llvm-project/lldb/source/Target/ThreadPlanCallFunction.cpp

376 lines
11 KiB
C++
Raw Normal View History

//===-- ThreadPlanCallFunction.cpp ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/ThreadPlanCallFunction.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "llvm/Support/MachO.h"
// Project includes
#include "lldb/lldb-private-log.h"
#include "lldb/Breakpoint/Breakpoint.h"
#include "lldb/Breakpoint/BreakpointLocation.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Stream.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlanRunToAddress.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// ThreadPlanCallFunction: Plan to call a single function
//----------------------------------------------------------------------
ThreadPlanCallFunction::ThreadPlanCallFunction (Thread &thread,
Address &function,
lldb::addr_t arg,
bool stop_other_threads,
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
bool discard_on_error,
lldb::addr_t *this_arg,
lldb::addr_t *cmd_arg) :
ThreadPlan (ThreadPlan::eKindCallFunction, "Call function plan", thread, eVoteNoOpinion, eVoteNoOpinion),
m_valid (false),
m_stop_other_threads (stop_other_threads),
m_arg_addr (arg),
m_args (NULL),
m_process (thread.GetProcess()),
m_thread (thread),
m_takedown_done (false),
m_function_sp(NULL)
{
SetOkayToDiscard (discard_on_error);
Process& process = thread.GetProcess();
Target& target = process.GetTarget();
const ABI *abi = process.GetABI().get();
if (!abi)
return;
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP));
SetBreakpoints();
m_function_sp = thread.GetRegisterContext()->GetSP() - abi->GetRedZoneSize();
ModuleSP executableModuleSP (target.GetExecutableModule());
if (!executableModuleSP)
{
log->Printf ("Can't execute code without an executable module.");
return;
}
else
{
ObjectFile *objectFile = executableModuleSP->GetObjectFile();
if (!objectFile)
{
log->Printf ("Could not find object file for module \"%s\".",
executableModuleSP->GetFileSpec().GetFilename().AsCString());
return;
}
m_start_addr = objectFile->GetEntryPointAddress();
if (!m_start_addr.IsValid())
{
log->Printf ("Could not find entry point address for executable module \"%s\".",
executableModuleSP->GetFileSpec().GetFilename().AsCString());
return;
}
}
lldb::addr_t StartLoadAddr = m_start_addr.GetLoadAddress(&target);
// Checkpoint the thread state so we can restore it later.
if (log && log->GetVerbose())
ReportRegisterState ("About to checkpoint thread before function call. Original register state was:");
if (!thread.CheckpointThreadState (m_stored_thread_state))
{
if (log)
log->Printf ("Setting up ThreadPlanCallFunction, failed to checkpoint thread state.");
return;
}
// Now set the thread state to "no reason" so we don't run with whatever signal was outstanding...
thread.SetStopInfoToNothing();
m_function_addr = function;
lldb::addr_t FunctionLoadAddr = m_function_addr.GetLoadAddress(&target);
if (!abi->PrepareTrivialCall(thread,
m_function_sp,
FunctionLoadAddr,
StartLoadAddr,
Removed the hacky "#define this ___clang_this" handler for C++ classes. Replaced it with a less hacky approach: - If an expression is defined in the context of a method of class A, then that expression is wrapped as ___clang_class::___clang_expr(void*) { ... } instead of ___clang_expr(void*) { ... }. - ___clang_class is resolved as the type of the target of the "this" pointer in the method the expression is defined in. - When reporting the type of ___clang_class, a method with the signature ___clang_expr(void*) is added to that class, so that Clang doesn't complain about a method being defined without a corresponding declaration. - Whenever the expression gets called, "this" gets looked up, type-checked, and then passed in as the first argument. This required the following changes: - The ABIs were changed to support passing of the "this" pointer as part of trivial calls. - ThreadPlanCallFunction and ClangFunction were changed to support passing of an optional "this" pointer. - ClangUserExpression was extended to perform the wrapping described above. - ClangASTSource was changed to revert the changes required by the hack. - ClangExpressionParser, IRForTarget, and ClangExpressionDeclMap were changed to handle different manglings of ___clang_expr flexibly. This meant no longer searching for a function called ___clang_expr, but rather looking for a function whose name *contains* ___clang_expr. - ClangExpressionParser and ClangExpressionDeclMap now remember whether "this" is required, and know how to look it up as necessary. A few inheritance bugs remain, and I'm trying to resolve these. But it is now possible to use "this" as well as refer implicitly to member variables, when in the proper context. llvm-svn: 114384
