llvm-project/clang/lib/Analysis/LiveVariables.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

622 lines
20 KiB
C++
Raw Normal View History

//=- LiveVariables.cpp - Live Variable Analysis for Source CFGs ----------*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements Live Variables analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <vector>
using namespace clang;
namespace {
class LiveVariablesImpl {
public:
AnalysisDeclContext &analysisContext;
llvm::ImmutableSet<const Expr *>::Factory ESetFact;
llvm::ImmutableSet<const VarDecl *>::Factory DSetFact;
llvm::ImmutableSet<const BindingDecl *>::Factory BSetFact;
llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues> blocksEndToLiveness;
llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues> blocksBeginToLiveness;
llvm::DenseMap<const Stmt *, LiveVariables::LivenessValues> stmtsToLiveness;
llvm::DenseMap<const DeclRefExpr *, unsigned> inAssignment;
const bool killAtAssign;
LiveVariables::LivenessValues
merge(LiveVariables::LivenessValues valsA,
LiveVariables::LivenessValues valsB);
LiveVariables::LivenessValues
runOnBlock(const CFGBlock *block, LiveVariables::LivenessValues val,
LiveVariables::Observer *obs = nullptr);
void dumpBlockLiveness(const SourceManager& M);
void dumpExprLiveness(const SourceManager& M);
LiveVariablesImpl(AnalysisDeclContext &ac, bool KillAtAssign)
: analysisContext(ac),
ESetFact(false), // Do not canonicalize ImmutableSets by default.
DSetFact(false), // This is a *major* performance win.
BSetFact(false), killAtAssign(KillAtAssign) {}
};
} // namespace
static LiveVariablesImpl &getImpl(void *x) {
return *((LiveVariablesImpl *) x);
}
//===----------------------------------------------------------------------===//
// Operations and queries on LivenessValues.
//===----------------------------------------------------------------------===//
bool LiveVariables::LivenessValues::isLive(const Expr *E) const {
return liveExprs.contains(E);
}
bool LiveVariables::LivenessValues::isLive(const VarDecl *D) const {
if (const auto *DD = dyn_cast<DecompositionDecl>(D)) {
bool alive = false;
for (const BindingDecl *BD : DD->bindings())
alive |= liveBindings.contains(BD);
return alive;
}
return liveDecls.contains(D);
}
namespace {
template <typename SET>
SET mergeSets(SET A, SET B) {
if (A.isEmpty())
return B;
for (typename SET::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
A = A.add(*it);
}
return A;
}
} // namespace
void LiveVariables::Observer::anchor() { }
LiveVariables::LivenessValues
LiveVariablesImpl::merge(LiveVariables::LivenessValues valsA,
LiveVariables::LivenessValues valsB) {
llvm::ImmutableSetRef<const Expr *> SSetRefA(
valsA.liveExprs.getRootWithoutRetain(), ESetFact.getTreeFactory()),
SSetRefB(valsB.liveExprs.getRootWithoutRetain(),
ESetFact.getTreeFactory());
llvm::ImmutableSetRef<const VarDecl *>
DSetRefA(valsA.liveDecls.getRootWithoutRetain(), DSetFact.getTreeFactory()),
DSetRefB(valsB.liveDecls.getRootWithoutRetain(), DSetFact.getTreeFactory());
llvm::ImmutableSetRef<const BindingDecl *>
BSetRefA(valsA.liveBindings.getRootWithoutRetain(), BSetFact.getTreeFactory()),
BSetRefB(valsB.liveBindings.getRootWithoutRetain(), BSetFact.getTreeFactory());
SSetRefA = mergeSets(SSetRefA, SSetRefB);
DSetRefA = mergeSets(DSetRefA, DSetRefB);
BSetRefA = mergeSets(BSetRefA, BSetRefB);
// asImmutableSet() canonicalizes the tree, allowing us to do an easy
// comparison afterwards.
return LiveVariables::LivenessValues(SSetRefA.asImmutableSet(),
DSetRefA.asImmutableSet(),
BSetRefA.asImmutableSet());
}
bool LiveVariables::LivenessValues::equals(const LivenessValues &V) const {
return liveExprs == V.liveExprs && liveDecls == V.liveDecls;
}
//===----------------------------------------------------------------------===//
// Query methods.
