llvm-project/llvm/lib/Analysis/ScalarEvolutionExpander.cpp

889 lines
35 KiB
C++
Raw Normal View History

//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution expander,
// which is used to generate the code corresponding to a given scalar evolution
// expression.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/LLVMContext.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
/// which must be possible with a noop cast, doing what we can to share
/// the casts.
Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
assert((Op == Instruction::BitCast ||
Op == Instruction::PtrToInt ||
Op == Instruction::IntToPtr) &&
"InsertNoopCastOfTo cannot perform non-noop casts!");
assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
"InsertNoopCastOfTo cannot change sizes!");
// Short-circuit unnecessary bitcasts.
if (Op == Instruction::BitCast && V->getType() == Ty)
return V;
// Short-circuit unnecessary inttoptr<->ptrtoint casts.
if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
if (CastInst *CI = dyn_cast<CastInst>(V))
if ((CI->getOpcode() == Instruction::PtrToInt ||
CI->getOpcode() == Instruction::IntToPtr) &&
SE.getTypeSizeInBits(CI->getType()) ==
SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
return CI->getOperand(0);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
if ((CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::IntToPtr) &&
SE.getTypeSizeInBits(CE->getType()) ==
SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
return CE->getOperand(0);
}
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getCast(Op, C, Ty);
if (Argument *A = dyn_cast<Argument>(V)) {
// Check to see if there is already a cast!
for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
UI != E; ++UI)
if ((*UI)->getType() == Ty)
if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
if (CI->getOpcode() == Op) {
// If the cast isn't the first instruction of the function, move it.
if (BasicBlock::iterator(CI) !=
A->getParent()->getEntryBlock().begin()) {
// Recreate the cast at the beginning of the entry block.
// The old cast is left in place in case it is being used
// as an insert point.
Instruction *NewCI =
CastInst::Create(Op, V, Ty, "",
A->getParent()->getEntryBlock().begin());
NewCI->takeName(CI);
CI->replaceAllUsesWith(NewCI);
return NewCI;
}
return CI;
}
Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
A->getParent()->getEntryBlock().begin());
InsertedValues.insert(I);
return I;
}
Instruction *I = cast<Instruction>(V);
// Check to see if there is already a cast. If there is, use it.
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI) {
if ((*UI)->getType() == Ty)
if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
if (CI->getOpcode() == Op) {
BasicBlock::iterator It = I; ++It;
if (isa<InvokeInst>(I))
It = cast<InvokeInst>(I)->getNormalDest()->begin();
while (isa<PHINode>(It)) ++It;
if (It != BasicBlock::iterator(CI)) {
// Recreate the cast at the beginning of the entry block.
// The old cast is left in place in case it is being used
// as an insert point.
Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
NewCI->takeName(CI);
CI->replaceAllUsesWith(NewCI);
return NewCI;
}
return CI;
}
}
BasicBlock::iterator IP = I; ++IP;
if (InvokeInst *II = dyn_cast<InvokeInst>(I))
IP = II->getNormalDest()->begin();
while (isa<PHINode>(IP)) ++IP;
Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
InsertedValues.insert(CI);
return CI;
}
/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.
Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
Value *LHS, Value *RHS) {
// Fold a binop with constant operands.
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS))
return ConstantExpr::get(Opcode, CLHS, CRHS);
// Do a quick scan to see if we have this binop nearby. If so, reuse it.
unsigned ScanLimit = 6;
BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
// Scanning starts from the last instruction before the insertion point.
BasicBlock::iterator IP = Builder.GetInsertPoint();
if (IP != BlockBegin) {
--IP;
for (; ScanLimit; --IP, --ScanLimit) {
if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
IP->getOperand(1) == RHS)
return IP;
if (IP == BlockBegin) break;
}
}
// If we haven't found this binop, insert it.
Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
InsertedValues.insert(BO);
return BO;
}
/// FactorOutConstant - Test if S is divisible by Factor, using signed
/// division. If so, update S with Factor divided out and return true.
/// S need not be evenly divisble if a reasonable remainder can be
/// computed.
