llvm-project/llvm/lib/ExecutionEngine/Orc/LLJIT.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

879 lines
30 KiB
C++
Raw Normal View History

//===--------- LLJIT.cpp - An ORC-based JIT for compiling LLVM IR ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/ExecutionEngine/JITLink/EHFrameSupport.h"
#include "llvm/ExecutionEngine/JITLink/JITLinkMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/ExecutorProcessControl.h"
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
#include "llvm/ExecutionEngine/Orc/MachOPlatform.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/Orc/ObjectTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/Orc/Shared/OrcError.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Mangler.h"
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
#include "llvm/IR/Module.h"
#include "llvm/Support/DynamicLibrary.h"
#include <map>
#define DEBUG_TYPE "orc"
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
using namespace llvm;
using namespace llvm::orc;
namespace {
/// Adds helper function decls and wrapper functions that call the helper with
/// some additional prefix arguments.
///
/// E.g. For wrapper "foo" with type i8(i8, i64), helper "bar", and prefix
/// args i32 4 and i16 12345, this function will add:
///
/// declare i8 @bar(i32, i16, i8, i64)
///
/// define i8 @foo(i8, i64) {
/// entry:
/// %2 = call i8 @bar(i32 4, i16 12345, i8 %0, i64 %1)
/// ret i8 %2
/// }
///
Function *addHelperAndWrapper(Module &M, StringRef WrapperName,
FunctionType *WrapperFnType,
GlobalValue::VisibilityTypes WrapperVisibility,
StringRef HelperName,
ArrayRef<Value *> HelperPrefixArgs) {
std::vector<Type *> HelperArgTypes;
for (auto *Arg : HelperPrefixArgs)
HelperArgTypes.push_back(Arg->getType());
for (auto *T : WrapperFnType->params())
HelperArgTypes.push_back(T);
auto *HelperFnType =
FunctionType::get(WrapperFnType->getReturnType(), HelperArgTypes, false);
auto *HelperFn = Function::Create(HelperFnType, GlobalValue::ExternalLinkage,
HelperName, M);
auto *WrapperFn = Function::Create(
WrapperFnType, GlobalValue::ExternalLinkage, WrapperName, M);
WrapperFn->setVisibility(WrapperVisibility);
auto *EntryBlock = BasicBlock::Create(M.getContext(), "entry", WrapperFn);
IRBuilder<> IB(EntryBlock);
std::vector<Value *> HelperArgs;
for (auto *Arg : HelperPrefixArgs)
HelperArgs.push_back(Arg);
for (auto &Arg : WrapperFn->args())
HelperArgs.push_back(&Arg);
auto *HelperResult = IB.CreateCall(HelperFn, HelperArgs);
if (HelperFn->getReturnType()->isVoidTy())
IB.CreateRetVoid();
else
IB.CreateRet(HelperResult);
return WrapperFn;
}
class GenericLLVMIRPlatformSupport;
/// orc::Platform component of Generic LLVM IR Platform support.
/// Just forwards calls to the GenericLLVMIRPlatformSupport class below.
class GenericLLVMIRPlatform : public Platform {
public:
GenericLLVMIRPlatform(GenericLLVMIRPlatformSupport &S) : S(S) {}
Error setupJITDylib(JITDylib &JD) override;
[ORC] Add support for resource tracking/removal (removable code). This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
2020-09-12 00:50:41 +08:00
Error notifyAdding(ResourceTracker &RT,
const MaterializationUnit &MU) override;
Error notifyRemoving(ResourceTracker &RT) override {
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
// Noop -- Nothing to do (yet).
return Error::success();
}
private:
GenericLLVMIRPlatformSupport &S;
};
/// This transform parses llvm.global_ctors to produce a single initialization
/// function for the module, records the function, then deletes
/// llvm.global_ctors.
class GlobalCtorDtorScraper {
public:
GlobalCtorDtorScraper(GenericLLVMIRPlatformSupport &PS,
StringRef InitFunctionPrefix)
: PS(PS), InitFunctionPrefix(InitFunctionPrefix) {}
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
Expected<ThreadSafeModule> operator()(ThreadSafeModule TSM,
MaterializationResponsibility &R);
private:
GenericLLVMIRPlatformSupport &PS;
StringRef InitFunctionPrefix;
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
};
/// Generic IR Platform Support
///
/// Scrapes llvm.global_ctors and llvm.global_dtors and replaces them with
/// specially named 'init' and 'deinit'. Injects definitions / interposes for
/// some runtime API, including __cxa_atexit, dlopen, and dlclose.
class GenericLLVMIRPlatformSupport : public LLJIT::PlatformSupport {
public:
GenericLLVMIRPlatformSupport(LLJIT &J)
: J(J), InitFunctionPrefix(J.mangle("__orc_init_func.")) {
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
getExecutionSession().setPlatform(
std::make_unique<GenericLLVMIRPlatform>(*this));
setInitTransform(J, GlobalCtorDtorScraper(*this, InitFunctionPrefix));
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
SymbolMap StdInterposes;
StdInterposes[J.mangleAndIntern("__lljit.platform_support_instance")] =
JITEvaluatedSymbol(pointerToJITTargetAddress(this),
JITSymbolFlags::Exported);
StdInterposes[J.mangleAndIntern("__lljit.cxa_atexit_helper")] =
JITEvaluatedSymbol(pointerToJITTargetAddress(registerAtExitHelper),
JITSymbolFlags());
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
cantFail(
J.getMainJITDylib().define(absoluteSymbols(std::move(StdInterposes))));
cantFail(setupJITDylib(J.getMainJITDylib()));
cantFail(J.addIRModule(J.getMainJITDylib(), createPlatformRuntimeModule()));
}
ExecutionSession &getExecutionSession() { return J.getExecutionSession(); }
/// Adds a module that defines the __dso_handle global.
Error setupJITDylib(JITDylib &JD) {
// Add per-jitdylib standard interposes.
