llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp

2269 lines
84 KiB
C++
Raw Normal View History

//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This defines CStringChecker, which is an assortment of checks on calls
// to functions in <string.h>.
//
//===----------------------------------------------------------------------===//
#include "ClangSACheckers.h"
#include "InterCheckerAPI.h"
#include "clang/Basic/CharInfo.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
namespace {
class CStringChecker : public Checker< eval::Call,
check::PreStmt<DeclStmt>,
check::LiveSymbols,
check::DeadSymbols,
check::RegionChanges
> {
mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
BT_NotCString, BT_AdditionOverflow;
mutable const char *CurrentFunctionDescription;
public:
/// The filter is used to filter out the diagnostics which are not enabled by
/// the user.
struct CStringChecksFilter {
DefaultBool CheckCStringNullArg;
DefaultBool CheckCStringOutOfBounds;
DefaultBool CheckCStringBufferOverlap;
DefaultBool CheckCStringNotNullTerm;
CheckName CheckNameCStringNullArg;
CheckName CheckNameCStringOutOfBounds;
CheckName CheckNameCStringBufferOverlap;
CheckName CheckNameCStringNotNullTerm;
};
CStringChecksFilter Filter;
static void *getTag() { static int tag; return &tag; }
bool evalCall(const CallExpr *CE, CheckerContext &C) const;
void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
ProgramStateRef
checkRegionChanges(ProgramStateRef state,
const InvalidatedSymbols *,
ArrayRef<const MemRegion *> ExplicitRegions,
ArrayRef<const MemRegion *> Regions,
const LocationContext *LCtx,
const CallEvent *Call) const;
typedef void (CStringChecker::*FnCheck)(CheckerContext &,
const CallExpr *) const;
void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
ProgramStateRef state,
const Expr *Size,
const Expr *Source,
const Expr *Dest,
bool Restricted = false,
bool IsMempcpy = false) const;
void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
void evalstrLengthCommon(CheckerContext &C,
const CallExpr *CE,
bool IsStrnlen = false) const;
void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
void evalStrcpyCommon(CheckerContext &C,
const CallExpr *CE,
bool returnEnd,
bool isBounded,
bool isAppending) const;
void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
void evalStrcmpCommon(CheckerContext &C,
const CallExpr *CE,
bool isBounded = false,
bool ignoreCase = false) const;
void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
void evalMemset(CheckerContext &C, const CallExpr *CE) const;
// Utility methods
std::pair<ProgramStateRef , ProgramStateRef >
static assumeZero(CheckerContext &C,
ProgramStateRef state, SVal V, QualType Ty);
static ProgramStateRef setCStringLength(ProgramStateRef state,
const MemRegion *MR,
SVal strLength);
static SVal getCStringLengthForRegion(CheckerContext &C,
ProgramStateRef &state,
const Expr *Ex,
const MemRegion *MR,
bool hypothetical);
SVal getCStringLength(CheckerContext &C,
ProgramStateRef &state,
const Expr *Ex,
SVal Buf,
bool hypothetical = false) const;
const StringLiteral *getCStringLiteral(CheckerContext &C,
ProgramStateRef &state,
const Expr *expr,
SVal val) const;
static ProgramStateRef InvalidateBuffer(CheckerContext &C,
ProgramStateRef state,
const Expr *Ex, SVal V,
bool IsSourceBuffer,
const Expr *Size);
static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
const MemRegion *MR);
// Re-usable checks
ProgramStateRef checkNonNull(CheckerContext &C,
ProgramStateRef state,
const Expr *S,
SVal l) const;
ProgramStateRef CheckLocation(CheckerContext &C,
ProgramStateRef state,
const Expr *S,
SVal l,
const char *message = nullptr) const;
ProgramStateRef CheckBufferAccess(CheckerContext &C,
ProgramStateRef state,
const Expr *Size,
const Expr *FirstBuf,
const Expr *SecondBuf,
const char *firstMessage = nullptr,
const char *secondMessage = nullptr,
bool WarnAboutSize = false) const;
ProgramStateRef CheckBufferAccess(CheckerContext &C,
ProgramStateRef state,
const Expr *Size,
const Expr *Buf,
const char *message = nullptr,
bool WarnAboutSize = false) const {
// This is a convenience override.
return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr,
WarnAboutSize);
}
ProgramStateRef CheckOverlap(CheckerContext &C,
ProgramStateRef state,
const Expr *Size,
const Expr *First,
const Expr *Second) const;
void emitOverlapBug(CheckerContext &C,
ProgramStateRef state,
const Stmt *First,
const Stmt *Second) const;
ProgramStateRef checkAdditionOverflow(CheckerContext &C,
ProgramStateRef state,
NonLoc left,
NonLoc right) const;
// Return true if the destination buffer of the copy function may be in bound.