//===----------------------------------------------------------------------===//
static bool isAlwaysAlive(const VarDecl *D) {
return D->hasGlobalStorage();
}
bool LiveVariables::isLive(const CFGBlock *B, const VarDecl *D) {
return isAlwaysAlive(D) || getImpl(impl).blocksEndToLiveness[B].isLive(D);
}
bool LiveVariables::isLive(const Stmt *S, const VarDecl *D) {
return isAlwaysAlive(D) || getImpl(impl).stmtsToLiveness[S].isLive(D);
}
bool LiveVariables::isLive(const Stmt *Loc, const Expr *Val) {
return getImpl(impl).stmtsToLiveness[Loc].isLive(Val);
}
//===----------------------------------------------------------------------===//
// Dataflow computation.
//===----------------------------------------------------------------------===//
namespace {
class TransferFunctions : public StmtVisitor<TransferFunctions> {
LiveVariablesImpl &LV;
LiveVariables::LivenessValues &val;
LiveVariables::Observer *observer;
const CFGBlock *currentBlock;
public:
TransferFunctions(LiveVariablesImpl &im,
LiveVariables::LivenessValues &Val,
LiveVariables::Observer *Observer,
const CFGBlock *CurrentBlock)
: LV(im), val(Val), observer(Observer), currentBlock(CurrentBlock) {}
void VisitBinaryOperator(BinaryOperator *BO);
void VisitBlockExpr(BlockExpr *BE);
void VisitDeclRefExpr(DeclRefExpr *DR);
void VisitDeclStmt(DeclStmt *DS);
void VisitObjCForCollectionStmt(ObjCForCollectionStmt *OS);
void VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *UE);
void VisitUnaryOperator(UnaryOperator *UO);
void Visit(Stmt *S);
};
} // namespace
static const VariableArrayType *FindVA(QualType Ty) {
const Type *ty = Ty.getTypePtr();
while (const ArrayType *VT = dyn_cast<ArrayType>(ty)) {
if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(VT))
if (VAT->getSizeExpr())
return VAT;
ty = VT->getElementType().getTypePtr();
}
return nullptr;
}
static const Expr *LookThroughExpr(const Expr *E) {
while (E) {
if (const Expr *Ex = dyn_cast<Expr>(E))
E = Ex->IgnoreParens();
if (const FullExpr *FE = dyn_cast<FullExpr>(E)) {
E = FE->getSubExpr();
continue;
}
if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
E = OVE->getSourceExpr();
continue;
}
break;
}
return E;
}
static void AddLiveExpr(llvm::ImmutableSet<const Expr *> &Set,
llvm::ImmutableSet<const Expr *>::Factory &F,
const Expr *E) {
Set = F.add(Set, LookThroughExpr(E));
}
void TransferFunctions::Visit(Stmt *S) {
if (observer)
observer->observeStmt(S, currentBlock, val);
StmtVisitor<TransferFunctions>::Visit(S);
if (const auto *E = dyn_cast<Expr>(S)) {
val.liveExprs = LV.ESetFact.remove(val.liveExprs, E);
}
// Mark all children expressions live.
switch (S->getStmtClass()) {
default:
break;
case Stmt::StmtExprClass: {
// For statement expressions, look through the compound statement.
S = cast<StmtExpr>(S)->getSubStmt();
break;
}
case Stmt::CXXMemberCallExprClass: {
// Include the implicit "this" pointer as being live.
CXXMemberCallExpr *CE = cast<CXXMemberCallExpr>(S);
if (Expr *ImplicitObj = CE->getImplicitObjectArgument()) {
AddLiveExpr(val.liveExprs, LV.ESetFact, ImplicitObj);
}
break;
}
case Stmt::ObjCMessageExprClass: {
// In calls to super, include the implicit "self" pointer as being live.
ObjCMessageExpr *CE = cast<ObjCMessageExpr>(S);
if (CE->getReceiverKind() == ObjCMessageExpr::SuperInstance)
val.liveDecls = LV.DSetFact.add(val.liveDecls,
LV.analysisContext.getSelfDecl());
break;
}
case Stmt::DeclStmtClass: {
const DeclStmt *DS = cast<DeclStmt>(S);
if (const VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl())) {
for (const VariableArrayType* VA = FindVA(VD->getType());
VA != nullptr; VA = FindVA(VA->getElementType())) {
AddLiveExpr(val.liveExprs, LV.ESetFact, VA->getSizeExpr());
}
}
break;
}
case Stmt::PseudoObjectExprClass: {
// A pseudo-object operation only directly consumes its result
// expression.