/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
/// check to see if the divide was folded.
static bool FactorOutConstant(const SCEV *&S,
const SCEV *&Remainder,
const SCEV *Factor,
ScalarEvolution &SE,
const TargetData *TD) {
// Everything is divisible by one.
if (Factor->isOne())
return true;
// x/x == 1.
if (S == Factor) {
S = SE.getIntegerSCEV(1, S->getType());
return true;
}
// For a Constant, check for a multiple of the given factor.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
// 0/x == 0.
if (C->isZero())
return true;
// Check for divisibility.
if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
ConstantInt *CI =
ConstantInt::get(SE.getContext(),
C->getValue()->getValue().sdiv(
FC->getValue()->getValue()));
// If the quotient is zero and the remainder is non-zero, reject
// the value at this scale. It will be considered for subsequent
// smaller scales.
if (!CI->isZero()) {
const SCEV *Div = SE.getConstant(CI);
S = Div;
Remainder =
SE.getAddExpr(Remainder,
SE.getConstant(C->getValue()->getValue().srem(
FC->getValue()->getValue())));
return true;
}
}
}
// In a Mul, check if there is a constant operand which is a multiple
// of the given factor.
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
if (TD) {
// With TargetData, the size is known. Check if there is a constant
// operand which is a multiple of the given factor. If so, we can
// factor it.
const SCEVConstant *FC = cast<SCEVConstant>(Factor);
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
MOperands.end());
NewMulOps[0] =
SE.getConstant(C->getValue()->getValue().sdiv(
FC->getValue()->getValue()));
S = SE.getMulExpr(NewMulOps);
return true;
}
} else {
// Without TargetData, check if Factor can be factored out of any of the
// Mul's operands. If so, we can just remove it.
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
const SCEV *SOp = M->getOperand(i);
const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
Remainder->isZero()) {
const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
MOperands.end());
NewMulOps[i] = SOp;
S = SE.getMulExpr(NewMulOps);
return true;
}
}
}
}
// In an AddRec, check if both start and step are divisible.
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
const SCEV *Step = A->getStepRecurrence(SE);
const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
return false;
if (!StepRem->isZero())
return false;
const SCEV *Start = A->getStart();
if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
return false;
S = SE.getAddRecExpr(Start, Step, A->getLoop());
return true;
}
return false;
}
/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
/// is the number of SCEVAddRecExprs present, which are kept at the end of
/// the list.
///
static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
const Type *Ty,
ScalarEvolution &SE) {
unsigned NumAddRecs = 0;
for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
++NumAddRecs;
// Group Ops into non-addrecs and addrecs.
SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
// Let ScalarEvolution sort and simplify the non-addrecs list.
const SCEV *Sum = NoAddRecs.empty() ?
SE.getIntegerSCEV(0, Ty) :
SE.getAddExpr(NoAddRecs);
// If it returned an add, use the operands. Otherwise it simplified
// the sum into a single value, so just use that.
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
Ops = Add->getOperands();
else {
Ops.clear();
if (!Sum->isZero())
Ops.push_back(Sum);
}
// Then append the addrecs.
Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
}
/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
/// This helps expose more opportunities for folding parts of the expressions
/// into GEP indices.
///
static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
const Type *Ty,
ScalarEvolution &SE) {
// Find the addrecs.
SmallVector<const SCEV *, 8> AddRecs;
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
const SCEV *Start = A->getStart();
if (Start->isZero()) break;
const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
AddRecs.push_back(SE.getAddRecExpr(Zero,
A->getStepRecurrence(SE),
A->getLoop()));
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
Ops[i] = Zero;
Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
e += Add->getNumOperands();
} else {
Ops[i] = Start;
}
}
if (!AddRecs.empty()) {
// Add the addrecs onto the end of the list.
Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
// Resort the operand list, moving any constants to the front.
SimplifyAddOperands(Ops, Ty, SE);
}
}
/// expandAddToGEP - Expand an addition expression with a pointer type into
/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
/// BasicAliasAnalysis and other passes analyze the result. See the rules
/// for getelementptr vs. inttoptr in
/// http://llvm.org/docs/LangRef.html#pointeraliasing
/// for details.
2009-07-21 01:44:17 +08:00
///
/// Design note: The correctness of using getelmeentptr here depends on
/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
/// they may introduce pointer arithmetic which may not be safely converted
/// into getelementptr.
