llvm-project/lld/COFF/ICF.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

321 lines
11 KiB
C++
Raw Normal View History

//===- ICF.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// ICF is short for Identical Code Folding. That is a size optimization to
// identify and merge two or more read-only sections (typically functions)
// that happened to have the same contents. It usually reduces output size
// by a few percent.
//
// On Windows, ICF is enabled by default.
//
// See ELF/ICF.cpp for the details about the algorithm.
//
//===----------------------------------------------------------------------===//
#include "ICF.h"
#include "Chunks.h"
#include "Symbols.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Timer.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <atomic>
#include <vector>
using namespace llvm;
namespace lld {
namespace coff {
static Timer icfTimer("ICF", Timer::root());
class ICF {
public:
void run(ArrayRef<Chunk *> v);
private:
void segregate(size_t begin, size_t end, bool constant);
bool assocEquals(const SectionChunk *a, const SectionChunk *b);
bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
bool equalsVariable(const SectionChunk *a, const SectionChunk *b);
bool isEligible(SectionChunk *c);
size_t findBoundary(size_t begin, size_t end);
void forEachClassRange(size_t begin, size_t end,
std::function<void(size_t, size_t)> fn);
void forEachClass(std::function<void(size_t, size_t)> fn);
std::vector<SectionChunk *> chunks;
int cnt = 0;
std::atomic<bool> repeat = {false};
};
// Returns true if section S is subject of ICF.
//
// Microsoft's documentation
// (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
// 2017) says that /opt:icf folds both functions and read-only data.
// Despite that, the MSVC linker folds only functions. We found
// a few instances of programs that are not safe for data merging.
// Therefore, we merge only functions just like the MSVC tool. However, we also
// merge read-only sections in a couple of cases where the address of the
// section is insignificant to the user program and the behaviour matches that
// of the Visual C++ linker.
bool ICF::isEligible(SectionChunk *c) {
// Non-comdat chunks, dead chunks, and writable chunks are not eligible.
bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
if (!c->isCOMDAT() || !c->live || writable)
return false;
// Code sections are eligible.
if (c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
return true;
// .pdata and .xdata unwind info sections are eligible.
StringRef outSecName = c->getSectionName().split('$').first;
if (outSecName == ".pdata" || outSecName == ".xdata")
return true;
// So are vtables.
if (c->sym && c->sym->getName().startswith("??_7"))
return true;
// Anything else not in an address-significance table is eligible.
return !c->keepUnique;
}
// Split an equivalence class into smaller classes.
void ICF::segregate(size_t begin, size_t end, bool constant) {
while (begin < end) {
// Divide [Begin, End) into two. Let Mid be the start index of the
// second group.
auto bound = std::stable_partition(
chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
if (constant)
return equalsConstant(chunks[begin], s);
return equalsVariable(chunks[begin], s);
});
size_t mid = bound - chunks.begin();
// Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
// equivalence class ID because every group ends with a unique index.
for (size_t i = begin; i < mid; ++i)
chunks[i]->eqClass[(cnt + 1) % 2] = mid;
// If we created a group, we need to iterate the main loop again.
if (mid != end)
repeat = true;
begin = mid;
}
}
// Returns true if two sections' associative children are equal.
bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
// Ignore associated metadata sections that don't participate in ICF, such as
// debug info and CFGuard metadata.
auto considerForICF = [](const SectionChunk &assoc) {
StringRef Name = assoc.getSectionName();
return !(Name.startswith(".debug") || Name == ".gfids$y" ||
Name == ".gljmp$y");
};
auto ra = make_filter_range(a->children(), considerForICF);
auto rb = make_filter_range(b->children(), considerForICF);
return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(),
[&](const SectionChunk &ia, const SectionChunk &ib) {
return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2];
});
}
// Compare "non-moving" part of two sections, namely everything
// except relocation targets.
bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
if (a->relocsSize != b->relocsSize)
return false;
// Compare relocations.
auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
if (r1.Type != r2.Type ||
r1.VirtualAddress != r2.VirtualAddress) {
return false;
}
Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
if (b1 == b2)
return true;
if (auto *d1 = dyn_cast<DefinedRegular>(b1))
if (auto *d2 = dyn_cast<DefinedRegular>(b2))
return d1->getValue() == d2->getValue() &&
d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
return false;
};
if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
b->getRelocs().begin(), eq))
return false;
// Compare section attributes and contents.
