrspace(1)* %out, <16 x float> %a, i32 %b) nounwind {
%vecins = insertelement <16 x float> %a, float 5.000000e+00, i32 %b
store <16 x float> %vecins, <16 x float> addrspace(1)* %out, align 64
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v2i32:
; GCN-DAG: v_cmp_ne_u32_e64 [[CC2:[^,]+]], [[IDX:s[0-9]+]], 1
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, 5, v{{[0-9]+}}, [[CC2]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v[[LOW_RESULT_REG:[0-9]+]], 5, v{{[0-9]+}}, [[CC1]]
; GCN: buffer_store_dwordx2 {{v\[}}[[LOW_RESULT_REG]]:
define amdgpu_kernel void @dynamic_insertelement_v2i32(<2 x i32> addrspace(1)* %out, <2 x i32> %a, i32 %b) nounwind {
%vecins = insertelement <2 x i32> %a, i32 5, i32 %b
store <2 x i32> %vecins, <2 x i32> addrspace(1)* %out, align 8
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v3i32:
; GCN-DAG: v_cmp_ne_u32_e64 [[CC3:[^,]+]], [[IDX:s[0-9]+]], 2
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, 5, v{{[0-9]+}}, [[CC3]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC2:[^,]+]], [[IDX]], 1
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, 5, v{{[0-9]+}}, [[CC2]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, 5, v{{[0-9]+}}, [[CC1]]
; GCN-DAG: buffer_store_dwordx3 v
define amdgpu_kernel void @dynamic_insertelement_v3i32(<3 x i32> addrspace(1)* %out, <3 x i32> %a, i32 %b) nounwind {
%vecins = insertelement <3 x i32> %a, i32 5, i32 %b
store <3 x i32> %vecins, <3 x i32> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v4i32:
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN: s_load_dword [[SVAL:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, {{0x11|0x44}}
; GCN-DAG: v_mov_b32_e32 [[VVAL:v[0-9]+]], [[SVAL]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC4:[^,]+]], [[IDX:s[0-9]+]], 3
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}, [[VVAL]], [[CC4]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC3:[^,]+]], [[IDX]], 2
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}, [[VVAL]], [[CC3]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC2:[^,]+]], [[IDX]], 1
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}, [[VVAL]], [[CC2]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}, [[VVAL]], [[CC1]]
; GCN: buffer_store_dwordx4
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
define amdgpu_kernel void @dynamic_insertelement_v4i32(<4 x i32> addrspace(1)* %out, <4 x i32> %a, i32 %b, [8 x i32], i32 %val) nounwind {
%vecins = insertelement <4 x i32> %a, i32 %val, i32 %b
store <4 x i32> %vecins, <4 x i32> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v8i32:
; GCN-DAG: v_cmp_ne_u32_e64 [[CCL:[^,]+]], [[IDX:s[0-9]+]], 7
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, 5, v{{[0-9]+}}, [[CCL]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, 5, v{{[0-9]+}}, [[CC1]]
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
define amdgpu_kernel void @dynamic_insertelement_v8i32(<8 x i32> addrspace(1)* %out, <8 x i32> %a, i32 %b) nounwind {
%vecins = insertelement <8 x i32> %a, i32 5, i32 %b
store <8 x i32> %vecins, <8 x i32> addrspace(1)* %out, align 32
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v16i32:
; GCN: v_movreld_b32
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
define amdgpu_kernel void @dynamic_insertelement_v16i32(<16 x i32> addrspace(1)* %out, <16 x i32> %a, i32 %b) nounwind {
%vecins = insertelement <16 x i32> %a, i32 5, i32 %b
store <16 x i32> %vecins, <16 x i32> addrspace(1)* %out, align 64
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v2i16:
define amdgpu_kernel void @dynamic_insertelement_v2i16(<2 x i16> addrspace(1)* %out, <2 x i16> %a, i32 %b) nounwind {
%vecins = insertelement <2 x i16> %a, i16 5, i32 %b