2010-09-21 08:44:12 +08:00
m_arg_addr,
this_arg,
cmd_arg))
return;
ReportRegisterState ("Function call was set up. Register state was:");
m_valid = true;
}
ThreadPlanCallFunction::~ThreadPlanCallFunction ()
{
}
void
ThreadPlanCallFunction::ReportRegisterState (const char *message)
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP));
if (log)
{
Fixed issues with RegisterContext classes and the subclasses. There was an issue with the way the UnwindLLDB was handing out RegisterContexts: it was making shared pointers to register contexts and then handing out just the pointers (which would get put into shared pointers in the thread and stack frame classes) and cause double free issues. MallocScribble helped to find these issues after I did some other cleanup. To help avoid any RegisterContext issue in the future, all code that deals with them now returns shared pointers to the register contexts so we don't end up with multiple deletions. Also now that the RegisterContext class doesn't require a stack frame, we patched a memory leak where a StackFrame object was being created and leaked. Made the RegisterContext class not have a pointer to a StackFrame object as one register context class can be used for N inlined stack frames so there is not a 1 - 1 mapping. Updates the ExecutionContextScope part of the RegisterContext class to never return a stack frame to indicate this when it is asked to recreate the execution context. Now register contexts point to the concrete frame using a concrete frame index. Concrete frames are all of the frames that are actually formed on the stack of a thread. These concrete frames can be turned into one or more user visible frames due to inlining. Each inlined stack frame has the exact same register context (shared via shared pointers) as any parent inlined stack frames all the way up to the concrete frame itself. So now the stack frames and the register contexts should behave much better. llvm-svn: 122976
2011-01-07 06:15:06 +08:00
RegisterContext *reg_ctx = m_thread.GetRegisterContext().get();
log->PutCString(message);
for (uint32_t register_index = 0, num_registers = reg_ctx->GetRegisterCount();
register_index < num_registers;
++register_index)
{
const char *register_name = reg_ctx->GetRegisterName(register_index);
uint64_t register_value = reg_ctx->ReadRegisterAsUnsigned(register_index, LLDB_INVALID_ADDRESS);
log->Printf(" %s = 0x%llx", register_name, register_value);
}
}
}
void
ThreadPlanCallFunction::DoTakedown ()
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP));
if (!m_takedown_done)
{
if (log)
log->Printf ("DoTakedown called for thread 0x%4.4x, m_valid: %d complete: %d.\n", m_thread.GetID(), m_valid, IsPlanComplete());
m_takedown_done = true;
m_thread.RestoreThreadStateFromCheckpoint(m_stored_thread_state);
SetPlanComplete();
ClearBreakpoints();
if (log && log->GetVerbose())
ReportRegisterState ("Restoring thread state after function call. Restored register state:");
}
else
{
if (log)
log->Printf ("DoTakedown called as no-op for thread 0x%4.4x, m_valid: %d complete: %d.\n", m_thread.GetID(), m_valid, IsPlanComplete());
}
}
void
ThreadPlanCallFunction::WillPop ()
{
DoTakedown();
}
void
ThreadPlanCallFunction::GetDescription (Stream *s, lldb::DescriptionLevel level)
{
if (level == lldb::eDescriptionLevelBrief)
{
s->Printf("Function call thread plan");
}
else
{
if (m_args)
s->Printf("Thread plan to call 0x%llx with parsed arguments", m_function_addr.GetLoadAddress(&m_process.GetTarget()), m_arg_addr);
else
s->Printf("Thread plan to call 0x%llx void * argument at: 0x%llx", m_function_addr.GetLoadAddress(&m_process.GetTarget()), m_arg_addr);
}
}
bool
ThreadPlanCallFunction::ValidatePlan (Stream *error)
{
if (!m_valid)
return false;
return true;
}
bool
ThreadPlanCallFunction::PlanExplainsStop ()
{
// If our subplan knows why we stopped, even if it's done (which would forward the question to us)
// we answer yes.
if(m_subplan_sp.get() != NULL && m_subplan_sp->PlanExplainsStop())
return true;
// Check if the breakpoint is one of ours.
if (BreakpointsExplainStop())
return true;
// If we don't want to discard this plan, than any stop we don't understand should be propagated up the stack.
if (!OkayToDiscard())
return false;
// Otherwise, check the case where we stopped for an internal breakpoint, in that case, continue on.