return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
a->getSectionName() == b->getSectionName() &&
a->header->SizeOfRawData == b->header->SizeOfRawData &&
a->checksum == b->checksum && a->getContents() == b->getContents() &&
assocEquals(a, b);
}
// Compare "moving" part of two sections, namely relocation targets.
bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
// Compare relocations.
auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
if (b1 == b2)
return true;
if (auto *d1 = dyn_cast<DefinedRegular>(b1))
if (auto *d2 = dyn_cast<DefinedRegular>(b2))
return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
return false;
};
return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
b->getRelocs().begin(), eq) &&
assocEquals(a, b);
}
// Find the first Chunk after Begin that has a different class from Begin.
size_t ICF::findBoundary(size_t begin, size_t end) {
for (size_t i = begin + 1; i < end; ++i)
if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
return i;
return end;
}
void ICF::forEachClassRange(size_t begin, size_t end,
std::function<void(size_t, size_t)> fn) {
while (begin < end) {
size_t mid = findBoundary(begin, end);
fn(begin, mid);
begin = mid;
}
}
// Call Fn on each class group.
void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
// If the number of sections are too small to use threading,
// call Fn sequentially.
if (chunks.size() < 1024) {
forEachClassRange(0, chunks.size(), fn);
++cnt;
return;
}
// Shard into non-overlapping intervals, and call Fn in parallel.
// The sharding must be completed before any calls to Fn are made
// so that Fn can modify the Chunks in its shard without causing data
// races.
const size_t numShards = 256;
size_t step = chunks.size() / numShards;
size_t boundaries[numShards + 1];
boundaries[0] = 0;
boundaries[numShards] = chunks.size();
parallelForEachN(1, numShards, [&](size_t i) {
boundaries[i] = findBoundary((i - 1) * step, chunks.size());
});
parallelForEachN(1, numShards + 1, [&](size_t i) {
if (boundaries[i - 1] < boundaries[i]) {
forEachClassRange(boundaries[i - 1], boundaries[i], fn);
}
});
++cnt;
}
// Merge identical COMDAT sections.
// Two sections are considered the same if their section headers,
// contents and relocations are all the same.
void ICF::run(ArrayRef<Chunk *> vec) {
ScopedTimer t(icfTimer);
// Collect only mergeable sections and group by hash value.
uint32_t nextId = 1;
for (Chunk *c : vec) {
if (auto *sc = dyn_cast<SectionChunk>(c)) {
if (isEligible(sc))
chunks.push_back(sc);
else
sc->eqClass[0] = nextId++;
}
}
// Make sure that ICF doesn't merge sections that are being handled by string
// tail merging.
for (MergeChunk *mc : MergeChunk::instances)
if (mc)
for (SectionChunk *sc : mc->sections)
sc->eqClass[0] = nextId++;
// Initially, we use hash values to partition sections.
parallelForEach(chunks, [&](SectionChunk *sc) {
sc->eqClass[0] = xxHash64(sc->getContents());
});
// Combine the hashes of the sections referenced by each section into its
// hash.
for (unsigned cnt = 0; cnt != 2; ++cnt) {
parallelForEach(chunks, [&](SectionChunk *sc) {
uint32_t hash = sc->eqClass[cnt % 2];
for (Symbol *b : sc->symbols())
if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
hash += sym->getChunk()->eqClass[cnt % 2];
// Set MSB to 1 to avoid collisions with non-hash classes.
sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
});
}
// From now on, sections in Chunks are ordered so that sections in
// the same group are consecutive in the vector.
llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
return a->eqClass[0] < b->eqClass[0];
});
// Compare static contents and assign unique IDs for each static content.
forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
// Split groups by comparing relocations until convergence is obtained.
do {
repeat = false;
forEachClass(
[&](size_t begin, size_t end) { segregate(begin, end, false); });
} while (repeat);
log("ICF needed " + Twine(cnt) + " iterations");
// Merge sections in the same classes.
forEachClass([&](size_t begin, size_t end) {
if (end - begin == 1)
return;
log("Selected " + chunks[begin]->getDebugName());
for (size_t i = begin + 1; i < end; ++i) {
log(" Removed " + chunks[i]->getDebugName());
chunks[begin]->replace(chunks[i]);
}
});
}
// Entry point to ICF.
void doICF(ArrayRef<Chunk *> chunks) { ICF().run(chunks); }
} // namespace coff
} // namespace lld