Expr *child = cast<PseudoObjectExpr>(S)->getResultExpr();
if (!child) return;
if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(child))
child = OV->getSourceExpr();
child = child->IgnoreParens();
val.liveExprs = LV.ESetFact.add(val.liveExprs, child);
return;
}
// FIXME: These cases eventually shouldn't be needed.
case Stmt::ExprWithCleanupsClass: {
S = cast<ExprWithCleanups>(S)->getSubExpr();
break;
}
case Stmt::CXXBindTemporaryExprClass: {
S = cast<CXXBindTemporaryExpr>(S)->getSubExpr();
break;
}
case Stmt::UnaryExprOrTypeTraitExprClass: {
// No need to unconditionally visit subexpressions.
return;
}
case Stmt::IfStmtClass: {
// If one of the branches is an expression rather than a compound
// statement, it will be bad if we mark it as live at the terminator
// of the if-statement (i.e., immediately after the condition expression).
AddLiveExpr(val.liveExprs, LV.ESetFact, cast<IfStmt>(S)->getCond());
return;
}
case Stmt::WhileStmtClass: {
// If the loop body is an expression rather than a compound statement,
// it will be bad if we mark it as live at the terminator of the loop
// (i.e., immediately after the condition expression).
AddLiveExpr(val.liveExprs, LV.ESetFact, cast<WhileStmt>(S)->getCond());
return;
}
case Stmt::DoStmtClass: {
// If the loop body is an expression rather than a compound statement,
// it will be bad if we mark it as live at the terminator of the loop
// (i.e., immediately after the condition expression).
AddLiveExpr(val.liveExprs, LV.ESetFact, cast<DoStmt>(S)->getCond());
return;
}
case Stmt::ForStmtClass: {
// If the loop body is an expression rather than a compound statement,
// it will be bad if we mark it as live at the terminator of the loop
// (i.e., immediately after the condition expression).
AddLiveExpr(val.liveExprs, LV.ESetFact, cast<ForStmt>(S)->getCond());
return;
}
}
// HACK + FIXME: What is this? One could only guess that this is an attempt to
// fish for live values, for example, arguments from a call expression.
// Maybe we could take inspiration from UninitializedVariable analysis?
for (Stmt *Child : S->children()) {
if (const auto *E = dyn_cast_or_null<Expr>(Child))
AddLiveExpr(val.liveExprs, LV.ESetFact, E);
}
}
static bool writeShouldKill(const VarDecl *VD) {
return VD && !VD->getType()->isReferenceType() &&
!isAlwaysAlive(VD);
}
void TransferFunctions::VisitBinaryOperator(BinaryOperator *B) {
[analyzer][Liveness][NFC] Remove an unneeded pass to collect variables that appear in an assignment Suppose you stumble across a DeclRefExpr in the AST, that references a VarDecl. How would you know that that variable is written in the containing statement, or not? One trick would be to ascend the AST through Stmt::getParent, and see whether the variable appears on the left hand side of the assignment. Liveness does something similar, but instead of ascending the AST, it descends into it with a StmtVisitor, and after finding an assignment, it notes that the LHS appears in the context of an assignemnt. However, as [1] demonstrates, the analysis isn't ran on the AST of an entire function, but rather on CFG, where the order of the statements, visited in order, would make it impossible to know this information by descending. void f() { int i; i = 5; } `-FunctionDecl 0x55a6e1b070b8 <test.cpp:1:1, line:5:1> line:1:6 f 'void ()' `-CompoundStmt 0x55a6e1b07298 <col:10, line:5:1> |-DeclStmt 0x55a6e1b07220 <line:2:3, col:8> | `-VarDecl 0x55a6e1b071b8 <col:3, col:7> col:7 used i 'int' `-BinaryOperator 0x55a6e1b07278 <line:4:3, col:7> 'int' lvalue '=' |-DeclRefExpr 0x55a6e1b07238 <col:3> 'int' lvalue Var 0x55a6e1b071b8 'i' 'int' `-IntegerLiteral 0x55a6e1b07258 <col:7> 'int' 5 void f() [B2 (ENTRY)] Succs (1): B1 [B1] 1: int i; 2: 5 3: i 4: [B1.3] = [B1.2] Preds (1): B2 Succs (1): B0 [B0 (EXIT)] Preds (1): B1 You can see that the arguments (rightfully so, they need to be evaluated first) precede the assignment operator. For this reason, Liveness implemented a pass to scan the CFG and note which variables appear in an assignment. BUT. This problem only exists if we traverse a CFGBlock in order. And Liveness in fact does it reverse order. So a distinct pass is indeed unnecessary, we can note the appearance of the assignment by the time we reach the variable. [1] http://lists.llvm.org/pipermail/cfe-dev/2020-July/066330.html Differential Revision: https://reviews.llvm.org/D87518
2020-07-21 20:42:05 +08:00
if (LV.killAtAssign && B->getOpcode() == BO_Assign) {
if (const auto *DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParens())) {
LV.inAssignment[DR] = 1;
}
}
if (B->isAssignmentOp()) {
if (!LV.killAtAssign)
return;
// Assigning to a variable?