// Expects SVal of Size to be positive and unsigned.
// Expects SVal of FirstBuf to be a FieldRegion.
static bool IsFirstBufInBound(CheckerContext &C,
ProgramStateRef state,
const Expr *FirstBuf,
const Expr *Size);
};
} //end anonymous namespace
REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
//===----------------------------------------------------------------------===//
// Individual checks and utility methods.
//===----------------------------------------------------------------------===//
std::pair<ProgramStateRef , ProgramStateRef >
CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
QualType Ty) {
Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
if (!val)
return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
SValBuilder &svalBuilder = C.getSValBuilder();
DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
return state->assume(svalBuilder.evalEQ(state, *val, zero));
}
ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
ProgramStateRef state,
const Expr *S, SVal l) const {
// If a previous check has failed, propagate the failure.
if (!state)
return nullptr;
ProgramStateRef stateNull, stateNonNull;
std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
if (stateNull && !stateNonNull) {
if (!Filter.CheckCStringNullArg)
return nullptr;
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode(stateNull);
if (!N)
return nullptr;
if (!BT_Null)
BT_Null.reset(new BuiltinBug(
Filter.CheckNameCStringNullArg, categories::UnixAPI,
"Null pointer argument in call to byte string function"));
SmallString<80> buf;
llvm::raw_svector_ostream os(buf);
assert(CurrentFunctionDescription);
os << "Null pointer argument in call to " << CurrentFunctionDescription;
// Generate a report for this bug.
BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
auto report = llvm::make_unique<BugReport>(*BT, os.str(), N);
report->addRange(S->getSourceRange());
bugreporter::trackNullOrUndefValue(N, S, *report);
C.emitReport(std::move(report));
return nullptr;
}
// From here on, assume that the value is non-null.
assert(stateNonNull);
return stateNonNull;
}
// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
ProgramStateRef state,
const Expr *S, SVal l,
const char *warningMsg) const {
// If a previous check has failed, propagate the failure.
if (!state)
return nullptr;
// Check for out of bound array element access.
const MemRegion *R = l.getAsRegion();
if (!R)
return state;
const ElementRegion *ER = dyn_cast<ElementRegion>(R);
if (!ER)
return state;
assert(ER->getValueType() == C.getASTContext().CharTy &&
"CheckLocation should only be called with char* ElementRegions");
// Get the size of the array.
const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
SValBuilder &svalBuilder = C.getSValBuilder();
SVal Extent =
svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>();
// Get the index of the accessed element.
DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
if (StOutBound && !StInBound) {
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode(StOutBound);
if (!N)
return nullptr;
if (!BT_Bounds) {
BT_Bounds.reset(new BuiltinBug(
Filter.CheckNameCStringOutOfBounds, "Out-of-bound array access",
"Byte string function accesses out-of-bound array element"));
}
BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
// Generate a report for this bug.
std::unique_ptr<BugReport> report;
if (warningMsg) {
report = llvm::make_unique<BugReport>(*BT, warningMsg, N);
} else {
assert(CurrentFunctionDescription);
assert(CurrentFunctionDescription[0] != '\0');
SmallString<80> buf;
llvm::raw_svector_ostream os(buf);
os << toUppercase(CurrentFunctionDescription[0])
<< &CurrentFunctionDescription[1]
<< " accesses out-of-bound array element";
report = llvm::make_unique<BugReport>(*BT, os.str(), N);
}
// FIXME: It would be nice to eventually make this diagnostic more clear,
// e.g., by referencing the original declaration or by saying *why* this
// reference is outside the range.
report->addRange(S->getSourceRange());
C.emitReport(std::move(report));
return nullptr;
}
// Array bound check succeeded. From this point forward the array bound
// should always succeed.
return StInBound;
}
ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
ProgramStateRef state,
const Expr *Size,
const Expr *FirstBuf,
const Expr *SecondBuf,
const char *firstMessage,
const char *secondMessage,
bool WarnAboutSize) const {
// If a previous check has failed, propagate the failure.
if (!state)
return nullptr;
SValBuilder &svalBuilder = C.getSValBuilder();
ASTContext &Ctx = svalBuilder.getContext();
const LocationContext *LCtx = C.getLocationContext();
QualType sizeTy = Size->getType();
QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
// Check that the first buffer is non-null.