SymbolMap PerJDInterposes;
PerJDInterposes[J.mangleAndIntern("__lljit.run_atexits_helper")] =
JITEvaluatedSymbol(pointerToJITTargetAddress(runAtExitsHelper),
JITSymbolFlags());
cantFail(JD.define(absoluteSymbols(std::move(PerJDInterposes))));
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
auto Ctx = std::make_unique<LLVMContext>();
auto M = std::make_unique<Module>("__standard_lib", *Ctx);
M->setDataLayout(J.getDataLayout());
auto *Int64Ty = Type::getInt64Ty(*Ctx);
auto *DSOHandle = new GlobalVariable(
*M, Int64Ty, true, GlobalValue::ExternalLinkage,
ConstantInt::get(Int64Ty, reinterpret_cast<uintptr_t>(&JD)),
"__dso_handle");
DSOHandle->setVisibility(GlobalValue::DefaultVisibility);
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
DSOHandle->setInitializer(
ConstantInt::get(Int64Ty, pointerToJITTargetAddress(&JD)));
auto *GenericIRPlatformSupportTy =
StructType::create(*Ctx, "lljit.GenericLLJITIRPlatformSupport");
auto *PlatformInstanceDecl = new GlobalVariable(
*M, GenericIRPlatformSupportTy, true, GlobalValue::ExternalLinkage,
nullptr, "__lljit.platform_support_instance");
auto *VoidTy = Type::getVoidTy(*Ctx);
addHelperAndWrapper(
*M, "__lljit_run_atexits", FunctionType::get(VoidTy, {}, false),
GlobalValue::HiddenVisibility, "__lljit.run_atexits_helper",
{PlatformInstanceDecl, DSOHandle});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
return J.addIRModule(JD, ThreadSafeModule(std::move(M), std::move(Ctx)));
}
[ORC] Add support for resource tracking/removal (removable code). This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
2020-09-12 00:50:41 +08:00
Error notifyAdding(ResourceTracker &RT, const MaterializationUnit &MU) {
auto &JD = RT.getJITDylib();
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
if (auto &InitSym = MU.getInitializerSymbol())
InitSymbols[&JD].add(InitSym, SymbolLookupFlags::WeaklyReferencedSymbol);
else {
// If there's no identified init symbol attached, but there is a symbol
// with the GenericIRPlatform::InitFunctionPrefix, then treat that as
// an init function. Add the symbol to both the InitSymbols map (which
// will trigger a lookup to materialize the module) and the InitFunctions
// map (which holds the names of the symbols to execute).
for (auto &KV : MU.getSymbols())
if ((*KV.first).startswith(InitFunctionPrefix)) {
InitSymbols[&JD].add(KV.first,
SymbolLookupFlags::WeaklyReferencedSymbol);
InitFunctions[&JD].add(KV.first);
}
}
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
return Error::success();
}
Error initialize(JITDylib &JD) override {
LLVM_DEBUG({
dbgs() << "GenericLLVMIRPlatformSupport getting initializers to run\n";
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
if (auto Initializers = getInitializers(JD)) {
LLVM_DEBUG(
{ dbgs() << "GenericLLVMIRPlatformSupport running initializers\n"; });
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
for (auto InitFnAddr : *Initializers) {
LLVM_DEBUG({
dbgs() << " Running init " << formatv("{0:x16}", InitFnAddr)
<< "...\n";
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
auto *InitFn = jitTargetAddressToFunction<void (*)()>(InitFnAddr);
InitFn();
}
} else
return Initializers.takeError();
return Error::success();
}
Error deinitialize(JITDylib &JD) override {
LLVM_DEBUG({
dbgs() << "GenericLLVMIRPlatformSupport getting deinitializers to run\n";
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
if (auto Deinitializers = getDeinitializers(JD)) {
LLVM_DEBUG({
dbgs() << "GenericLLVMIRPlatformSupport running deinitializers\n";
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
for (auto DeinitFnAddr : *Deinitializers) {
LLVM_DEBUG({
2021-01-26 20:52:44 +08:00
dbgs() << " Running deinit " << formatv("{0:x16}", DeinitFnAddr)
<< "...\n";
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
auto *DeinitFn = jitTargetAddressToFunction<void (*)()>(DeinitFnAddr);
DeinitFn();
}
} else
return Deinitializers.takeError();
return Error::success();
}
void registerInitFunc(JITDylib &JD, SymbolStringPtr InitName) {
getExecutionSession().runSessionLocked([&]() {
InitFunctions[&JD].add(InitName);
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
}
private:
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
Expected<std::vector<JITTargetAddress>> getInitializers(JITDylib &JD) {
if (auto Err = issueInitLookups(JD))
return std::move(Err);
DenseMap<JITDylib *, SymbolLookupSet> LookupSymbols;
[ORC] Add support for resource tracking/removal (removable code). This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
2020-09-12 00:50:41 +08:00
std::vector<JITDylibSP> DFSLinkOrder;
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
getExecutionSession().runSessionLocked([&]() {
DFSLinkOrder = JD.getDFSLinkOrder();
for (auto &NextJD : DFSLinkOrder) {
auto IFItr = InitFunctions.find(NextJD.get());
if (IFItr != InitFunctions.end()) {
LookupSymbols[NextJD.get()] = std::move(IFItr->second);