Expr *LHS = B->getLHS()->IgnoreParens();
if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
const Decl* D = DR->getDecl();
bool Killed = false;
if (const BindingDecl* BD = dyn_cast<BindingDecl>(D)) {
Killed = !BD->getType()->isReferenceType();
if (Killed)
val.liveBindings = LV.BSetFact.remove(val.liveBindings, BD);
} else if (const auto *VD = dyn_cast<VarDecl>(D)) {
Killed = writeShouldKill(VD);
if (Killed)
val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD);
}
if (Killed && observer)
observer->observerKill(DR);
}
}
}
void TransferFunctions::VisitBlockExpr(BlockExpr *BE) {
for (const VarDecl *VD :
LV.analysisContext.getReferencedBlockVars(BE->getBlockDecl())) {
if (isAlwaysAlive(VD))
continue;
val.liveDecls = LV.DSetFact.add(val.liveDecls, VD);
}
}
void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *DR) {
const Decl* D = DR->getDecl();
bool InAssignment = LV.inAssignment[DR];
if (const auto *BD = dyn_cast<BindingDecl>(D)) {
if (!InAssignment)
val.liveBindings = LV.BSetFact.add(val.liveBindings, BD);
} else if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (!InAssignment && !isAlwaysAlive(VD))
val.liveDecls = LV.DSetFact.add(val.liveDecls, VD);
}
}
void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
for (const auto *DI : DS->decls()) {
if (const auto *DD = dyn_cast<DecompositionDecl>(DI)) {
for (const auto *BD : DD->bindings())
val.liveBindings = LV.BSetFact.remove(val.liveBindings, BD);
} else if (const auto *VD = dyn_cast<VarDecl>(DI)) {
if (!isAlwaysAlive(VD))
val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD);
}
}
}
void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *OS) {
// Kill the iteration variable.
DeclRefExpr *DR = nullptr;
const VarDecl *VD = nullptr;
Stmt *element = OS->getElement();
if (DeclStmt *DS = dyn_cast<DeclStmt>(element)) {
2009-03-28 14:33:19 +08:00
VD = cast<VarDecl>(DS->getSingleDecl());
}
else if ((DR = dyn_cast<DeclRefExpr>(cast<Expr>(element)->IgnoreParens()))) {
VD = cast<VarDecl>(DR->getDecl());
}
if (VD) {
val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD);
if (observer && DR)
observer->observerKill(DR);
}
}
void TransferFunctions::
VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *UE)
{
// While sizeof(var) doesn't technically extend the liveness of 'var', it
// does extent the liveness of metadata if 'var' is a VariableArrayType.
// We handle that special case here.
if (UE->getKind() != UETT_SizeOf || UE->isArgumentType())
return;
const Expr *subEx = UE->getArgumentExpr();
if (subEx->getType()->isVariableArrayType()) {
assert(subEx->isLValue());
val.liveExprs = LV.ESetFact.add(val.liveExprs, subEx->IgnoreParens());
}
}
void TransferFunctions::VisitUnaryOperator(UnaryOperator *UO) {
// Treat ++/-- as a kill.
