llvm-project/polly/test/DeLICM/reduction_looprotate_hoiste...

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

102 lines
4.7 KiB
LLVM
Raw Normal View History

; RUN: opt %loadPolly -polly-stmt-granularity=bb -polly-invariant-load-hoisting -polly-flatten-schedule -polly-delicm-overapproximate-writes=true -polly-delicm-compute-known=true -polly-print-delicm -disable-output < %s | FileCheck %s
;
; void func(int *A, int* StartPtr) {
; for (int j = 0; j < 2; j += 1) { /* outer */
; int Start = *Startptr;
; int phi = Start;
; for (int i = Start; i < 4; i += 1) /* reduction */
; phi += 42;
; A[j] = phi;
; }
; }
;
define void @func(i32* noalias nonnull %A, i32* noalias nonnull %StartPtr) {
entry:
br label %outer.preheader
outer.preheader:
br label %outer.for
outer.for:
%j = phi i32 [0, %outer.preheader], [%j.inc, %outer.inc]
%j.cmp = icmp slt i32 %j, 2
br i1 %j.cmp, label %reduction.preheader, label %outer.exit
reduction.preheader:
%Start = load i32, i32* %StartPtr
br label %reduction.for
reduction.for:
%i = phi i32 [%Start, %reduction.preheader], [%i.inc, %reduction.inc]
%phi = phi i32 [%Start, %reduction.preheader], [%mul, %reduction.inc]
br label %body
body:
%mul = mul i32 %phi, 2
br label %reduction.inc
reduction.inc:
%i.inc = add nuw nsw i32 %i, 1
%i.cmp = icmp slt i32 %i.inc, 4
br i1 %i.cmp, label %reduction.for, label %reduction.exit
reduction.exit:
%A_idx = getelementptr inbounds i32, i32* %A, i32 %j
store i32 %mul, i32* %A_idx
br label %outer.inc
outer.inc:
%j.inc = add nuw nsw i32 %j, 1
br label %outer.for
outer.exit:
br label %return
return:
ret void
}
; FIXME: The accesses for %i should not be there because, with
; load-hoisting %Start is an affine loop. To be fixed in ScopBuilder.
; CHECK: After accesses {
; CHECK-NEXT: Stmt_reduction_preheader
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [Start] -> { Stmt_reduction_preheader[i0] -> MemRef_phi__phi[] };
[Polly] Track defined behavior for PHI predecessor computation. ZoneAlgorithms's computePHI relies on being provided with consistent a schedule to compute the statement prodecessors of a statement containing PHINodes. Otherwise unexpected results such as PHI nodes with multiple predecessors can occur which would result in problems in the algorithms expecting consistent data. In the added test case, statement instances are scrubbed from the SCoP their execution would result in undefined behavior (Due to a nsw overflow). As already being undefined behavior in LLVM-IR, neither AssumedContext nor InvalidContext are updated, giving computePHI no means to avoid these cases. Intoduce a new SCoP property, the DefinedBehaviorContext, that among the runtime-checked conditions, also tracks the assumptions not needing a runtime check, in particular those affecting the assumed control flow. This replaces the manual combination of the 3 other contexts that was already done in computePHI and setNewAccessRelation. Currently, the only additional assumption is that loop induction variables will nsw flag for not wrap, but potentially more can be added. Use in hasFeasibleRuntimeContext, isl::ast_build and gisting are other potential uses. To limit computational complexity, the DefinedBehaviorContext is not availabe if it grows too large (atm hardcoded to 8 disjuncts). Possible other fixes include bailing out in computePHI when inconsistencies are detected, choose an arbitrary value for inconsistent cases (since it is undefined behavior anyways), or make the code receiving the result from ComputePHI handle inconsistent data. All of them reduce the quality of implementation having to bail out more often and disabling the ability to assert on actually wrong results. This fixes llvm.org/PR48783.
2021-01-22 11:20:53 +08:00
; CHECK-NEXT: new: [Start] -> { Stmt_reduction_preheader[i0] -> MemRef_A[i0] };
; CHECK-NEXT: Stmt_reduction_for
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [Start] -> { Stmt_reduction_for[i0, i1] -> MemRef_phi__phi[] };
; CHECK-NEXT: new: [Start] -> { Stmt_reduction_for[i0, i1] -> MemRef_A[i0] : -i0 < i1 <= 3 - Start; Stmt_reduction_for[1, 0] -> MemRef_A[1] : Start >= 4; Stmt_reduction_for[0, 0] -> MemRef_A[0] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [Start] -> { Stmt_reduction_for[i0, i1] -> MemRef_phi[] };
; CHECK-NEXT: new: [Start] -> { Stmt_reduction_for[i0, i1] -> MemRef_A[i0] : i0 <= i1 <= 3 - Start; Stmt_reduction_for[i0, 0] -> MemRef_A[i0] : i0 <= -4 + Start; Stmt_reduction_for[1, 0] -> MemRef_A[1] : Start <= 4 }
; CHECK-NEXT: Stmt_body
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [Start] -> { Stmt_body[i0, i1] -> MemRef_mul[] };
; CHECK-NEXT: new: [Start] -> { Stmt_body[i0, i1] -> MemRef_A[i0] : i0 <= i1 <= 3 - Start; Stmt_body[i0, 0] -> MemRef_A[i0] : i0 <= -4 + Start; Stmt_body[1, 0] -> MemRef_A[1] : Start <= 4 }
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [Start] -> { Stmt_body[i0, i1] -> MemRef_phi[] };
; CHECK-NEXT: new: [Start] -> { Stmt_body[i0, i1] -> MemRef_A[i0] : i0 <= i1 <= 3 - Start; Stmt_body[1, 0] -> MemRef_A[1]; Stmt_body[0, 0] -> MemRef_A[0] : Start >= 4 };
; CHECK-NEXT: Stmt_reduction_inc
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [Start] -> { Stmt_reduction_inc[i0, i1] -> MemRef_mul[] };
; CHECK-NEXT: new: [Start] -> { Stmt_reduction_inc[i0, i1] -> MemRef_A[i0] : i0 <= i1 <= 3 - Start; Stmt_reduction_inc[1, 0] -> MemRef_A[1]; Stmt_reduction_inc[0, 0] -> MemRef_A[0] : Start >= 4 };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [Start] -> { Stmt_reduction_inc[i0, i1] -> MemRef_phi__phi[] };
; CHECK-NEXT: new: [Start] -> { Stmt_reduction_inc[i0, i1] -> MemRef_A[i0] : 0 < i1 <= 3 - Start; Stmt_reduction_inc[i0, 0] -> MemRef_A[i0] }
; CHECK-NEXT: Stmt_reduction_exit
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: [Start] -> { Stmt_reduction_exit[i0] -> MemRef_A[i0] };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [Start] -> { Stmt_reduction_exit[i0] -> MemRef_mul[] };
; CHECK-NEXT: new: [Start] -> { Stmt_reduction_exit[i0] -> MemRef_A[i0] };
; CHECK-NEXT: }