SVal BufVal = state->getSVal(FirstBuf, LCtx);
state = checkNonNull(C, state, FirstBuf, BufVal);
if (!state)
return nullptr;
// If out-of-bounds checking is turned off, skip the rest.
if (!Filter.CheckCStringOutOfBounds)
return state;
// Get the access length and make sure it is known.
// FIXME: This assumes the caller has already checked that the access length
// is positive. And that it's unsigned.
SVal LengthVal = state->getSVal(Size, LCtx);
Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
if (!Length)
return state;
// Compute the offset of the last element to be accessed: size-1.
NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
NonLoc LastOffset = svalBuilder
.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>();
// Check that the first buffer is sufficiently long.
SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
LastOffset, PtrTy);
state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
// If the buffer isn't large enough, abort.
if (!state)
return nullptr;
}
// If there's a second buffer, check it as well.
if (SecondBuf) {
BufVal = state->getSVal(SecondBuf, LCtx);
state = checkNonNull(C, state, SecondBuf, BufVal);
if (!state)
return nullptr;
BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
LastOffset, PtrTy);
state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
}
}
// Large enough or not, return this state!
return state;
}
ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
ProgramStateRef state,
const Expr *Size,
const Expr *First,
const Expr *Second) const {
if (!Filter.CheckCStringBufferOverlap)
return state;
// Do a simple check for overlap: if the two arguments are from the same
// buffer, see if the end of the first is greater than the start of the second
// or vice versa.
// If a previous check has failed, propagate the failure.
if (!state)
return nullptr;
ProgramStateRef stateTrue, stateFalse;
// Get the buffer values and make sure they're known locations.
const LocationContext *LCtx = C.getLocationContext();
SVal firstVal = state->getSVal(First, LCtx);
SVal secondVal = state->getSVal(Second, LCtx);
Optional<Loc> firstLoc = firstVal.getAs<Loc>();
if (!firstLoc)
return state;
Optional<Loc> secondLoc = secondVal.getAs<Loc>();
if (!secondLoc)
return state;
// Are the two values the same?
SValBuilder &svalBuilder = C.getSValBuilder();
std::tie(stateTrue, stateFalse) =
state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
if (stateTrue && !stateFalse) {
// If the values are known to be equal, that's automatically an overlap.
emitOverlapBug(C, stateTrue, First, Second);
return nullptr;
}
// assume the two expressions are not equal.
assert(stateFalse);
state = stateFalse;
// Which value comes first?
QualType cmpTy = svalBuilder.getConditionType();
SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
*firstLoc, *secondLoc, cmpTy);
Optional<DefinedOrUnknownSVal> reverseTest =
reverse.getAs<DefinedOrUnknownSVal>();
if (!reverseTest)
return state;
std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
if (stateTrue) {
if (stateFalse) {
// If we don't know which one comes first, we can't perform this test.
return state;
} else {
// Switch the values so that firstVal is before secondVal.
std::swap(firstLoc, secondLoc);
// Switch the Exprs as well, so that they still correspond.
std::swap(First, Second);
}
}
// Get the length, and make sure it too is known.
SVal LengthVal = state->getSVal(Size, LCtx);
Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
if (!Length)
return state;
// Convert the first buffer's start address to char*.
// Bail out if the cast fails.
ASTContext &Ctx = svalBuilder.getContext();
QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
First->getType());
Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
if (!FirstStartLoc)
return state;
// Compute the end of the first buffer. Bail out if THAT fails.
SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
*FirstStartLoc, *Length, CharPtrTy);
Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
if (!FirstEndLoc)
return state;
// Is the end of the first buffer past the start of the second buffer?
SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
*FirstEndLoc, *secondLoc, cmpTy);
Optional<DefinedOrUnknownSVal> OverlapTest =
Overlap.getAs<DefinedOrUnknownSVal>();
if (!OverlapTest)
return state;
std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
if (stateTrue && !stateFalse) {
// Overlap!
emitOverlapBug(C, stateTrue, First, Second);
return nullptr;
}
// assume the two expressions don't overlap.
assert(stateFalse);
return stateFalse;
}
void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
const Stmt *First, const Stmt *Second) const {
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode(state);
if (!N)
return;
if (!BT_Overlap)
BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
categories::UnixAPI, "Improper arguments"));
// Generate a report for this bug.
auto report = llvm::make_unique<BugReport>(
*BT_Overlap, "Arguments must not be overlapping buffers", N);
report->addRange(First->getSourceRange());
report->addRange(Second->getSourceRange());
C.emitReport(std::move(report));
}
ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
ProgramStateRef state,
NonLoc left,
NonLoc right) const {
// If out-of-bounds checking is turned off, skip the rest.
if (!Filter.CheckCStringOutOfBounds)
return state;
// If a previous check has failed, propagate the failure.
if (!state)
return nullptr;
SValBuilder &svalBuilder = C.getSValBuilder();
BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
QualType sizeTy = svalBuilder.getContext().getSizeType();
const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
SVal maxMinusRight;
if (right.getAs<nonloc::ConcreteInt>()) {
maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
sizeTy);
} else {
// Try switching the operands. (The order of these two assignments is
// important!)
maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
sizeTy);
left = right;
}
if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
QualType cmpTy = svalBuilder.getConditionType();
// If left > max - right, we have an overflow.
SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
*maxMinusRightNL, cmpTy);
ProgramStateRef stateOverflow, stateOkay;
std::tie(stateOverflow, stateOkay) =
state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
if (stateOverflow && !stateOkay) {
// We have an overflow. Emit a bug report.
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
ExplodedNode *N = C.generateErrorNode(stateOverflow);
if (!N)
return nullptr;
if (!BT_AdditionOverflow)
BT_AdditionOverflow.reset(
new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
"Sum of expressions causes overflow"));
// This isn't a great error message, but this should never occur in real
// code anyway -- you'd have to create a buffer longer than a size_t can
// represent, which is sort of a contradiction.
const char *warning =
"This expression will create a string whose length is too big to "
"be represented as a size_t";
// Generate a report for this bug.
C.emitReport(
llvm::make_unique<BugReport>(*BT_AdditionOverflow, warning, N));
return nullptr;
}
// From now on, assume an overflow didn't occur.
assert(stateOkay);
state = stateOkay;
}
return state;
}
ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
const MemRegion *MR,
SVal strLength) {
assert(!strLength.isUndef() && "Attempt to set an undefined string length");
MR = MR->StripCasts();
switch (MR->getKind()) {
case MemRegion::StringRegionKind:
// FIXME: This can happen if we strcpy() into a string region. This is
// undefined [C99 6.4.5p6], but we should still warn about it.
return state;
case MemRegion::SymbolicRegionKind:
case MemRegion::AllocaRegionKind:
case MemRegion::VarRegionKind:
case MemRegion::FieldRegionKind:
case MemRegion::ObjCIvarRegionKind:
// These are the types we can currently track string lengths for.
break;
case MemRegion::ElementRegionKind:
// FIXME: Handle element regions by upper-bounding the parent region's
// string length.
return state;
default:
// Other regions (mostly non-data) can't have a reliable C string length.
// For now, just ignore the change.
// FIXME: These are rare but not impossible. We should output some kind of
// warning for things like strcpy((char[]){'a', 0}, "b");
return state;
}
if (strLength.isUnknown())
return state->remove<CStringLength>(MR);
return state->set<CStringLength>(MR, strLength);
}
SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
ProgramStateRef &state,
const Expr *Ex,
const MemRegion *MR,
bool hypothetical) {
if (!hypothetical) {
// If there's a recorded length, go ahead and return it.
const SVal *Recorded = state->get<CStringLength>(MR);
if (Recorded)
return *Recorded;
}
// Otherwise, get a new symbol and update the state.