InitFunctions.erase(IFItr);
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
}
}
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
LLVM_DEBUG({
dbgs() << "JITDylib init order is [ ";
for (auto &JD : llvm::reverse(DFSLinkOrder))
dbgs() << "\"" << JD->getName() << "\" ";
dbgs() << "]\n";
dbgs() << "Looking up init functions:\n";
for (auto &KV : LookupSymbols)
dbgs() << " \"" << KV.first->getName() << "\": " << KV.second << "\n";
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
auto &ES = getExecutionSession();
auto LookupResult = Platform::lookupInitSymbols(ES, LookupSymbols);
if (!LookupResult)
return LookupResult.takeError();
std::vector<JITTargetAddress> Initializers;
while (!DFSLinkOrder.empty()) {
auto &NextJD = *DFSLinkOrder.back();
DFSLinkOrder.pop_back();
auto InitsItr = LookupResult->find(&NextJD);
if (InitsItr == LookupResult->end())
continue;
for (auto &KV : InitsItr->second)
Initializers.push_back(KV.second.getAddress());
}
return Initializers;
}
Expected<std::vector<JITTargetAddress>> getDeinitializers(JITDylib &JD) {
auto &ES = getExecutionSession();
auto LLJITRunAtExits = J.mangleAndIntern("__lljit_run_atexits");
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
DenseMap<JITDylib *, SymbolLookupSet> LookupSymbols;
[ORC] Add support for resource tracking/removal (removable code). This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
2020-09-12 00:50:41 +08:00
std::vector<JITDylibSP> DFSLinkOrder;
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
ES.runSessionLocked([&]() {
DFSLinkOrder = JD.getDFSLinkOrder();
for (auto &NextJD : DFSLinkOrder) {
auto &JDLookupSymbols = LookupSymbols[NextJD.get()];
auto DIFItr = DeInitFunctions.find(NextJD.get());
if (DIFItr != DeInitFunctions.end()) {
LookupSymbols[NextJD.get()] = std::move(DIFItr->second);
DeInitFunctions.erase(DIFItr);
}
JDLookupSymbols.add(LLJITRunAtExits,
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
SymbolLookupFlags::WeaklyReferencedSymbol);
}
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
LLVM_DEBUG({
dbgs() << "JITDylib deinit order is [ ";
for (auto &JD : DFSLinkOrder)
dbgs() << "\"" << JD->getName() << "\" ";
dbgs() << "]\n";
dbgs() << "Looking up deinit functions:\n";
for (auto &KV : LookupSymbols)
dbgs() << " \"" << KV.first->getName() << "\": " << KV.second << "\n";
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
auto LookupResult = Platform::lookupInitSymbols(ES, LookupSymbols);
if (!LookupResult)
return LookupResult.takeError();
std::vector<JITTargetAddress> DeInitializers;
for (auto &NextJD : DFSLinkOrder) {
auto DeInitsItr = LookupResult->find(NextJD.get());
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
assert(DeInitsItr != LookupResult->end() &&
"Every JD should have at least __lljit_run_atexits");
auto RunAtExitsItr = DeInitsItr->second.find(LLJITRunAtExits);
if (RunAtExitsItr != DeInitsItr->second.end())
DeInitializers.push_back(RunAtExitsItr->second.getAddress());
for (auto &KV : DeInitsItr->second)
if (KV.first != LLJITRunAtExits)
DeInitializers.push_back(KV.second.getAddress());
}
return DeInitializers;
}
/// Issue lookups for all init symbols required to initialize JD (and any
/// JITDylibs that it depends on).
Error issueInitLookups(JITDylib &JD) {
DenseMap<JITDylib *, SymbolLookupSet> RequiredInitSymbols;
[ORC] Add support for resource tracking/removal (removable code). This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
2020-09-12 00:50:41 +08:00
std::vector<JITDylibSP> DFSLinkOrder;
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
getExecutionSession().runSessionLocked([&]() {
DFSLinkOrder = JD.getDFSLinkOrder();
for (auto &NextJD : DFSLinkOrder) {
auto ISItr = InitSymbols.find(NextJD.get());
if (ISItr != InitSymbols.end()) {
RequiredInitSymbols[NextJD.get()] = std::move(ISItr->second);
InitSymbols.erase(ISItr);
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
}
}
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
return Platform::lookupInitSymbols(getExecutionSession(),
RequiredInitSymbols)
.takeError();
}
static void registerAtExitHelper(void *Self, void (*F)(void *), void *Ctx,
void *DSOHandle) {
LLVM_DEBUG({
dbgs() << "Registering atexit function " << (void *)F << " for JD "
<< (*static_cast<JITDylib **>(DSOHandle))->getName() << "\n";
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
static_cast<GenericLLVMIRPlatformSupport *>(Self)->AtExitMgr.registerAtExit(
F, Ctx, DSOHandle);
}
static void runAtExitsHelper(void *Self, void *DSOHandle) {
LLVM_DEBUG({
dbgs() << "Running atexit functions for JD "
<< (*static_cast<JITDylib **>(DSOHandle))->getName() << "\n";
});
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
static_cast<GenericLLVMIRPlatformSupport *>(Self)->AtExitMgr.runAtExits(
DSOHandle);
}
// Constructs an LLVM IR module containing platform runtime globals,
// functions, and interposes.