store <2 x i16> %vecins, <2 x i16> addrspace(1)* %out, align 8
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v3i16:
define amdgpu_kernel void @dynamic_insertelement_v3i16(<3 x i16> addrspace(1)* %out, <3 x i16> %a, i32 %b) nounwind {
%vecins = insertelement <3 x i16> %a, i16 5, i32 %b
store <3 x i16> %vecins, <3 x i16> addrspace(1)* %out, align 8
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v2i8:
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; VI: s_load_dword [[LOAD:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0x28
; VI-NEXT: s_load_dword [[IDX:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0x4c
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
; VI-NOT: _load
; VI: s_lshl_b32 [[SCALED_IDX:s[0-9]+]], [[IDX]], 3
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
; VI: v_lshlrev_b16_e64 [[MASK:v[0-9]+]], [[SCALED_IDX]], -1
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; VI: v_and_b32_e32 [[INSERT:v[0-9]+]], 5, [[MASK]]
; VI: v_xor_b32_e32 [[NOT_MASK:v[0-9]+]], -1, [[MASK]]
; VI: v_and_b32_e32 [[AND_NOT_MASK:v[0-9]+]], [[LOAD]], [[NOT_MASK]]
; VI: v_or_b32_e32 [[OR:v[0-9]+]], [[INSERT]], [[AND_NOT_MASK]]
; VI: buffer_store_short [[OR]]
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
define amdgpu_kernel void @dynamic_insertelement_v2i8(<2 x i8> addrspace(1)* %out, [8 x i32], <2 x i8> %a, [8 x i32], i32 %b) nounwind {
%vecins = insertelement <2 x i8> %a, i8 5, i32 %b
store <2 x i8> %vecins, <2 x i8> addrspace(1)* %out, align 8
ret void
}
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
; FIXME: post legalize i16 and i32 shifts aren't merged because of
; isTypeDesirableForOp in SimplifyDemandedBits
; GCN-LABEL: {{^}}dynamic_insertelement_v3i8:
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; VI: s_load_dword [[LOAD:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0x28
; VI-NEXT: s_load_dword [[IDX:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0x4c
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
; VI-NOT: _load
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; VI: v_mov_b32_e32 [[V_LOAD:v[0-9]+]], [[LOAD]]
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
; VI: s_lshl_b32 [[SCALED_IDX:s[0-9]+]], [[IDX]], 3
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; VI: s_lshl_b32 [[SHIFTED_MASK:s[0-9]+]], 0xffff, [[SCALED_IDX]]
; VI: s_andn2_b32 [[AND_NOT_MASK:s[0-9]+]], [[LOAD]], [[SHIFTED_MASK]]
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; VI: v_bfi_b32 [[BFI:v[0-9]+]], [[SHIFTED_MASK]], 5, [[V_LOAD]]
; VI: s_lshr_b32 [[HI2:s[0-9]+]], [[AND_NOT_MASK]], 16
; VI-DAG: buffer_store_short [[BFI]]
; VI-DAG: v_mov_b32_e32 [[V_HI2:v[0-9]+]], [[HI2]]
; VI: buffer_store_byte [[V_HI2]]
define amdgpu_kernel void @dynamic_insertelement_v3i8(<3 x i8> addrspace(1)* %out, [8 x i32], <3 x i8> %a, [8 x i32], i32 %b) nounwind {
%vecins = insertelement <3 x i8> %a, i8 5, i32 %b
store <3 x i8> %vecins, <3 x i8> addrspace(1)* %out, align 4
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v4i8:
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; VI: s_load_dword [[LOAD:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0x28
; VI-NEXT: s_load_dword [[IDX:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0x4c
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
; VI-NOT: _load
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; VI: v_mov_b32_e32 [[V_LOAD:v[0-9]+]], [[LOAD]]
; VI-DAG: s_lshl_b32 [[SCALED_IDX:s[0-9]+]], [[IDX]], 3
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; VI: s_lshl_b32 [[SHIFTED_MASK:s[0-9]+]], 0xffff, [[SCALED_IDX]]
; VI: v_bfi_b32 [[BFI:v[0-9]+]], [[SHIFTED_MASK]], 5, [[V_LOAD]]
; VI: buffer_store_dword [[BFI]]