///
/// Design note: It might seem desirable for this function to be more
/// loop-aware. If some of the indices are loop-invariant while others
/// aren't, it might seem desirable to emit multiple GEPs, keeping the
/// loop-invariant portions of the overall computation outside the loop.
/// However, there are a few reasons this is not done here. Hoisting simple
/// arithmetic is a low-level optimization that often isn't very
/// important until late in the optimization process. In fact, passes
/// like InstructionCombining will combine GEPs, even if it means
/// pushing loop-invariant computation down into loops, so even if the
/// GEPs were split here, the work would quickly be undone. The
/// LoopStrengthReduction pass, which is usually run quite late (and
/// after the last InstructionCombining pass), takes care of hoisting
/// loop-invariant portions of expressions, after considering what
/// can be folded using target addressing modes.
///
Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
const SCEV *const *op_end,
const PointerType *PTy,
const Type *Ty,
Value *V) {
const Type *ElTy = PTy->getElementType();
SmallVector<Value *, 4> GepIndices;
SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
bool AnyNonZeroIndices = false;
// Split AddRecs up into parts as either of the parts may be usable
// without the other.
SplitAddRecs(Ops, Ty, SE);
// Decend down the pointer's type and attempt to convert the other
// operands into GEP indices, at each level. The first index in a GEP
// indexes into the array implied by the pointer operand; the rest of
// the indices index into the element or field type selected by the
// preceding index.
for (;;) {
const SCEV *ElSize = SE.getAllocSizeExpr(ElTy);
// If the scale size is not 0, attempt to factor out a scale for
// array indexing.
SmallVector<const SCEV *, 8> ScaledOps;
if (ElTy->isSized() && !ElSize->isZero()) {
SmallVector<const SCEV *, 8> NewOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
const SCEV *Op = Ops[i];
const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
// Op now has ElSize factored out.
ScaledOps.push_back(Op);
if (!Remainder->isZero())
NewOps.push_back(Remainder);
AnyNonZeroIndices = true;
} else {
// The operand was not divisible, so add it to the list of operands
// we'll scan next iteration.
NewOps.push_back(Ops[i]);
}
}
// If we made any changes, update Ops.
if (!ScaledOps.empty()) {
Ops = NewOps;
SimplifyAddOperands(Ops, Ty, SE);
}
}
// Record the scaled array index for this level of the type. If
// we didn't find any operands that could be factored, tentatively
// assume that element zero was selected (since the zero offset
// would obviously be folded away).
Value *Scaled = ScaledOps.empty() ?
Constant::getNullValue(Ty) :
expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
GepIndices.push_back(Scaled);
// Collect struct field index operands.
while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
bool FoundFieldNo = false;
// An empty struct has no fields.
if (STy->getNumElements() == 0) break;
if (SE.TD) {
// With TargetData, field offsets are known. See if a constant offset
// falls within any of the struct fields.
if (Ops.empty()) break;
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
if (SE.getTypeSizeInBits(C->getType()) <= 64) {
const StructLayout &SL = *SE.TD->getStructLayout(STy);
uint64_t FullOffset = C->getValue()->getZExtValue();
if (FullOffset < SL.getSizeInBytes()) {
unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
GepIndices.push_back(
ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
ElTy = STy->getTypeAtIndex(ElIdx);
Ops[0] =
SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
AnyNonZeroIndices = true;
FoundFieldNo = true;
}
}
} else {
// Without TargetData, just check for a SCEVFieldOffsetExpr of the
// appropriate struct type.
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (const SCEVFieldOffsetExpr *FO =
dyn_cast<SCEVFieldOffsetExpr>(Ops[i]))
if (FO->getStructType() == STy) {
unsigned FieldNo = FO->getFieldNo();
GepIndices.push_back(
ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
FieldNo));
ElTy = STy->getTypeAtIndex(FieldNo);
Ops[i] = SE.getConstant(Ty, 0);
AnyNonZeroIndices = true;
FoundFieldNo = true;
break;
}
}
// If no struct field offsets were found, tentatively assume that
// field zero was selected (since the zero offset would obviously
// be folded away).
if (!FoundFieldNo) {
ElTy = STy->getTypeAtIndex(0u);
GepIndices.push_back(
Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
}
}
if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
ElTy = ATy->getElementType();
else
break;
}
// If none of the operands were convertable to proper GEP indices, cast
// the base to i8* and do an ugly getelementptr with that. It's still
// better than ptrtoint+arithmetic+inttoptr at least.
if (!AnyNonZeroIndices) {
// Cast the base to i8*.