ThreadSafeModule createPlatformRuntimeModule() {
auto Ctx = std::make_unique<LLVMContext>();
auto M = std::make_unique<Module>("__standard_lib", *Ctx);
M->setDataLayout(J.getDataLayout());
auto *GenericIRPlatformSupportTy =
StructType::create(*Ctx, "lljit.GenericLLJITIRPlatformSupport");
auto *PlatformInstanceDecl = new GlobalVariable(
*M, GenericIRPlatformSupportTy, true, GlobalValue::ExternalLinkage,
nullptr, "__lljit.platform_support_instance");
auto *Int8Ty = Type::getInt8Ty(*Ctx);
auto *IntTy = Type::getIntNTy(*Ctx, sizeof(int) * CHAR_BIT);
auto *VoidTy = Type::getVoidTy(*Ctx);
auto *BytePtrTy = PointerType::getUnqual(Int8Ty);
auto *AtExitCallbackTy = FunctionType::get(VoidTy, {BytePtrTy}, false);
auto *AtExitCallbackPtrTy = PointerType::getUnqual(AtExitCallbackTy);
addHelperAndWrapper(
*M, "__cxa_atexit",
FunctionType::get(IntTy, {AtExitCallbackPtrTy, BytePtrTy, BytePtrTy},
false),
GlobalValue::DefaultVisibility, "__lljit.cxa_atexit_helper",
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
{PlatformInstanceDecl});
return ThreadSafeModule(std::move(M), std::move(Ctx));
}
LLJIT &J;
std::string InitFunctionPrefix;
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
DenseMap<JITDylib *, SymbolLookupSet> InitSymbols;
DenseMap<JITDylib *, SymbolLookupSet> InitFunctions;
DenseMap<JITDylib *, SymbolLookupSet> DeInitFunctions;
ItaniumCXAAtExitSupport AtExitMgr;
};
Error GenericLLVMIRPlatform::setupJITDylib(JITDylib &JD) {
return S.setupJITDylib(JD);
}
[ORC] Add support for resource tracking/removal (removable code). This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
2020-09-12 00:50:41 +08:00
Error GenericLLVMIRPlatform::notifyAdding(ResourceTracker &RT,
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
const MaterializationUnit &MU) {
[ORC] Add support for resource tracking/removal (removable code). This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
2020-09-12 00:50:41 +08:00
return S.notifyAdding(RT, MU);
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
}
Expected<ThreadSafeModule>
GlobalCtorDtorScraper::operator()(ThreadSafeModule TSM,
MaterializationResponsibility &R) {
auto Err = TSM.withModuleDo([&](Module &M) -> Error {
auto &Ctx = M.getContext();
auto *GlobalCtors = M.getNamedGlobal("llvm.global_ctors");
// If there's no llvm.global_ctors or it's just a decl then skip.
if (!GlobalCtors || GlobalCtors->isDeclaration())
return Error::success();
std::string InitFunctionName;
raw_string_ostream(InitFunctionName)
<< InitFunctionPrefix << M.getModuleIdentifier();
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
MangleAndInterner Mangle(PS.getExecutionSession(), M.getDataLayout());
auto InternedName = Mangle(InitFunctionName);
if (auto Err =
R.defineMaterializing({{InternedName, JITSymbolFlags::Callable}}))
return Err;
auto *InitFunc =
Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {}, false),
GlobalValue::ExternalLinkage, InitFunctionName, &M);
InitFunc->setVisibility(GlobalValue::HiddenVisibility);
std::vector<std::pair<Function *, unsigned>> Inits;
for (auto E : getConstructors(M))
Inits.push_back(std::make_pair(E.Func, E.Priority));
llvm::sort(Inits, [](const std::pair<Function *, unsigned> &LHS,
const std::pair<Function *, unsigned> &RHS) {
return LHS.first < RHS.first;
});
auto *EntryBlock = BasicBlock::Create(Ctx, "entry", InitFunc);
IRBuilder<> IB(EntryBlock);
for (auto &KV : Inits)
IB.CreateCall(KV.first);
IB.CreateRetVoid();
PS.registerInitFunc(R.getTargetJITDylib(), InternedName);
GlobalCtors->eraseFromParent();
return Error::success();
});
if (Err)
return std::move(Err);
2020-02-20 06:27:31 +08:00
return std::move(TSM);
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
}
/// Inactive Platform Support
///
/// Explicitly disables platform support. JITDylibs are not scanned for special
/// init/deinit symbols. No runtime API interposes are injected.
class InactivePlatformSupport : public LLJIT::PlatformSupport {
public:
InactivePlatformSupport() = default;
Error initialize(JITDylib &JD) override {
LLVM_DEBUG(dbgs() << "InactivePlatformSupport: no initializers running for "
<< JD.getName() << "\n");
return Error::success();
}
Error deinitialize(JITDylib &JD) override {
LLVM_DEBUG(
dbgs() << "InactivePlatformSupport: no deinitializers running for "
<< JD.getName() << "\n");
return Error::success();
}
};
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
} // end anonymous namespace
namespace llvm {
namespace orc {
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
void LLJIT::PlatformSupport::setInitTransform(
LLJIT &J, IRTransformLayer::TransformFunction T) {
J.InitHelperTransformLayer->setTransform(std::move(T));
}
LLJIT::PlatformSupport::~PlatformSupport() {}
Error LLJITBuilderState::prepareForConstruction() {
2020-08-11 19:39:54 +08:00
LLVM_DEBUG(dbgs() << "Preparing to create LLJIT instance...\n");
if (!JTMB) {
LLVM_DEBUG({
dbgs() << " No explicitly set JITTargetMachineBuilder. "
"Detecting host...\n";
});
if (auto JTMBOrErr = JITTargetMachineBuilder::detectHost())
JTMB = std::move(*JTMBOrErr);
else
return JTMBOrErr.takeError();
}
LLVM_DEBUG({
dbgs() << " JITTargetMachineBuilder is "
<< JITTargetMachineBuilderPrinter(*JTMB, " ")
<< " Pre-constructed ExecutionSession: " << (ES ? "Yes" : "No")
<< "\n"
<< " DataLayout: ";
if (DL)
dbgs() << DL->getStringRepresentation() << "\n";
else
dbgs() << "None (will be created by JITTargetMachineBuilder)\n";
dbgs() << " Custom object-linking-layer creator: "
<< (CreateObjectLinkingLayer ? "Yes" : "No") << "\n"
<< " Custom compile-function creator: "
<< (CreateCompileFunction ? "Yes" : "No") << "\n"
<< " Custom platform-setup function: "
<< (SetUpPlatform ? "Yes" : "No") << "\n"
<< " Number of compile threads: " << NumCompileThreads;
if (!NumCompileThreads)
dbgs() << " (code will be compiled on the execution thread)\n";
else
dbgs() << "\n";
});
// If neither ES nor EPC has been set then create an EPC instance.
if (!ES && !EPC) {
LLVM_DEBUG({
dbgs() << "ExecutorProcessControl not specified, "
"Creating SelfExecutorProcessControl instance\n";
});
if (auto EPCOrErr = SelfExecutorProcessControl::Create())
EPC = std::move(*EPCOrErr);
else
return EPCOrErr.takeError();
} else
LLVM_DEBUG({
dbgs() << "Using explicitly specified ExecutorProcessControl instance "
<< EPC.get() << "\n";
});
// If the client didn't configure any linker options then auto-configure the
// JIT linker.