define amdgpu_kernel void @dynamic_insertelement_v4i8(<4 x i8> addrspace(1)* %out, [8 x i32], <4 x i8> %a, [8 x i32], i32 %b) nounwind {
%vecins = insertelement <4 x i8> %a, i8 5, i32 %b
store <4 x i8> %vecins, <4 x i8> addrspace(1)* %out, align 4
ret void
}
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
; GCN-LABEL: {{^}}s_dynamic_insertelement_v8i8:
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; VI-NOT: {{buffer|flat|global}}_load
; VI-DAG: s_load_dwordx4 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x0
; VI-DAG: s_load_dword [[IDX:s[0-9]]], s[4:5], 0x10
; VI-DAG: s_mov_b32 s[[MASK_HI:[0-9]+]], 0{{$}}
; VI-DAG: s_load_dwordx2 [[VEC:s\[[0-9]+:[0-9]+\]]], s{{\[[0-9]+:[0-9]+\]}}, 0x0
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
; VI-DAG: s_lshl_b32 [[SCALED_IDX:s[0-9]+]], [[IDX]], 3
; VI-DAG: s_mov_b32 s[[MASK_LO:[0-9]+]], 0xffff
; VI: s_lshl_b64 s{{\[}}[[MASK_SHIFT_LO:[0-9]+]]:[[MASK_SHIFT_HI:[0-9]+]]{{\]}}, s{{\[}}[[MASK_LO]]:[[MASK_HI]]{{\]}}, [[SCALED_IDX]]
; VI: s_andn2_b64 [[AND:s\[[0-9]+:[0-9]+\]]], [[VEC]], s{{\[}}[[MASK_SHIFT_LO]]:[[MASK_SHIFT_HI]]{{\]}}
; VI: s_and_b32 s[[INS:[0-9]+]], s[[MASK_SHIFT_LO]], 5
; VI: s_or_b64 s{{\[}}[[RESULT0:[0-9]+]]:[[RESULT1:[0-9]+]]{{\]}}, s{{\[}}[[INS]]:[[MASK_HI]]{{\]}}, [[AND]]
; VI: v_mov_b32_e32 v[[V_RESULT0:[0-9]+]], s[[RESULT0]]
; VI: v_mov_b32_e32 v[[V_RESULT1:[0-9]+]], s[[RESULT1]]
; VI: buffer_store_dwordx2 v{{\[}}[[V_RESULT0]]:[[V_RESULT1]]{{\]}}
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
define amdgpu_kernel void @s_dynamic_insertelement_v8i8(<8 x i8> addrspace(1)* %out, <8 x i8> addrspace(4)* %a.ptr, i32 %b) nounwind {
%a = load <8 x i8>, <8 x i8> addrspace(4)* %a.ptr, align 4
%vecins = insertelement <8 x i8> %a, i8 5, i32 %b
store <8 x i8> %vecins, <8 x i8> addrspace(1)* %out, align 8
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v16i8:
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
; GCN: s_load_dwordx2
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN: s_load_dwordx4
AMDGPU: Try a lot harder to emit scalar loads This has two main components. First, widen widen short constant loads in DAG when they have the correct alignment. This is already done a bit in AMDGPUCodeGenPrepare, since that has access to DivergenceAnalysis. This can't help kernarg loads created in the DAG. Start to use DAG divergence analysis to help this case. The second part is to avoid kernel argument lowering breaking the alignment of short vector elements because calling convention lowering wants to split everything into legal register types. When loading a split type, load the nearest 4-byte aligned segment and shift to get the desired bits. This extra load of the earlier argument piece ends up merging, and the bit extract hopefully folds out. There are a number of improvements and regressions with this, but I think as-is this is a better compromise between several of the worst parts of SelectionDAG. Particularly when i16 is legal, this produces worse code for i8 and i16 element vector kernel arguments. This is partially due to the very weak load merging the DAG does. It only looks for fairly specific combines between pairs of loads which no longer appear. In particular this causes v4i16 loads to be split into 2 components when previously the two halves were merged. Worse, because of the newly introduced shifts, there is a lot more unnecessary vector packing and unpacking code emitted. At least some of this is due to reporting false for isTypeDesirableForOp for i16 as a workaround for the lack of divergence information in the DAG. The cases where this happens it doesn't actually matter, but the relevant code in SimplifyDemandedBits doens't have the context to know to ignore this. The use of the scalar cache is probably more important than the mess of mostly scalar instructions doing this packing and unpacking. Future work can fix this, possibly by making better use of the new DAG divergence information for controlling promotion decisions, or adding another version of shift + trunc + shift combines that doesn't only know about the used types. llvm-svn: 334180