SValBuilder &svalBuilder = C.getSValBuilder();
QualType sizeTy = svalBuilder.getContext().getSizeType();
SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
MR, Ex, sizeTy,
C.getLocationContext(),
C.blockCount());
if (!hypothetical) {
if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
// In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
fourInt);
NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
maxLength, sizeTy);
state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
}
state = state->set<CStringLength>(MR, strLength);
}
return strLength;
}
SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
const Expr *Ex, SVal Buf,
bool hypothetical) const {
const MemRegion *MR = Buf.getAsRegion();
if (!MR) {
// If we can't get a region, see if it's something we /know/ isn't a
// C string. In the context of locations, the only time we can issue such
// a warning is for labels.
if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
if (!Filter.CheckCStringNotNullTerm)
return UndefinedVal();
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) {
if (!BT_NotCString)
BT_NotCString.reset(new BuiltinBug(
Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
"Argument is not a null-terminated string."));
SmallString<120> buf;
llvm::raw_svector_ostream os(buf);
assert(CurrentFunctionDescription);
os << "Argument to " << CurrentFunctionDescription
<< " is the address of the label '" << Label->getLabel()->getName()
<< "', which is not a null-terminated string";
// Generate a report for this bug.
auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N);
report->addRange(Ex->getSourceRange());
C.emitReport(std::move(report));
}
return UndefinedVal();
}
// If it's not a region and not a label, give up.
return UnknownVal();
}
// If we have a region, strip casts from it and see if we can figure out
// its length. For anything we can't figure out, just return UnknownVal.
MR = MR->StripCasts();
switch (MR->getKind()) {
case MemRegion::StringRegionKind: {
// Modifying the contents of string regions is undefined [C99 6.4.5p6],
// so we can assume that the byte length is the correct C string length.
SValBuilder &svalBuilder = C.getSValBuilder();
QualType sizeTy = svalBuilder.getContext().getSizeType();
const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
}
case MemRegion::SymbolicRegionKind:
case MemRegion::AllocaRegionKind:
case MemRegion::VarRegionKind:
case MemRegion::FieldRegionKind:
case MemRegion::ObjCIvarRegionKind:
return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
case MemRegion::CompoundLiteralRegionKind:
// FIXME: Can we track this? Is it necessary?
return UnknownVal();
case MemRegion::ElementRegionKind:
// FIXME: How can we handle this? It's not good enough to subtract the
// offset from the base string length; consider "123\x00567" and &a[5].
return UnknownVal();
default:
// Other regions (mostly non-data) can't have a reliable C string length.
// In this case, an error is emitted and UndefinedVal is returned.
// The caller should always be prepared to handle this case.
if (!Filter.CheckCStringNotNullTerm)
return UndefinedVal();
[analyzer] Add generateErrorNode() APIs to CheckerContext. The analyzer trims unnecessary nodes from the exploded graph before reporting path diagnostics. However, in some cases it can trim all nodes (including the error node), leading to an assertion failure (see https://llvm.org/bugs/show_bug.cgi?id=24184). This commit addresses the issue by adding two new APIs to CheckerContext to explicitly create error nodes. Unless the client provides a custom tag, these APIs tag the node with the checker's tag -- preventing it from being trimmed. The generateErrorNode() method creates a sink error node, while generateNonFatalErrorNode() creates an error node for a path that should continue being explored. The intent is that one of these two methods should be used whenever a checker creates an error node. This commit updates the checkers to use these APIs. These APIs (unlike addTransition() and generateSink()) do not take an explicit Pred node. This is because there are not any error nodes in the checkers that were created with an explicit different than the default (the CheckerContext's Pred node). It also changes generateSink() to require state and pred nodes (previously these were optional) to reduce confusion. Additionally, there were several cases where checkers did check whether a generated node could be null; we now explicitly check for null in these places. This commit also includes a test case written by Ying Yi as part of http://reviews.llvm.org/D12163 (that patch originally addressed this issue but was reverted because it introduced false positive regressions). Differential Revision: http://reviews.llvm.org/D12780 llvm-svn: 247859
2015-09-17 06:03:05 +08:00
if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) {
if (!BT_NotCString)
BT_NotCString.reset(new BuiltinBug(
Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
"Argument is not a null-terminated string."));
SmallString<120> buf;
llvm::raw_svector_ostream os(buf);
assert(CurrentFunctionDescription);
os << "Argument to " << CurrentFunctionDescription << " is ";
if (SummarizeRegion(os, C.getASTContext(), MR))
os << ", which is not a null-terminated string";
else
os << "not a null-terminated string";
// Generate a report for this bug.
auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N);
report->addRange(Ex->getSourceRange());
C.emitReport(std::move(report));
}
return UndefinedVal();
}
}
const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
ProgramStateRef &state, const Expr *expr, SVal val) const {
// Get the memory region pointed to by the val.
const MemRegion *bufRegion = val.getAsRegion();
if (!bufRegion)
return nullptr;
// Strip casts off the memory region.
bufRegion = bufRegion->StripCasts();
// Cast the memory region to a string region.
const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
if (!strRegion)
return nullptr;
// Return the actual string in the string region.
return strRegion->getStringLiteral();
}
bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
ProgramStateRef state,
const Expr *FirstBuf,
const Expr *Size) {
// If we do not know that the buffer is long enough we return 'true'.
// Otherwise the parent region of this field region would also get
// invalidated, which would lead to warnings based on an unknown state.
// Originally copied from CheckBufferAccess and CheckLocation.
SValBuilder &svalBuilder = C.getSValBuilder();
ASTContext &Ctx = svalBuilder.getContext();
const LocationContext *LCtx = C.getLocationContext();
QualType sizeTy = Size->getType();
QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
SVal BufVal = state->getSVal(FirstBuf, LCtx);
SVal LengthVal = state->getSVal(Size, LCtx);
Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
if (!Length)
return true; // cf top comment.
// Compute the offset of the last element to be accessed: size-1.
NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
NonLoc LastOffset =
svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy)
.castAs<NonLoc>();
// Check that the first buffer is sufficiently long.
SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
Optional<Loc> BufLoc = BufStart.getAs<Loc>();
if (!BufLoc)
return true; // cf top comment.
SVal BufEnd =
svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
// Check for out of bound array element access.
const MemRegion *R = BufEnd.getAsRegion();
if (!R)
return true; // cf top comment.
const ElementRegion *ER = dyn_cast<ElementRegion>(R);
if (!ER)
return true; // cf top comment.
assert(ER->getValueType() == C.getASTContext().CharTy &&
"IsFirstBufInBound should only be called with char* ElementRegions");
// Get the size of the array.
const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
SVal Extent =
svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>();
// Get the index of the accessed element.
DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true);
return static_cast<bool>(StInBound);
}
ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
ProgramStateRef state,
const Expr *E, SVal V,
bool IsSourceBuffer,
const Expr *Size) {
Optional<Loc> L = V.getAs<Loc>();
if (!L)
return state;
// FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
// some assumptions about the value that CFRefCount can't. Even so, it should
// probably be refactored.
if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
const MemRegion *R = MR->getRegion()->StripCasts();
// Are we dealing with an ElementRegion? If so, we should be invalidating
// the super-region.
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
R = ER->getSuperRegion();
// FIXME: What about layers of ElementRegions?
}
// Invalidate this region.
const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
bool CausesPointerEscape = false;
RegionAndSymbolInvalidationTraits ITraits;
// Invalidate and escape only indirect regions accessible through the source
// buffer.
if (IsSourceBuffer) {
ITraits.setTrait(R->getBaseRegion(),
RegionAndSymbolInvalidationTraits::TK_PreserveContents);
ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
CausesPointerEscape = true;
} else {
const MemRegion::Kind& K = R->getKind();
if (K == MemRegion::FieldRegionKind)
if (Size && IsFirstBufInBound(C, state, E, Size)) {
// If destination buffer is a field region and access is in bound,
// do not invalidate its super region.
ITraits.setTrait(
R,
RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
}
}
return state->invalidateRegions(R, E, C.blockCount(), LCtx,
CausesPointerEscape, nullptr, nullptr,
&ITraits);
}
// If we have a non-region value by chance, just remove the binding.
// FIXME: is this necessary or correct? This handles the non-Region
// cases. Is it ever valid to store to these?
return state->killBinding(*L);
}
bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
const MemRegion *MR) {
const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
switch (MR->getKind()) {
case MemRegion::FunctionCodeRegionKind: {
const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
if (FD)
os << "the address of the function '" << *FD << '\'';
else
os << "the address of a function";
return true;
}
case MemRegion::BlockCodeRegionKind:
os << "block text";
return true;
case MemRegion::BlockDataRegionKind:
os << "a block";
return true;
case MemRegion::CXXThisRegionKind:
case MemRegion::CXXTempObjectRegionKind:
os << "a C++ temp object of type " << TVR->getValueType().getAsString();
return true;
case MemRegion::VarRegionKind:
os << "a variable of type" << TVR->getValueType().getAsString();
return true;
case MemRegion::FieldRegionKind:
os << "a field of type " << TVR->getValueType().getAsString();
return true;
case MemRegion::ObjCIvarRegionKind:
os << "an instance variable of type " << TVR->getValueType().getAsString();
return true;
default:
return false;
}
}
//===----------------------------------------------------------------------===//
// evaluation of individual function calls.
