llvm-project/llvm/test/CodeGen/X86/mul128.ll

167 lines
5.1 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown | FileCheck %s --check-prefix=X64
; RUN: llc < %s -mtriple=i386-unknown | FileCheck %s --check-prefix=X86
define i128 @foo(i128 %t, i128 %u) {
; X64-LABEL: foo:
; X64: # %bb.0:
; X64-NEXT: movq %rdx, %r8
; X64-NEXT: movq %rdi, %rax
; X64-NEXT: imulq %rdi, %rcx
; X64-NEXT: mulq %rdx
; X64-NEXT: addq %rcx, %rdx
; X64-NEXT: imulq %r8, %rsi
; X64-NEXT: addq %rsi, %rdx
; X64-NEXT: retq
;
; X86-LABEL: foo:
; X86: # %bb.0:
; X86-NEXT: pushl %ebp
; X86-NEXT: .cfi_def_cfa_offset 8
; X86-NEXT: pushl %ebx
; X86-NEXT: .cfi_def_cfa_offset 12
; X86-NEXT: pushl %edi
; X86-NEXT: .cfi_def_cfa_offset 16
; X86-NEXT: pushl %esi
; X86-NEXT: .cfi_def_cfa_offset 20
; X86-NEXT: subl $8, %esp
; X86-NEXT: .cfi_def_cfa_offset 28
; X86-NEXT: .cfi_offset %esi, -20
; X86-NEXT: .cfi_offset %edi, -16
; X86-NEXT: .cfi_offset %ebx, -12
; X86-NEXT: .cfi_offset %ebp, -8
; X86-NEXT: movl {{[0-9]+}}(%esp), %edx
; X86-NEXT: movl {{[0-9]+}}(%esp), %edi
; X86-NEXT: movl {{[0-9]+}}(%esp), %esi
; X86-NEXT: imull %edx, %esi
; X86-NEXT: movl %edi, %eax
; X86-NEXT: mull %edx
; X86-NEXT: movl %eax, %ebx
; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: imull %edi, %ecx
; X86-NEXT: addl %edx, %ecx
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: addl %esi, %ecx
; X86-NEXT: movl %eax, %esi
; X86-NEXT: imull {{[0-9]+}}(%esp), %esi
; X86-NEXT: movl {{[0-9]+}}(%esp), %ebp
; X86-NEXT: mull %ebp
; X86-NEXT: addl %esi, %edx
; X86-NEXT: movl {{[0-9]+}}(%esp), %edi
; X86-NEXT: imull %ebp, %edi
; X86-NEXT: addl %edx, %edi
; X86-NEXT: addl %ebx, %eax
; X86-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X86-NEXT: adcl %ecx, %edi
; X86-NEXT: movl %ebp, %eax
; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: mull %ecx
; X86-NEXT: movl %edx, %ebx
; X86-NEXT: movl %eax, (%esp) # 4-byte Spill
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: mull %ecx
; X86-NEXT: movl %edx, %esi
; X86-NEXT: movl %eax, %ecx
; X86-NEXT: addl %ebx, %ecx
; X86-NEXT: adcl $0, %esi
; X86-NEXT: movl %ebp, %eax
; X86-NEXT: mull {{[0-9]+}}(%esp)
; X86-NEXT: movl %edx, %ebx
; X86-NEXT: movl %eax, %ebp
; X86-NEXT: addl %ecx, %ebp
; X86-NEXT: adcl %esi, %ebx
; X86-NEXT: setb %cl
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
; X86-NEXT: mull {{[0-9]+}}(%esp)
; X86-NEXT: addl %ebx, %eax
; X86-NEXT: movzbl %cl, %ecx
; X86-NEXT: adcl %ecx, %edx
; X86-NEXT: addl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Folded Reload
; X86-NEXT: adcl %edi, %edx
; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: movl (%esp), %esi # 4-byte Reload
; X86-NEXT: movl %esi, (%ecx)
; X86-NEXT: movl %ebp, 4(%ecx)
; X86-NEXT: movl %eax, 8(%ecx)
; X86-NEXT: movl %edx, 12(%ecx)
; X86-NEXT: movl %ecx, %eax
; X86-NEXT: addl $8, %esp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X86-NEXT: .cfi_def_cfa_offset 20
; X86-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X86-NEXT: .cfi_def_cfa_offset 16
; X86-NEXT: popl %edi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X86-NEXT: .cfi_def_cfa_offset 12
; X86-NEXT: popl %ebx
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X86-NEXT: .cfi_def_cfa_offset 8
; X86-NEXT: popl %ebp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X86-NEXT: .cfi_def_cfa_offset 4
; X86-NEXT: retl $4
%k = mul i128 %t, %u
ret i128 %k
}
@aaa = external global i128
@bbb = external global i128
define void @PR13897() nounwind {
; X64-LABEL: PR13897:
; X64: # %bb.0: # %"0x0"
; X64-NEXT: movl {{.*}}(%rip), %ecx
; X64-NEXT: movabsq $4294967297, %rdx # imm = 0x100000001
; X64-NEXT: movq %rcx, %rax
; X64-NEXT: mulq %rdx
; X64-NEXT: addq %rcx, %rdx
; X64-NEXT: shlq $32, %rcx
; X64-NEXT: addq %rcx, %rdx
; X64-NEXT: movq %rax, {{.*}}(%rip)
; X64-NEXT: movq %rdx, aaa+{{.*}}(%rip)
; X64-NEXT: retq
;
; X86-LABEL: PR13897:
; X86: # %bb.0: # %"0x0"
; X86-NEXT: pushl %ebp
; X86-NEXT: pushl %ebx
; X86-NEXT: pushl %edi
; X86-NEXT: pushl %esi
; X86-NEXT: pushl %eax
; X86-NEXT: movl bbb, %eax
; X86-NEXT: movl %eax, (%esp) # 4-byte Spill
; X86-NEXT: movl $1, %ebx
; X86-NEXT: mull %ebx
; X86-NEXT: movl %edx, %esi
; X86-NEXT: movl %eax, %edi
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: mull %ebx
; X86-NEXT: movl %eax, %ebx
; X86-NEXT: addl %esi, %ebx
; X86-NEXT: movl %edx, %ebp
; X86-NEXT: adcl $0, %ebp
; X86-NEXT: addl %edi, %ebx
; X86-NEXT: adcl %esi, %ebp
; X86-NEXT: setb %cl
; X86-NEXT: addl %eax, %ebp
; X86-NEXT: movzbl %cl, %eax
; X86-NEXT: adcl %edx, %eax
; X86-NEXT: addl %edi, %ebp
; X86-NEXT: adcl %esi, %eax
; X86-NEXT: addl (%esp), %eax # 4-byte Folded Reload
; X86-NEXT: movl %edi, aaa
; X86-NEXT: movl %ebx, aaa+4
; X86-NEXT: movl %ebp, aaa+8
; X86-NEXT: movl %eax, aaa+12
; X86-NEXT: addl $4, %esp
; X86-NEXT: popl %esi
; X86-NEXT: popl %edi
; X86-NEXT: popl %ebx
; X86-NEXT: popl %ebp
; X86-NEXT: retl
"0x0":
%0 = load i128, i128* @bbb
%1 = and i128 %0, 4294967295
%2 = shl i128 %0, 96
%3 = mul i128 %1, 18446744078004518913
%4 = add i128 %3, %2
store i128 %4, i128* @aaa
ret void
}