V = InsertNoopCastOfTo(V,
Type::getInt8Ty(Ty->getContext())->getPointerTo(PTy->getAddressSpace()));
// Expand the operands for a plain byte offset.
Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
// Fold a GEP with constant operands.
if (Constant *CLHS = dyn_cast<Constant>(V))
if (Constant *CRHS = dyn_cast<Constant>(Idx))
return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
// Do a quick scan to see if we have this GEP nearby. If so, reuse it.
unsigned ScanLimit = 6;
BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
// Scanning starts from the last instruction before the insertion point.
BasicBlock::iterator IP = Builder.GetInsertPoint();
if (IP != BlockBegin) {
--IP;
for (; ScanLimit; --IP, --ScanLimit) {
if (IP->getOpcode() == Instruction::GetElementPtr &&
IP->getOperand(0) == V && IP->getOperand(1) == Idx)
return IP;
if (IP == BlockBegin) break;
}
}
// Emit a GEP.
Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
InsertedValues.insert(GEP);
return GEP;
}
// Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
// because ScalarEvolution may have changed the address arithmetic to
// compute a value which is beyond the end of the allocated object.
Value *GEP = Builder.CreateGEP(V,
GepIndices.begin(),
GepIndices.end(),
"scevgep");
Ops.push_back(SE.getUnknown(GEP));
InsertedValues.insert(GEP);
return expand(SE.getAddExpr(Ops));
}
Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
int NumOperands = S->getNumOperands();
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
// Find the index of an operand to start with. Choose the operand with
// pointer type, if there is one, or the last operand otherwise.
int PIdx = 0;
for (; PIdx != NumOperands - 1; ++PIdx)
if (isa<PointerType>(S->getOperand(PIdx)->getType())) break;
// Expand code for the operand that we chose.
Value *V = expand(S->getOperand(PIdx));
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
// comments on expandAddToGEP for details.
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
// Take the operand at PIdx out of the list.
const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
SmallVector<const SCEV *, 8> NewOps;
NewOps.insert(NewOps.end(), Ops.begin(), Ops.begin() + PIdx);
NewOps.insert(NewOps.end(), Ops.begin() + PIdx + 1, Ops.end());
// Make a GEP.
return expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, V);
}
// Otherwise, we'll expand the rest of the SCEVAddExpr as plain integer
// arithmetic.
V = InsertNoopCastOfTo(V, Ty);
// Emit a bunch of add instructions
for (int i = NumOperands-1; i >= 0; --i) {
if (i == PIdx) continue;
Value *W = expandCodeFor(S->getOperand(i), Ty);
V = InsertBinop(Instruction::Add, V, W);
}
return V;
}
Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
int FirstOp = 0; // Set if we should emit a subtract.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
if (SC->getValue()->isAllOnesValue())
FirstOp = 1;
int i = S->getNumOperands()-2;
Value *V = expandCodeFor(S->getOperand(i+1), Ty);
// Emit a bunch of multiply instructions
for (; i >= FirstOp; --i) {
Value *W = expandCodeFor(S->getOperand(i), Ty);
V = InsertBinop(Instruction::Mul, V, W);
}
// -1 * ... ---> 0 - ...
if (FirstOp == 1)
V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
return V;
}
Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *LHS = expandCodeFor(S->getLHS(), Ty);
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
const APInt &RHS = SC->getValue()->getValue();
if (RHS.isPowerOf2())
return InsertBinop(Instruction::LShr, LHS,
ConstantInt::get(Ty, RHS.logBase2()));
}
Value *RHS = expandCodeFor(S->getRHS(), Ty);
return InsertBinop(Instruction::UDiv, LHS, RHS);
}
/// Move parts of Base into Rest to leave Base with the minimal
/// expression that provides a pointer operand suitable for a
/// GEP expansion.
static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
ScalarEvolution &SE) {
while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
Base = A->getStart();
Rest = SE.getAddExpr(Rest,
SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
A->getStepRecurrence(SE),
A->getLoop()));
}
if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
Base = A->getOperand(A->getNumOperands()-1);
SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
NewAddOps.back() = Rest;
Rest = SE.getAddExpr(NewAddOps);
ExposePointerBase(Base, Rest, SE);
}
}
Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
const Loop *L = S->getLoop();
// First check for an existing canonical IV in a suitable type.