if (!CreateObjectLinkingLayer) {
auto &TT = JTMB->getTargetTriple();
if (TT.isOSBinFormatMachO() &&
(TT.getArch() == Triple::aarch64 || TT.getArch() == Triple::x86_64)) {
JTMB->setRelocationModel(Reloc::PIC_);
JTMB->setCodeModel(CodeModel::Small);
CreateObjectLinkingLayer =
[](ExecutionSession &ES,
const Triple &) -> Expected<std::unique_ptr<ObjectLayer>> {
auto ObjLinkingLayer = std::make_unique<ObjectLinkingLayer>(ES);
ObjLinkingLayer->addPlugin(std::make_unique<EHFrameRegistrationPlugin>(
[ORC] Add support for resource tracking/removal (removable code). This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
2020-09-12 00:50:41 +08:00
ES, std::make_unique<jitlink::InProcessEHFrameRegistrar>()));
return std::move(ObjLinkingLayer);
};
}
}
return Error::success();
}
LLJIT::~LLJIT() {
if (CompileThreads)
CompileThreads->wait();
[ORC] Add support for resource tracking/removal (removable code). This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
2020-09-12 00:50:41 +08:00
if (auto Err = ES->endSession())
ES->reportError(std::move(Err));
}
Error LLJIT::addIRModule(ResourceTrackerSP RT, ThreadSafeModule TSM) {
[ORC] Add ThreadSafeModule and ThreadSafeContext wrappers to support concurrent compilation of IR in the JIT. ThreadSafeContext is a pair of an LLVMContext and a mutex that can be used to lock that context when it needs to be accessed from multiple threads. ThreadSafeModule is a pair of a unique_ptr<Module> and a shared_ptr<ThreadSafeContext>. This allows the lifetime of a ThreadSafeContext to be managed automatically in terms of the ThreadSafeModules that refer to it: Once all modules using a ThreadSafeContext are destructed, and providing the client has not held on to a copy of shared context pointer, the context will be automatically destructed. This scheme is necessary due to the following constraits: (1) We need multiple contexts for multithreaded compilation (at least one per compile thread plus one to store any IR not currently being compiled, though one context per module is simpler). (2) We need to free contexts that are no longer being used so that the JIT does not leak memory over time. (3) Module lifetimes are not predictable (modules are compiled as needed depending on the flow of JIT'd code) so there is no single point where contexts could be reclaimed. JIT clients not using concurrency can safely use one ThreadSafeContext for all ThreadSafeModules. JIT clients who want to be able to compile concurrently should use a different ThreadSafeContext for each module, or call setCloneToNewContextOnEmit on their top-level IRLayer. The former reduces compile latency (since no clone step is needed) at the cost of additional memory overhead for uncompiled modules (as every uncompiled module will duplicate the LLVM types, constants and metadata that have been shared). llvm-svn: 343055
2018-09-26 09:24:12 +08:00
assert(TSM && "Can not add null module");
[ORC] Change the locking scheme for ThreadSafeModule. ThreadSafeModule/ThreadSafeContext are used to manage lifetimes and locking for LLVMContexts in ORCv2. Prior to this patch contexts were locked as soon as an associated Module was emitted (to be compiled and linked), and were not unlocked until the emit call returned. This could lead to deadlocks if interdependent modules that shared contexts were compiled on different threads: when, during emission of the first module, the dependence was discovered the second module (which would provide the required symbol) could not be emitted as the thread emitting the first module still held the lock. This patch eliminates this possibility by moving to a finer-grained locking scheme. Each client holds the module lock only while they are actively operating on it. To make this finer grained locking simpler/safer to implement this patch removes the explicit lock method, 'getContextLock', from ThreadSafeModule and replaces it with a new method, 'withModuleDo', that implicitly locks the context, calls a user-supplied function object to operate on the Module, then implicitly unlocks the context before returning the result. ThreadSafeModule TSM = getModule(...); size_t NumFunctions = TSM.withModuleDo( [](Module &M) { // <- context locked before entry to lambda. return M.size(); }); Existing ORCv2 layers that operate on ThreadSafeModules are updated to use the new method. This method is used to introduce Module locking into each of the existing layers. llvm-svn: 367686
2019-08-02 23:21:37 +08:00
if (auto Err =
TSM.withModuleDo([&](Module &M) { return applyDataLayout(M); }))
return Err;
return InitHelperTransformLayer->add(std::move(RT), std::move(TSM));
}
Error LLJIT::addIRModule(JITDylib &JD, ThreadSafeModule TSM) {
return addIRModule(JD.getDefaultResourceTracker(), std::move(TSM));
}
Error LLJIT::addObjectFile(ResourceTrackerSP RT,
std::unique_ptr<MemoryBuffer> Obj) {
assert(Obj && "Can not add null object");
return ObjTransformLayer->add(std::move(RT), std::move(Obj));
}
Error LLJIT::addObjectFile(JITDylib &JD, std::unique_ptr<MemoryBuffer> Obj) {
return addObjectFile(JD.getDefaultResourceTracker(), std::move(Obj));
}
Expected<JITEvaluatedSymbol> LLJIT::lookupLinkerMangled(JITDylib &JD,
SymbolStringPtr Name) {
[ORC][JITLink] Add support for weak references, and improve handling of static libraries. This patch substantially updates ORCv2's lookup API in order to support weak references, and to better support static archives. Key changes: -- Each symbol being looked for is now associated with a SymbolLookupFlags value. If the associated value is SymbolLookupFlags::RequiredSymbol then the symbol must be defined in one of the JITDylibs being searched (or be able to be generated in one of these JITDylibs via an attached definition generator) or the lookup will fail with an error. If the associated value is SymbolLookupFlags::WeaklyReferencedSymbol then the symbol is permitted to be undefined, in which case it will simply not appear in the resulting SymbolMap if the rest of the lookup succeeds. Since lookup now requires these flags for each symbol, the lookup method now takes an instance of a new SymbolLookupSet type rather than a SymbolNameSet. SymbolLookupSet is a vector-backed set of (name, flags) pairs. Clients are responsible for ensuring that the set property (i.e. unique elements) holds, though this is usually simple and SymbolLookupSet provides convenience methods to support this. -- Lookups now have an associated LookupKind value, which is either LookupKind::Static or LookupKind::DLSym. Definition generators can inspect the lookup kind when determining whether or not to generate new definitions. The StaticLibraryDefinitionGenerator is updated to only pull in new objects from the archive if the lookup kind is Static. This allows lookup to be re-used to emulate dlsym for JIT'd symbols without pulling in new objects from archives (which would not happen in a normal dlsym call). -- JITLink is updated to allow externals to be assigned weak linkage, and weak externals now use the SymbolLookupFlags::WeaklyReferencedSymbol value for lookups. Unresolved weak references will be assigned the default value of zero. Since this patch was modifying the lookup API anyway, it alo replaces all of the "MatchNonExported" boolean arguments with a "JITDylibLookupFlags" enum for readability. If a JITDylib's associated value is JITDylibLookupFlags::MatchExportedSymbolsOnly then the lookup will only match against exported (non-hidden) symbols in that JITDylib. If a JITDylib's associated value is JITDylibLookupFlags::MatchAllSymbols then the lookup will match against any symbol defined in the JITDylib.