2018-06-07 17:54:49 +08:00
; GCN: s_load_dword s
; GCN-NOT: buffer_store_byte
; GCN-DAG: v_cmp_ne_u32_e64 [[CCL:[^,]+]], [[IDX:s[0-9]+]], 15
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, 5, v{{[0-9]+}}, [[CCL]]
; GCN-DAG: v_cmp_ne_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, 5, v{{[0-9]+}}, [[CC1]]
; GCN: buffer_store_dwordx4
define amdgpu_kernel void @dynamic_insertelement_v16i8(<16 x i8> addrspace(1)* %out, <16 x i8> %a, i32 %b) nounwind {
%vecins = insertelement <16 x i8> %a, i8 5, i32 %b
store <16 x i8> %vecins, <16 x i8> addrspace(1)* %out, align 16
ret void
}
; This test requires handling INSERT_SUBREG in SIFixSGPRCopies. Check that
; the compiler doesn't crash.
; GCN-LABEL: {{^}}insert_split_bb:
define amdgpu_kernel void @insert_split_bb(<2 x i32> addrspace(1)* %out, i32 addrspace(1)* %in, i32 %a, i32 %b) {
entry:
%0 = insertelement <2 x i32> undef, i32 %a, i32 0
%1 = icmp eq i32 %a, 0
br i1 %1, label %if, label %else
if:
%2 = load i32, i32 addrspace(1)* %in
%3 = insertelement <2 x i32> %0, i32 %2, i32 1
br label %endif
else:
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%4 = getelementptr i32, i32 addrspace(1)* %in, i32 1
%5 = load i32, i32 addrspace(1)* %4
%6 = insertelement <2 x i32> %0, i32 %5, i32 1
br label %endif
endif:
%7 = phi <2 x i32> [%3, %if], [%6, %else]
store <2 x i32> %7, <2 x i32> addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v2f64:
; GCN-DAG: s_load_dwordx4 s{{\[}}[[A_ELT0:[0-9]+]]:[[A_ELT3:[0-9]+]]{{\]}}
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN-DAG: s_load_dword [[IDX:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, {{0x18|0x60}}{{$}}
; GCN-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; GCN-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; GCN-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; GCN-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; GCN-DAG: v_mov_b32_e32 [[ELT1:v[0-9]+]], 0x40200000
; GCN-DAG: v_cmp_eq_u32_e64 [[CC2:[^,]+]], [[IDX:s[0-9]+]], 1
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}, [[ELT1]], [[CC2]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC2]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}, [[ELT1]], [[CC1]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC1]]
; GCN: buffer_store_dwordx4
; GCN: s_endpgm
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
define amdgpu_kernel void @dynamic_insertelement_v2f64(<2 x double> addrspace(1)* %out, [8 x i32], <2 x double> %a, [8 x i32], i32 %b) nounwind {
%vecins = insertelement <2 x double> %a, double 8.0, i32 %b
store <2 x double> %vecins, <2 x double> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v2i64:
; GCN-DAG: v_cmp_eq_u32_e64 [[CC2:[^,]+]], [[IDX:s[0-9]+]], 1
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 5, [[CC2]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC2]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 5, [[CC1]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC1]]
; GCN: buffer_store_dwordx4
; GCN: s_endpgm
define amdgpu_kernel void @dynamic_insertelement_v2i64(<2 x i64> addrspace(1)* %out, <2 x i64> %a, i32 %b) nounwind {
%vecins = insertelement <2 x i64> %a, i64 5, i32 %b
store <2 x i64> %vecins, <2 x i64> addrspace(1)* %out, align 8
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v3i64:
; GCN-DAG: v_cmp_eq_u32_e64 [[CC3:[^,]+]], [[IDX:s[0-9]+]], 2