// Note we don't actually have to do anything if we don't have an observer,
// since a ++/-- acts as both a kill and a "use".
if (!observer)
return;
switch (UO->getOpcode()) {
default:
return;
case UO_PostInc:
case UO_PostDec:
case UO_PreInc:
case UO_PreDec:
break;
}
if (auto *DR = dyn_cast<DeclRefExpr>(UO->getSubExpr()->IgnoreParens())) {
const Decl *D = DR->getDecl();
if (isa<VarDecl>(D) || isa<BindingDecl>(D)) {
// Treat ++/-- as a kill.
observer->observerKill(DR);
}
}
}
LiveVariables::LivenessValues
LiveVariablesImpl::runOnBlock(const CFGBlock *block,
LiveVariables::LivenessValues val,
LiveVariables::Observer *obs) {
TransferFunctions TF(*this, val, obs, block);
// Visit the terminator (if any).
if (const Stmt *term = block->getTerminatorStmt())
TF.Visit(const_cast<Stmt*>(term));
// Apply the transfer function for all Stmts in the block.
for (CFGBlock::const_reverse_iterator it = block->rbegin(),
ei = block->rend(); it != ei; ++it) {
const CFGElement &elem = *it;
if (Optional<CFGAutomaticObjDtor> Dtor =
elem.getAs<CFGAutomaticObjDtor>()) {
val.liveDecls = DSetFact.add(val.liveDecls, Dtor->getVarDecl());
continue;
}
if (!elem.getAs<CFGStmt>())
continue;
const Stmt *S = elem.castAs<CFGStmt>().getStmt();
TF.Visit(const_cast<Stmt*>(S));
stmtsToLiveness[S] = val;
}
return val;
}
void LiveVariables::runOnAllBlocks(LiveVariables::Observer &obs) {
const CFG *cfg = getImpl(impl).analysisContext.getCFG();
for (CFG::const_iterator it = cfg->begin(), ei = cfg->end(); it != ei; ++it)
getImpl(impl).runOnBlock(*it, getImpl(impl).blocksEndToLiveness[*it], &obs);
}
LiveVariables::LiveVariables(void *im) : impl(im) {}
LiveVariables::~LiveVariables() {
delete (LiveVariablesImpl*) impl;
}
std::unique_ptr<LiveVariables>
LiveVariables::computeLiveness(AnalysisDeclContext &AC, bool killAtAssign) {
// No CFG? Bail out.
CFG *cfg = AC.getCFG();
if (!cfg)
return nullptr;
// The analysis currently has scalability issues for very large CFGs.
// Bail out if it looks too large.
if (cfg->getNumBlockIDs() > 300000)
return nullptr;
LiveVariablesImpl *LV = new LiveVariablesImpl(AC, killAtAssign);
// Construct the dataflow worklist. Enqueue the exit block as the
// start of the analysis.
BackwardDataflowWorklist worklist(*cfg, AC);
llvm::BitVector everAnalyzedBlock(cfg->getNumBlockIDs());
// FIXME: we should enqueue using post order.
[analyzer][Liveness][NFC] Remove an unneeded pass to collect variables that appear in an assignment Suppose you stumble across a DeclRefExpr in the AST, that references a VarDecl. How would you know that that variable is written in the containing statement, or not? One trick would be to ascend the AST through Stmt::getParent, and see whether the variable appears on the left hand side of the assignment. Liveness does something similar, but instead of ascending the AST, it descends into it with a StmtVisitor, and after finding an assignment, it notes that the LHS appears in the context of an assignemnt. However, as [1] demonstrates, the analysis isn't ran on the AST of an entire function, but rather on CFG, where the order of the statements, visited in order, would make it impossible to know this information by descending. void f() { int i; i = 5; } `-FunctionDecl 0x55a6e1b070b8 <test.cpp:1:1, line:5:1> line:1:6 f 'void ()' `-CompoundStmt 0x55a6e1b07298 <col:10, line:5:1> |-DeclStmt 0x55a6e1b07220 <line:2:3, col:8> | `-VarDecl 0x55a6e1b071b8 <col:3, col:7> col:7 used i 'int' `-BinaryOperator 0x55a6e1b07278 <line:4:3, col:7> 'int' lvalue '=' |-DeclRefExpr 0x55a6e1b07238 <col:3> 'int' lvalue Var 0x55a6e1b071b8 'i' 'int' `-IntegerLiteral 0x55a6e1b07258 <col:7> 'int' 5 void f() [B2 (ENTRY)] Succs (1): B1 [B1] 1: int i; 2: 5 3: i 4: [B1.3] = [B1.2] Preds (1): B2 Succs (1): B0 [B0 (EXIT)] Preds (1): B1 You can see that the arguments (rightfully so, they need to be evaluated first) precede the assignment operator. For this reason, Liveness implemented a pass to scan the CFG and note which variables appear in an assignment. BUT. This problem only exists if we traverse a CFGBlock in order. And Liveness in fact does it reverse order. So a distinct pass is indeed unnecessary, we can note the appearance of the assignment by the time we reach the variable. [1] http://lists.llvm.org/pipermail/cfe-dev/2020-July/066330.html Differential Revision: https://reviews.llvm.org/D87518
2020-07-21 20:42:05 +08:00
for (const CFGBlock *B : cfg->nodes()) {
worklist.enqueueBlock(B);
}
while (const CFGBlock *block = worklist.dequeue()) {
// Determine if the block's end value has changed. If not, we
// have nothing left to do for this block.