2019-11-26 13:57:27 +08:00
return ES->lookup(
makeJITDylibSearchOrder(&JD, JITDylibLookupFlags::MatchAllSymbols), Name);
}
Expected<std::unique_ptr<ObjectLayer>>
LLJIT::createObjectLinkingLayer(LLJITBuilderState &S, ExecutionSession &ES) {
// If the config state provided an ObjectLinkingLayer factory then use it.
if (S.CreateObjectLinkingLayer)
return S.CreateObjectLinkingLayer(ES, S.JTMB->getTargetTriple());
// Otherwise default to creating an RTDyldObjectLinkingLayer that constructs
// a new SectionMemoryManager for each object.
auto GetMemMgr = []() { return std::make_unique<SectionMemoryManager>(); };
auto Layer =
std::make_unique<RTDyldObjectLinkingLayer>(ES, std::move(GetMemMgr));
if (S.JTMB->getTargetTriple().isOSBinFormatCOFF()) {
Layer->setOverrideObjectFlagsWithResponsibilityFlags(true);
Layer->setAutoClaimResponsibilityForObjectSymbols(true);
}
// FIXME: Explicit conversion to std::unique_ptr<ObjectLayer> added to silence
// errors from some GCC / libstdc++ bots. Remove this conversion (i.e.
// just return ObjLinkingLayer) once those bots are upgraded.
return std::unique_ptr<ObjectLayer>(std::move(Layer));
}
Expected<std::unique_ptr<IRCompileLayer::IRCompiler>>
LLJIT::createCompileFunction(LLJITBuilderState &S,
JITTargetMachineBuilder JTMB) {
/// If there is a custom compile function creator set then use it.
if (S.CreateCompileFunction)
return S.CreateCompileFunction(std::move(JTMB));
// Otherwise default to creating a SimpleCompiler, or ConcurrentIRCompiler,
// depending on the number of threads requested.
if (S.NumCompileThreads > 0)
return std::make_unique<ConcurrentIRCompiler>(std::move(JTMB));
auto TM = JTMB.createTargetMachine();
if (!TM)
return TM.takeError();
return std::make_unique<TMOwningSimpleCompiler>(std::move(*TM));
}
LLJIT::LLJIT(LLJITBuilderState &S, Error &Err)
: DL(""), TT(S.JTMB->getTargetTriple()) {
ErrorAsOutParameter _(&Err);
assert(!(S.EPC && S.ES) && "EPC and ES should not both be set");
if (S.EPC) {
ES = std::make_unique<ExecutionSession>(std::move(S.EPC));
} else if (S.ES)
ES = std::move(S.ES);
else {
if (auto EPC = SelfExecutorProcessControl::Create()) {
ES = std::make_unique<ExecutionSession>(std::move(*EPC));
} else {
Err = EPC.takeError();
return;
}
}
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
if (auto MainOrErr = this->ES->createJITDylib("main"))
Main = &*MainOrErr;
else {
Err = MainOrErr.takeError();
return;
}
if (S.DL)
DL = std::move(*S.DL);
else if (auto DLOrErr = S.JTMB->getDefaultDataLayoutForTarget())
DL = std::move(*DLOrErr);
else {
Err = DLOrErr.takeError();
return;
}
auto ObjLayer = createObjectLinkingLayer(S, *ES);
if (!ObjLayer) {
Err = ObjLayer.takeError();
return;
}
ObjLinkingLayer = std::move(*ObjLayer);
ObjTransformLayer =
std::make_unique<ObjectTransformLayer>(*ES, *ObjLinkingLayer);
{
auto CompileFunction = createCompileFunction(S, std::move(*S.JTMB));
if (!CompileFunction) {
Err = CompileFunction.takeError();
return;
}
CompileLayer = std::make_unique<IRCompileLayer>(
*ES, *ObjTransformLayer, std::move(*CompileFunction));
TransformLayer = std::make_unique<IRTransformLayer>(*ES, *CompileLayer);
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
InitHelperTransformLayer =
std::make_unique<IRTransformLayer>(*ES, *TransformLayer);
}
if (S.NumCompileThreads > 0) {
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
InitHelperTransformLayer->setCloneToNewContextOnEmit(true);
[Support] On Windows, ensure hardware_concurrency() extends to all CPU sockets and all NUMA groups The goal of this patch is to maximize CPU utilization on multi-socket or high core count systems, so that parallel computations such as LLD/ThinLTO can use all hardware threads in the system. Before this patch, on Windows, a maximum of 64 hardware threads could be used at most, in some cases dispatched only on one CPU socket. == Background == Windows doesn't have a flat cpu_set_t like Linux. Instead, it projects hardware CPUs (or NUMA nodes) to applications through a concept of "processor groups". A "processor" is the smallest unit of execution on a CPU, that is, an hyper-thread if SMT is active; a core otherwise. There's a limit of 32-bit processors on older 32-bit versions of Windows, which later was raised to 64-processors with 64-bit versions of Windows. This limit comes from the affinity mask, which historically is represented by the sizeof(void*). Consequently, the concept of "processor groups" was introduced for dealing with systems with more than 64 hyper-threads. By default, the Windows OS assigns only one "processor group" to each starting application, in a round-robin manner. If the application wants to use more processors, it needs to programmatically enable it, by assigning threads to other "processor groups". This also means that affinity cannot cross "processor group" boundaries; one can only specify a "preferred" group on start-up, but the application is free to allocate more groups if it wants to. This creates a peculiar situation, where newer CPUs like the AMD EPYC 7702P (64-cores, 128-hyperthreads) are projected by the OS as two (2) "processor groups". This means that by default, an application can only use half of the cores. This situation could only get worse in the years to come, as dies with more cores will appear on the market. == The problem == The heavyweight_hardware_concurrency() API was introduced so that only *one hardware thread per core* was used. Once that API returns, that original intention is lost, only the number of threads is retained. Consider a situation, on Windows, where the system has 2 CPU sockets, 18 cores each, each core having 2 hyper-threads, for a total of 72 hyper-threads. Both heavyweight_hardware_concurrency() and