// If it is not an internal breakpoint, consult OkayToDiscard.
lldb::StopInfoSP stop_info_sp = GetPrivateStopReason();
if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint)
{
uint64_t break_site_id = stop_info_sp->GetValue();
lldb::BreakpointSiteSP bp_site_sp = m_thread.GetProcess().GetBreakpointSiteList().FindByID(break_site_id);
if (bp_site_sp)
{
uint32_t num_owners = bp_site_sp->GetNumberOfOwners();
bool is_internal = true;
for (uint32_t i = 0; i < num_owners; i++)
{
Breakpoint &bp = bp_site_sp->GetOwnerAtIndex(i)->GetBreakpoint();
if (!bp.IsInternal())
{
is_internal = false;
break;
}
}
if (is_internal)
return false;
}
return OkayToDiscard();
}
else
{
// If the subplan is running, any crashes are attributable to us.
// If we want to discard the plan, then we say we explain the stop
// but if we are going to be discarded, let whoever is above us
// explain the stop.
return ((m_subplan_sp.get() != NULL) && !OkayToDiscard());
}
}
bool
ThreadPlanCallFunction::ShouldStop (Event *event_ptr)
{
if (PlanExplainsStop())
{
ReportRegisterState ("Function completed. Register state was:");
DoTakedown();
return true;
}
else
{
return false;
}
}
bool
ThreadPlanCallFunction::StopOthers ()
{
return m_stop_other_threads;
}
void
ThreadPlanCallFunction::SetStopOthers (bool new_value)
{
if (m_subplan_sp)
{
ThreadPlanRunToAddress *address_plan = static_cast<ThreadPlanRunToAddress *>(m_subplan_sp.get());
address_plan->SetStopOthers(new_value);
}
m_stop_other_threads = new_value;
}
StateType
ThreadPlanCallFunction::GetPlanRunState ()
{
return eStateRunning;
}
void
ThreadPlanCallFunction::DidPush ()
{
//#define SINGLE_STEP_EXPRESSIONS
#ifndef SINGLE_STEP_EXPRESSIONS
m_subplan_sp.reset(new ThreadPlanRunToAddress(m_thread, m_start_addr, m_stop_other_threads));
m_thread.QueueThreadPlan(m_subplan_sp, false);
m_subplan_sp->SetPrivate (true);
#endif
}
bool
ThreadPlanCallFunction::WillStop ()
{
return true;
}
bool
ThreadPlanCallFunction::MischiefManaged ()
{
if (IsPlanComplete())
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP));
if (log)
log->Printf("Completed call function plan.");
ThreadPlan::MischiefManaged ();
return true;
}
else
{
return false;
}
}
void
ThreadPlanCallFunction::SetBreakpoints ()
{
m_cxx_language_runtime = m_process.GetLanguageRuntime(eLanguageTypeC_plus_plus);
m_objc_language_runtime = m_process.GetLanguageRuntime(eLanguageTypeObjC);
if (m_cxx_language_runtime)
m_cxx_language_runtime->SetExceptionBreakpoints();
if (m_objc_language_runtime)
m_objc_language_runtime->SetExceptionBreakpoints();
}
void
ThreadPlanCallFunction::ClearBreakpoints ()
{
if (m_cxx_language_runtime)
m_cxx_language_runtime->ClearExceptionBreakpoints();
if (m_objc_language_runtime)
m_objc_language_runtime->ClearExceptionBreakpoints();
}
bool
ThreadPlanCallFunction::BreakpointsExplainStop()
{
lldb::StopInfoSP stop_info_sp = GetPrivateStopReason();
if (m_cxx_language_runtime &&
m_cxx_language_runtime->ExceptionBreakpointsExplainStop(stop_info_sp))
return true;
if (m_objc_language_runtime &&
m_objc_language_runtime->ExceptionBreakpointsExplainStop(stop_info_sp))
return true;
return false;
}