PHINode *CanonicalIV = 0;
if (PHINode *PN = L->getCanonicalInductionVariable())
if (SE.isSCEVable(PN->getType()) &&
isa<IntegerType>(SE.getEffectiveSCEVType(PN->getType())) &&
SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
CanonicalIV = PN;
// Rewrite an AddRec in terms of the canonical induction variable, if
// its type is more narrow.
if (CanonicalIV &&
SE.getTypeSizeInBits(CanonicalIV->getType()) >
SE.getTypeSizeInBits(Ty)) {
const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
SmallVector<const SCEV *, 4> NewOps(Ops.size());
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
NewOps[i] = SE.getAnyExtendExpr(Ops[i], CanonicalIV->getType());
Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
BasicBlock::iterator NewInsertPt =
next(BasicBlock::iterator(cast<Instruction>(V)));
while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
NewInsertPt);
Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
return V;
}
// {X,+,F} --> X + {0,+,F}
if (!S->getStart()->isZero()) {
const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
NewOps[0] = SE.getIntegerSCEV(0, Ty);
const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
// comments on expandAddToGEP for details.
const SCEV *Base = S->getStart();
const SCEV *RestArray[1] = { Rest };
// Dig into the expression to find the pointer base for a GEP.
ExposePointerBase(Base, RestArray[0], SE);
// If we found a pointer, expand the AddRec with a GEP.
if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
// Make sure the Base isn't something exotic, such as a multiplied
// or divided pointer value. In those cases, the result type isn't
// actually a pointer type.
if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
Value *StartV = expand(Base);
assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
}
}
// Just do a normal add. Pre-expand the operands to suppress folding.
return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
SE.getUnknown(expand(Rest))));
}
// {0,+,1} --> Insert a canonical induction variable into the loop!
if (S->isAffine() &&
S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
// If there's a canonical IV, just use it.
if (CanonicalIV) {
assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
"IVs with types different from the canonical IV should "
"already have been handled!");
return CanonicalIV;
}
// Create and insert the PHI node for the induction variable in the
// specified loop.
BasicBlock *Header = L->getHeader();
PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
InsertedValues.insert(PN);
Constant *One = ConstantInt::get(Ty, 1);
for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
HPI != HPE; ++HPI)
if (L->contains(*HPI)) {
// Insert a unit add instruction right before the terminator corresponding
// to the back-edge.
Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
(*HPI)->getTerminator());
InsertedValues.insert(Add);
PN->addIncoming(Add, *HPI);
} else {
PN->addIncoming(Constant::getNullValue(Ty), *HPI);
}
}
// {0,+,F} --> {0,+,1} * F
// Get the canonical induction variable I for this loop.
Value *I = CanonicalIV ?
CanonicalIV :
getOrInsertCanonicalInductionVariable(L, Ty);
// If this is a simple linear addrec, emit it now as a special case.
if (S->isAffine()) // {0,+,F} --> i*F
return
expand(SE.getTruncateOrNoop(
SE.getMulExpr(SE.getUnknown(I),
SE.getNoopOrAnyExtend(S->getOperand(1),
I->getType())),
Ty));
// If this is a chain of recurrences, turn it into a closed form, using the
// folders, then expandCodeFor the closed form. This allows the folders to
// simplify the expression without having to build a bunch of special code
// into this folder.
const SCEV *IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
// Promote S up to the canonical IV type, if the cast is foldable.
const SCEV *NewS = S;
const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
if (isa<SCEVAddRecExpr>(Ext))
NewS = Ext;
const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
//cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
// Truncate the result down to the original type, if needed.