hardware_concurrency() currently return 36, because on Windows they are simply wrappers over std::thread::hardware_concurrency() -- which can only return processors from the current "processor group". == The changes in this patch == To solve this situation, we capture (and retain) the initial intention until the point of usage, through a new ThreadPoolStrategy class. The number of threads to use is deferred as late as possible, until the moment where the std::threads are created (ThreadPool in the case of ThinLTO). When using hardware_concurrency(), setting ThreadCount to 0 now means to use all the possible hardware CPU (SMT) threads. Providing a ThreadCount above to the maximum number of threads will have no effect, the maximum will be used instead. The heavyweight_hardware_concurrency() is similar to hardware_concurrency(), except that only one thread per hardware *core* will be used. When LLVM_ENABLE_THREADS is OFF, the threading APIs will always return 1, to ensure any caller loops will be exercised at least once. Differential Revision: https://reviews.llvm.org/D71775
2020-02-14 11:49:57 +08:00
CompileThreads =
std::make_unique<ThreadPool>(hardware_concurrency(S.NumCompileThreads));
ES->setDispatchTask([this](std::unique_ptr<Task> T) {
// FIXME: We should be able to use move-capture here, but ThreadPool's
// AsyncTaskTys are std::functions rather than unique_functions
// (because MSVC's std::packaged_tasks don't support move-only types).
// Fix this when all the above gets sorted out.
CompileThreads->async([UnownedT = T.release()]() mutable {
std::unique_ptr<Task> T(UnownedT);
T->run();
});
});
}
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
if (S.SetUpPlatform)
Err = S.SetUpPlatform(*this);
else
setUpGenericLLVMIRPlatform(*this);
}
std::string LLJIT::mangle(StringRef UnmangledName) const {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, UnmangledName, DL);
}
return MangledName;
}
Error LLJIT::applyDataLayout(Module &M) {
if (M.getDataLayout().isDefault())
M.setDataLayout(DL);
if (M.getDataLayout() != DL)
return make_error<StringError>(
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
"Added modules have incompatible data layouts: " +
M.getDataLayout().getStringRepresentation() + " (module) vs " +
DL.getStringRepresentation() + " (jit)",
inconvertibleErrorCode());
return Error::success();
}
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
void setUpGenericLLVMIRPlatform(LLJIT &J) {
LLVM_DEBUG(
{ dbgs() << "Setting up GenericLLVMIRPlatform support for LLJIT\n"; });
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
J.setPlatformSupport(std::make_unique<GenericLLVMIRPlatformSupport>(J));
}
Error setUpInactivePlatform(LLJIT &J) {
LLVM_DEBUG(
{ dbgs() << "Explicitly deactivated platform support for LLJIT\n"; });
J.setPlatformSupport(std::make_unique<InactivePlatformSupport>());
return Error::success();
}
Error LLLazyJITBuilderState::prepareForConstruction() {
if (auto Err = LLJITBuilderState::prepareForConstruction())
return Err;
TT = JTMB->getTargetTriple();
return Error::success();
}
[ORC] Add ThreadSafeModule and ThreadSafeContext wrappers to support concurrent compilation of IR in the JIT. ThreadSafeContext is a pair of an LLVMContext and a mutex that can be used to lock that context when it needs to be accessed from multiple threads. ThreadSafeModule is a pair of a unique_ptr<Module> and a shared_ptr<ThreadSafeContext>. This allows the lifetime of a ThreadSafeContext to be managed automatically in terms of the ThreadSafeModules that refer to it: Once all modules using a ThreadSafeContext are destructed, and providing the client has not held on to a copy of shared context pointer, the context will be automatically destructed. This scheme is necessary due to the following constraits: (1) We need multiple contexts for multithreaded compilation (at least one per compile thread plus one to store any IR not currently being compiled, though one context per module is simpler). (2) We need to free contexts that are no longer being used so that the JIT does not leak memory over time. (3) Module lifetimes are not predictable (modules are compiled as needed depending on the flow of JIT'd code) so there is no single point where contexts could be reclaimed. JIT clients not using concurrency can safely use one ThreadSafeContext for all ThreadSafeModules. JIT clients who want to be able to compile concurrently should use a different ThreadSafeContext for each module, or call setCloneToNewContextOnEmit on their top-level IRLayer. The former reduces compile latency (since no clone step is needed) at the cost of additional memory overhead for uncompiled modules (as every uncompiled module will duplicate the LLVM types, constants and metadata that have been shared). llvm-svn: 343055
2018-09-26 09:24:12 +08:00
Error LLLazyJIT::addLazyIRModule(JITDylib &JD, ThreadSafeModule TSM) {
assert(TSM && "Can not add null module");
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
if (auto Err = TSM.withModuleDo(
[&](Module &M) -> Error { return applyDataLayout(M); }))