//===----------------------------------------------------------------------===//
void CStringChecker::evalCopyCommon(CheckerContext &C,
const CallExpr *CE,
ProgramStateRef state,
const Expr *Size, const Expr *Dest,
const Expr *Source, bool Restricted,
bool IsMempcpy) const {
CurrentFunctionDescription = "memory copy function";
// See if the size argument is zero.
const LocationContext *LCtx = C.getLocationContext();
SVal sizeVal = state->getSVal(Size, LCtx);
QualType sizeTy = Size->getType();
ProgramStateRef stateZeroSize, stateNonZeroSize;
std::tie(stateZeroSize, stateNonZeroSize) =
assumeZero(C, state, sizeVal, sizeTy);
// Get the value of the Dest.
SVal destVal = state->getSVal(Dest, LCtx);
// If the size is zero, there won't be any actual memory access, so
// just bind the return value to the destination buffer and return.
if (stateZeroSize && !stateNonZeroSize) {
stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
C.addTransition(stateZeroSize);
return;
}
// If the size can be nonzero, we have to check the other arguments.
if (stateNonZeroSize) {
state = stateNonZeroSize;
// Ensure the destination is not null. If it is NULL there will be a
// NULL pointer dereference.
state = checkNonNull(C, state, Dest, destVal);
if (!state)
return;
// Get the value of the Src.
SVal srcVal = state->getSVal(Source, LCtx);
// Ensure the source is not null. If it is NULL there will be a
// NULL pointer dereference.
state = checkNonNull(C, state, Source, srcVal);
if (!state)
return;
// Ensure the accesses are valid and that the buffers do not overlap.
const char * const writeWarning =
"Memory copy function overflows destination buffer";
state = CheckBufferAccess(C, state, Size, Dest, Source,
writeWarning, /* sourceWarning = */ nullptr);
if (Restricted)
state = CheckOverlap(C, state, Size, Dest, Source);
if (!state)
return;
// If this is mempcpy, get the byte after the last byte copied and
// bind the expr.
if (IsMempcpy) {
// Get the byte after the last byte copied.
SValBuilder &SvalBuilder = C.getSValBuilder();
ASTContext &Ctx = SvalBuilder.getContext();
QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
SVal DestRegCharVal =
SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType());
SVal lastElement = C.getSValBuilder().evalBinOp(
state, BO_Add, DestRegCharVal, sizeVal, Dest->getType());
// If we don't know how much we copied, we can at least
// conjure a return value for later.
if (lastElement.isUnknown())
lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
C.blockCount());
// The byte after the last byte copied is the return value.
state = state->BindExpr(CE, LCtx, lastElement);
} else {
// All other copies return the destination buffer.
// (Well, bcopy() has a void return type, but this won't hurt.)
state = state->BindExpr(CE, LCtx, destVal);
}
// Invalidate the destination (regular invalidation without pointer-escaping
// the address of the top-level region).
// FIXME: Even if we can't perfectly model the copy, we should see if we
// can use LazyCompoundVals to copy the source values into the destination.
// This would probably remove any existing bindings past the end of the
// copied region, but that's still an improvement over blank invalidation.
state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest),
/*IsSourceBuffer*/false, Size);
// Invalidate the source (const-invalidation without const-pointer-escaping
// the address of the top-level region).
state = InvalidateBuffer(C, state, Source, C.getSVal(Source),
/*IsSourceBuffer*/true, nullptr);
C.addTransition(state);
}
}
void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 3)
return;
// void *memcpy(void *restrict dst, const void *restrict src, size_t n);
// The return value is the address of the destination buffer.
const Expr *Dest = CE->getArg(0);
ProgramStateRef state = C.getState();
evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
}
void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 3)
return;
// void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
// The return value is a pointer to the byte following the last written byte.