const SCEV *T = SE.getTruncateOrNoop(V, Ty);
return expand(T);
}
Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
Value *I = Builder.CreateTrunc(V, Ty, "tmp");
InsertedValues.insert(I);
return I;
}
Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
Value *I = Builder.CreateZExt(V, Ty, "tmp");
InsertedValues.insert(I);
return I;
}
Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
Value *I = Builder.CreateSExt(V, Ty, "tmp");
InsertedValues.insert(I);
return I;
}
Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
const Type *Ty = LHS->getType();
for (int i = S->getNumOperands()-2; i >= 0; --i) {
// In the case of mixed integer and pointer types, do the
// rest of the comparisons as integer.
if (S->getOperand(i)->getType() != Ty) {
Ty = SE.getEffectiveSCEVType(Ty);
LHS = InsertNoopCastOfTo(LHS, Ty);
}
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
InsertedValues.insert(ICmp);
Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
InsertedValues.insert(Sel);
LHS = Sel;
}
// In the case of mixed integer and pointer types, cast the
// final result back to the pointer type.
if (LHS->getType() != S->getType())
LHS = InsertNoopCastOfTo(LHS, S->getType());
return LHS;
}
Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
const Type *Ty = LHS->getType();
for (int i = S->getNumOperands()-2; i >= 0; --i) {
// In the case of mixed integer and pointer types, do the
// rest of the comparisons as integer.
if (S->getOperand(i)->getType() != Ty) {
Ty = SE.getEffectiveSCEVType(Ty);
LHS = InsertNoopCastOfTo(LHS, Ty);
}
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
InsertedValues.insert(ICmp);
Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
InsertedValues.insert(Sel);
LHS = Sel;
}
// In the case of mixed integer and pointer types, cast the
// final result back to the pointer type.
if (LHS->getType() != S->getType())
LHS = InsertNoopCastOfTo(LHS, S->getType());
return LHS;
}
Value *SCEVExpander::visitFieldOffsetExpr(const SCEVFieldOffsetExpr *S) {
return ConstantExpr::getOffsetOf(S->getStructType(), S->getFieldNo());
}
Value *SCEVExpander::visitAllocSizeExpr(const SCEVAllocSizeExpr *S) {
return ConstantExpr::getSizeOf(S->getAllocType());
}
Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
// Expand the code for this SCEV.
Value *V = expand(SH);
if (Ty) {
assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
"non-trivial casts should be done with the SCEVs directly!");
V = InsertNoopCastOfTo(V, Ty);
}
return V;
}
Value *SCEVExpander::expand(const SCEV *S) {
// Compute an insertion point for this SCEV object. Hoist the instructions
// as far out in the loop nest as possible.
Instruction *InsertPt = Builder.GetInsertPoint();
for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
L = L->getParentLoop())
if (S->isLoopInvariant(L)) {
if (!L) break;
if (BasicBlock *Preheader = L->getLoopPreheader())
InsertPt = Preheader->getTerminator();
} else {
// If the SCEV is computable at this level, insert it into the header
// after the PHIs (and after any other instructions that we've inserted
// there) so that it is guaranteed to dominate any user inside the loop.
if (L && S->hasComputableLoopEvolution(L))
InsertPt = L->getHeader()->getFirstNonPHI();
while (isInsertedInstruction(InsertPt))
InsertPt = next(BasicBlock::iterator(InsertPt));
break;
}
// Check to see if we already expanded this here.
std::map<std::pair<const SCEV *, Instruction *>,
AssertingVH<Value> >::iterator I =
InsertedExpressions.find(std::make_pair(S, InsertPt));
if (I != InsertedExpressions.end())
return I->second;
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
// Expand the expression into instructions.
Value *V = visit(S);
// Remember the expanded value for this SCEV at this location.
InsertedExpressions[std::make_pair(S, InsertPt)] = V;
Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
return V;
}
/// getOrInsertCanonicalInductionVariable - This method returns the
/// canonical induction variable of the specified type for the specified
/// loop (inserting one if there is none). A canonical induction variable
/// starts at zero and steps by one on each iteration.
Value *
SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
const Type *Ty) {
assert(Ty->isInteger() && "Can only insert integer induction variables!");
const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
SE.getIntegerSCEV(1, Ty), L);
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
if (SaveInsertBB)
Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
return V;
}