llvm-project/mlir/lib/Transforms/CSE.cpp

239 lines
8.2 KiB
C++
Raw Normal View History

//===- CSE.cpp - Common Sub-expression Elimination ------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This transformation pass performs a simple common sub-expression elimination
// algorithm on operations within a function.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Dominance.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/Functional.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/RecyclingAllocator.h"
#include <deque>
using namespace mlir;
namespace {
// TODO(riverriddle) Handle commutative operations.
struct SimpleOperationInfo : public llvm::DenseMapInfo<Instruction *> {
static unsigned getHashValue(const Instruction *op) {
// Hash the operations based upon their:
// - Instruction Name
// - Attributes
// - Result Types
// - Operands
return hash_combine(
op->getName(), op->getAttrs(),
hash_combine_range(op->result_type_begin(), op->result_type_end()),
hash_combine_range(op->operand_begin(), op->operand_end()));
}
static bool isEqual(const Instruction *lhs, const Instruction *rhs) {
if (lhs == rhs)
return true;
if (lhs == getTombstoneKey() || lhs == getEmptyKey() ||
rhs == getTombstoneKey() || rhs == getEmptyKey())
return false;
// Compare the operation name.
if (lhs->getName() != rhs->getName())
return false;
// Check operand and result type counts.
if (lhs->getNumOperands() != rhs->getNumOperands() ||
lhs->getNumResults() != rhs->getNumResults())
return false;
// Compare attributes.
if (lhs->getAttrs() != rhs->getAttrs())
return false;
// Compare operands.
if (!std::equal(lhs->operand_begin(), lhs->operand_end(),
rhs->operand_begin()))
return false;
// Compare result types.
return std::equal(lhs->result_type_begin(), lhs->result_type_end(),
rhs->result_type_begin());
}
};
} // end anonymous namespace
namespace {
/// Simple common sub-expression elimination.
struct CSE : public FunctionPass {
CSE() : FunctionPass(&CSE::passID) {}
constexpr static PassID passID = {};
/// Shared implementation of operation elimination and scoped map definitions.
using AllocatorTy = llvm::RecyclingAllocator<
llvm::BumpPtrAllocator,
llvm::ScopedHashTableVal<Instruction *, Instruction *>>;
using ScopedMapTy = llvm::ScopedHashTable<Instruction *, Instruction *,
SimpleOperationInfo, AllocatorTy>;
/// Represents a single entry in the depth first traversal of a CFG.
struct CFGStackNode {
CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node)
: scope(knownValues), node(node), childIterator(node->begin()),
processed(false) {}
/// Scope for the known values.
ScopedMapTy::ScopeTy scope;
DominanceInfoNode *node;
DominanceInfoNode::iterator childIterator;
/// If this node has been fully processed yet or not.
bool processed;
};
/// Attempt to eliminate a redundant operation. Returns true if the operation
/// was marked for removal, false otherwise.
bool simplifyOperation(Instruction *op);
void simplifyBlock(DominanceInfo &domInfo, Block *bb);
void simplifyBlockList(DominanceInfo &domInfo, BlockList &blockList);
PassResult runOnFunction(Function *f) override;
private:
/// A scoped hash table of defining operations within a function.
ScopedMapTy knownValues;
/// Operations marked as dead and to be erased.
std::vector<Instruction *> opsToErase;
};
} // end anonymous namespace
/// Attempt to eliminate a redundant operation.
bool CSE::simplifyOperation(Instruction *op) {
// TODO(riverriddle) We currently only eliminate non side-effecting
// operations.
if (!op->hasNoSideEffect())
return false;
// If the operation is already trivially dead just add it to the erase list.
if (op->use_empty()) {
opsToErase.push_back(op);
return true;
}
// Look for an existing definition for the operation.
if (auto *existing = knownValues.lookup(op)) {
// If we find one then replace all uses of the current operation with the
// existing one and mark it for deletion.
for (unsigned i = 0, e = existing->getNumResults(); i != e; ++i)
op->getResult(i)->replaceAllUsesWith(existing->getResult(i));
opsToErase.push_back(op);
// If the existing operation has an unknown location and the current
// operation doesn't, then set the existing op's location to that of the
// current op.
if (existing->getLoc().isa<UnknownLoc>() &&
!op->getLoc().isa<UnknownLoc>()) {
existing->setLoc(op->getLoc());
}
return true;
}
// Otherwise, we add this operation to the known values map.
knownValues.insert(op, op);
return false;
}
void CSE::simplifyBlock(DominanceInfo &domInfo, Block *bb) {
for (auto &i : *bb) {
// If the operation is simplified, we don't process any held block lists.
if (simplifyOperation(&i))
continue;
// Simplify any held blocks.
for (auto &blockList : i.getBlockLists())
simplifyBlockList(domInfo, blockList);
}
}
void CSE::simplifyBlockList(DominanceInfo &domInfo, BlockList &blockList) {
// If the block list is empty there is nothing to do.
if (blockList.empty())
return;
// If the block list only contains one block, then simplify it directly.
if (std::next(blockList.begin()) == blockList.end()) {
ScopedMapTy::ScopeTy scope(knownValues);
simplifyBlock(domInfo, &blockList.front());
return;
}
// Note, deque is being used here because there was significant performance
// gains over vector when the container becomes very large due to the
// specific access patterns. If/when these performance issues are no
// longer a problem we can change this to vector. For more information see
// the llvm mailing list discussion on this:
// http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
std::deque<std::unique_ptr<CFGStackNode>> stack;
// Process the nodes of the dom tree for this blocklist.
stack.emplace_back(std::make_unique<CFGStackNode>(
knownValues, domInfo.getRootNode(&blockList)));
while (!stack.empty()) {
auto &currentNode = stack.back();
// Check to see if we need to process this node.
if (!currentNode->processed) {
currentNode->processed = true;
simplifyBlock(domInfo, currentNode->node->getBlock());
}
// Otherwise, check to see if we need to process a child node.
if (currentNode->childIterator != currentNode->node->end()) {
auto *childNode = *(currentNode->childIterator++);
stack.emplace_back(
std::make_unique<CFGStackNode>(knownValues, childNode));
} else {
// Finally, if the node and all of its children have been processed
// then we delete the node.
stack.pop_back();
}
}
}
PassResult CSE::runOnFunction(Function *f) {
DominanceInfo domInfo(f);
simplifyBlockList(domInfo, f->getBlockList());
/// Erase any operations that were marked as dead during simplification.
for (auto *op : opsToErase)
op->erase();
opsToErase.clear();
return success();
}
FunctionPass *mlir::createCSEPass() { return new CSE(); }
static PassRegistration<CSE>
pass("cse", "Eliminate common sub-expressions in functions");