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 5, [[CC3]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC3]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC2:[^,]+]], [[IDX]], 1
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 5, [[CC2]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC2]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 5, [[CC1]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC1]]
define amdgpu_kernel void @dynamic_insertelement_v3i64(<3 x i64> addrspace(1)* %out, <3 x i64> %a, i32 %b) nounwind {
%vecins = insertelement <3 x i64> %a, i64 5, i32 %b
store <3 x i64> %vecins, <3 x i64> addrspace(1)* %out, align 32
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v4f64:
; GCN-DAG: v_mov_b32_e32 [[CONST:v[0-9]+]], 0x40200000
; GCN-DAG: v_cmp_eq_u32_e64 [[CC4:[^,]+]], [[IDX:s[0-9]+]], 3
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}, [[CONST]], [[CC4]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC4]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC3:[^,]+]], [[IDX]], 2
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}, [[CONST]], [[CC3]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC3]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC2:[^,]+]], [[IDX]], 1
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}, [[CONST]], [[CC2]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC2]]
; GCN-DAG: v_cmp_eq_u32_e64 [[CC1:[^,]+]], [[IDX]], 0
; GCN-DAG: v_cndmask_b32_e32 v{{[0-9]+}}, v{{[0-9]+}}, [[CONST]], [[CC1]]
; GCN-DAG: v_cndmask_b32_e64 v{{[0-9]+}}, v{{[0-9]+}}, 0, [[CC1]]
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
; GCN: s_endpgm
; GCN: ScratchSize: 0
define amdgpu_kernel void @dynamic_insertelement_v4f64(<4 x double> addrspace(1)* %out, <4 x double> %a, i32 %b) nounwind {
%vecins = insertelement <4 x double> %a, double 8.0, i32 %b
store <4 x double> %vecins, <4 x double> addrspace(1)* %out, align 16
ret void
}
; GCN-LABEL: {{^}}dynamic_insertelement_v8f64:
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN-DAG: buffer_store_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, off, s[0:3], {{s[0-9]+}} offset:64{{$}}
; GCN-DAG: buffer_store_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, off, s[0:3], {{s[0-9]+}} offset:80{{$}}
; GCN-DAG: buffer_store_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, off, s[0:3], {{s[0-9]+}} offset:96{{$}}
; GCN-DAG: buffer_store_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, off, s[0:3], {{s[0-9]+}} offset:112{{$}}
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN: buffer_store_dwordx2 v{{\[[0-9]+:[0-9]+\]}}, v{{[0-9]+}}, s[0:3], {{s[0-9]+}} offen{{$}}
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN-DAG: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, off, s[0:3], {{s[0-9]+}} offset:64{{$}}
; GCN-DAG: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, off, s[0:3], {{s[0-9]+}} offset:80{{$}}
; GCN-DAG: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, off, s[0:3], {{s[0-9]+}} offset:96{{$}}
; GCN-DAG: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, off, s[0:3], {{s[0-9]+}} offset:112{{$}}
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
; GCN: buffer_store_dwordx4
; GCN: s_endpgm
; GCN: ScratchSize: 128
define amdgpu_kernel void @dynamic_insertelement_v8f64(<8 x double> addrspace(1)* %out, <8 x double> %a, i32 %b) #0 {
%vecins = insertelement <8 x double> %a, double 8.0, i32 %b
store <8 x double> %vecins, <8 x double> addrspace(1)* %out, align 16
ret void
}
declare <4 x float> @llvm.amdgcn.image.gather4.lz.2d.v4f32.f32(i32, float, float, <8 x i32>, <4 x i32>, i1, i32, i32) #1
attributes #0 = { nounwind }
attributes #1 = { nounwind readnone }