LivenessValues &prevVal = LV->blocksEndToLiveness[block];
// Merge the values of all successor blocks.
LivenessValues val;
for (CFGBlock::const_succ_iterator it = block->succ_begin(),
ei = block->succ_end(); it != ei; ++it) {
if (const CFGBlock *succ = *it) {
val = LV->merge(val, LV->blocksBeginToLiveness[succ]);
}
}
if (!everAnalyzedBlock[block->getBlockID()])
everAnalyzedBlock[block->getBlockID()] = true;
else if (prevVal.equals(val))
continue;
prevVal = val;
// Update the dataflow value for the start of this block.
LV->blocksBeginToLiveness[block] = LV->runOnBlock(block, val);
// Enqueue the value to the predecessors.
worklist.enqueuePredecessors(block);
}
return std::unique_ptr<LiveVariables>(new LiveVariables(LV));
}
void LiveVariables::dumpBlockLiveness(const SourceManager &M) {
getImpl(impl).dumpBlockLiveness(M);
}
void LiveVariablesImpl::dumpBlockLiveness(const SourceManager &M) {
std::vector<const CFGBlock *> vec;
for (llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues>::iterator
it = blocksEndToLiveness.begin(), ei = blocksEndToLiveness.end();
it != ei; ++it) {
vec.push_back(it->first);
}
llvm::sort(vec, [](const CFGBlock *A, const CFGBlock *B) {
return A->getBlockID() < B->getBlockID();
});
std::vector<const VarDecl*> declVec;
for (std::vector<const CFGBlock *>::iterator
it = vec.begin(), ei = vec.end(); it != ei; ++it) {
llvm::errs() << "\n[ B" << (*it)->getBlockID()
<< " (live variables at block exit) ]\n";
LiveVariables::LivenessValues vals = blocksEndToLiveness[*it];
declVec.clear();
for (llvm::ImmutableSet<const VarDecl *>::iterator si =
vals.liveDecls.begin(),
se = vals.liveDecls.end(); si != se; ++si) {
declVec.push_back(*si);
}
llvm::sort(declVec, [](const Decl *A, const Decl *B) {
return A->getBeginLoc() < B->getBeginLoc();
});
for (std::vector<const VarDecl*>::iterator di = declVec.begin(),
de = declVec.end(); di != de; ++di) {
llvm::errs() << " " << (*di)->getDeclName().getAsString()
<< " <";
(*di)->getLocation().print(llvm::errs(), M);
llvm::errs() << ">\n";
}
}
llvm::errs() << "\n";
}
void LiveVariables::dumpExprLiveness(const SourceManager &M) {
getImpl(impl).dumpExprLiveness(M);
}
void LiveVariablesImpl::dumpExprLiveness(const SourceManager &M) {
// Don't iterate over blockEndsToLiveness directly because it's not sorted.
for (const CFGBlock *B : *analysisContext.getCFG()) {
llvm::errs() << "\n[ B" << B->getBlockID()
<< " (live expressions at block exit) ]\n";
for (const Expr *E : blocksEndToLiveness[B].liveExprs) {
llvm::errs() << "\n";
E->dump();
}
llvm::errs() << "\n";
}
}
const void *LiveVariables::getTag() { static int x; return &x; }
const void *RelaxedLiveVariables::getTag() { static int x; return &x; }