[ORC] Change the locking scheme for ThreadSafeModule. ThreadSafeModule/ThreadSafeContext are used to manage lifetimes and locking for LLVMContexts in ORCv2. Prior to this patch contexts were locked as soon as an associated Module was emitted (to be compiled and linked), and were not unlocked until the emit call returned. This could lead to deadlocks if interdependent modules that shared contexts were compiled on different threads: when, during emission of the first module, the dependence was discovered the second module (which would provide the required symbol) could not be emitted as the thread emitting the first module still held the lock. This patch eliminates this possibility by moving to a finer-grained locking scheme. Each client holds the module lock only while they are actively operating on it. To make this finer grained locking simpler/safer to implement this patch removes the explicit lock method, 'getContextLock', from ThreadSafeModule and replaces it with a new method, 'withModuleDo', that implicitly locks the context, calls a user-supplied function object to operate on the Module, then implicitly unlocks the context before returning the result. ThreadSafeModule TSM = getModule(...); size_t NumFunctions = TSM.withModuleDo( [](Module &M) { // <- context locked before entry to lambda. return M.size(); }); Existing ORCv2 layers that operate on ThreadSafeModules are updated to use the new method. This method is used to introduce Module locking into each of the existing layers. llvm-svn: 367686
2019-08-02 23:21:37 +08:00
return Err;
[ORC] Add support for resource tracking/removal (removable code). This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
2020-09-12 00:50:41 +08:00
return CODLayer->add(JD, std::move(TSM));
}
LLLazyJIT::LLLazyJIT(LLLazyJITBuilderState &S, Error &Err) : LLJIT(S, Err) {
// If LLJIT construction failed then bail out.
if (Err)
return;
ErrorAsOutParameter _(&Err);
/// Take/Create the lazy-compile callthrough manager.
if (S.LCTMgr)
LCTMgr = std::move(S.LCTMgr);
else {
if (auto LCTMgrOrErr = createLocalLazyCallThroughManager(
S.TT, *ES, S.LazyCompileFailureAddr))
LCTMgr = std::move(*LCTMgrOrErr);
else {
Err = LCTMgrOrErr.takeError();
return;
}
}
// Take/Create the indirect stubs manager builder.
auto ISMBuilder = std::move(S.ISMBuilder);
// If none was provided, try to build one.
if (!ISMBuilder)
ISMBuilder = createLocalIndirectStubsManagerBuilder(S.TT);
// No luck. Bail out.
if (!ISMBuilder) {
Err = make_error<StringError>("Could not construct "
"IndirectStubsManagerBuilder for target " +
S.TT.str(),
inconvertibleErrorCode());
return;
}
// Create the COD layer.
CODLayer = std::make_unique<CompileOnDemandLayer>(
[ORC] Add generic initializer/deinitializer support. Initializers and deinitializers are used to implement C++ static constructors and destructors, runtime registration for some languages (e.g. with the Objective-C runtime for Objective-C/C++ code) and other tasks that would typically be performed when a shared-object/dylib is loaded or unloaded by a statically compiled program. MCJIT and ORC have historically provided limited support for discovering and running initializers/deinitializers by scanning the llvm.global_ctors and llvm.global_dtors variables and recording the functions to be run. This approach suffers from several drawbacks: (1) It only works for IR inputs, not for object files (including cached JIT'd objects). (2) It only works for initializers described by llvm.global_ctors and llvm.global_dtors, however not all initializers are described in this way (Objective-C, for example, describes initializers via specially named metadata sections). (3) To make the initializer/deinitializer functions described by llvm.global_ctors and llvm.global_dtors searchable they must be promoted to extern linkage, polluting the JIT symbol table (extra care must be taken to ensure this promotion does not result in symbol name clashes). This patch introduces several interdependent changes to ORCv2 to support the construction of new initialization schemes, and includes an implementation of a backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a MachO specific scheme that handles Objective-C runtime registration (if the Objective-C runtime is available) enabling execution of LLVM IR compiled from Objective-C and Swift. The major changes included in this patch are: (1) The MaterializationUnit and MaterializationResponsibility classes are extended to describe an optional "initializer" symbol for the module (see the getInitializerSymbol method on each class). The presence or absence of this symbol indicates whether the module contains any initializers or deinitializers. The initializer symbol otherwise behaves like any other: searching for it triggers materialization. (2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h which provides the following callback interface: - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols in JITDylibs upon creation. E.g. __dso_handle. - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally used to record initializer symbols. - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform that a module is being removed. Platform implementations can use these callbacks to track outstanding initializers and implement a platform-specific approach for executing them. For example, the MachOPlatform installs a plugin in the JIT linker to scan for both __mod_inits sections (for C++ static constructors) and ObjC metadata sections. If discovered, these are processed in the usual platform order: Objective-C registration is carried out first, then static initializers are executed, ensuring that calls to Objective-C from static initializers will be safe. This patch updates LLJIT to use the new scheme for initialization. Two LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO platform. The GenericIR platform implements a modified version of the previous llvm.global-ctor scraping scheme to provide support for Windows and Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO specific initialization as described above. Reviewers: sgraenitz, dblaikie Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74300
2019-12-16 18:50:40 +08:00
*ES, *InitHelperTransformLayer, *LCTMgr, std::move(ISMBuilder));
if (S.NumCompileThreads > 0)
CODLayer->setCloneToNewContextOnEmit(true);
}
} // End namespace orc.
} // End namespace llvm.