const Expr *Dest = CE->getArg(0);
ProgramStateRef state = C.getState();
evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
}
void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 3)
return;
// void *memmove(void *dst, const void *src, size_t n);
// The return value is the address of the destination buffer.
const Expr *Dest = CE->getArg(0);
ProgramStateRef state = C.getState();
evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
}
void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 3)
return;
// void bcopy(const void *src, void *dst, size_t n);
evalCopyCommon(C, CE, C.getState(),
CE->getArg(2), CE->getArg(1), CE->getArg(0));
}
void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 3)
return;
// int memcmp(const void *s1, const void *s2, size_t n);
CurrentFunctionDescription = "memory comparison function";
const Expr *Left = CE->getArg(0);
const Expr *Right = CE->getArg(1);
const Expr *Size = CE->getArg(2);
ProgramStateRef state = C.getState();
SValBuilder &svalBuilder = C.getSValBuilder();
// See if the size argument is zero.
const LocationContext *LCtx = C.getLocationContext();
SVal sizeVal = state->getSVal(Size, LCtx);
QualType sizeTy = Size->getType();
ProgramStateRef stateZeroSize, stateNonZeroSize;
std::tie(stateZeroSize, stateNonZeroSize) =
assumeZero(C, state, sizeVal, sizeTy);
// If the size can be zero, the result will be 0 in that case, and we don't
// have to check either of the buffers.
if (stateZeroSize) {
state = stateZeroSize;
state = state->BindExpr(CE, LCtx,
svalBuilder.makeZeroVal(CE->getType()));
C.addTransition(state);
}
// If the size can be nonzero, we have to check the other arguments.
if (stateNonZeroSize) {
state = stateNonZeroSize;
// If we know the two buffers are the same, we know the result is 0.
// First, get the two buffers' addresses. Another checker will have already
// made sure they're not undefined.
DefinedOrUnknownSVal LV =
state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
DefinedOrUnknownSVal RV =
state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
// See if they are the same.
DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
ProgramStateRef StSameBuf, StNotSameBuf;
std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
// If the two arguments might be the same buffer, we know the result is 0,
// and we only need to check one size.
if (StSameBuf) {
state = StSameBuf;
state = CheckBufferAccess(C, state, Size, Left);
if (state) {
state = StSameBuf->BindExpr(CE, LCtx,
svalBuilder.makeZeroVal(CE->getType()));
C.addTransition(state);
}
}
// If the two arguments might be different buffers, we have to check the
// size of both of them.
if (StNotSameBuf) {
state = StNotSameBuf;
state = CheckBufferAccess(C, state, Size, Left, Right);
if (state) {
// The return value is the comparison result, which we don't know.
SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
C.blockCount());
state = state->BindExpr(CE, LCtx, CmpV);
C.addTransition(state);
}
}
}
}
void CStringChecker::evalstrLength(CheckerContext &C,
const CallExpr *CE) const {
if (CE->getNumArgs() < 1)
return;
// size_t strlen(const char *s);
evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
}
void CStringChecker::evalstrnLength(CheckerContext &C,
const CallExpr *CE) const {
if (CE->getNumArgs() < 2)
return;
// size_t strnlen(const char *s, size_t maxlen);
evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
}
void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
bool IsStrnlen) const {
CurrentFunctionDescription = "string length function";
ProgramStateRef state = C.getState();
const LocationContext *LCtx = C.getLocationContext();
if (IsStrnlen) {
const Expr *maxlenExpr = CE->getArg(1);
SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
ProgramStateRef stateZeroSize, stateNonZeroSize;
std::tie(stateZeroSize, stateNonZeroSize) =
assumeZero(C, state, maxlenVal, maxlenExpr->getType());
// If the size can be zero, the result will be 0 in that case, and we don't
// have to check the string itself.
if (stateZeroSize) {
SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
C.addTransition(stateZeroSize);
}
// If the size is GUARANTEED to be zero, we're done!
if (!stateNonZeroSize)
return;
// Otherwise, record the assumption that the size is nonzero.
state = stateNonZeroSize;
}
// Check that the string argument is non-null.
const Expr *Arg = CE->getArg(0);
SVal ArgVal = state->getSVal(Arg, LCtx);
state = checkNonNull(C, state, Arg, ArgVal);
if (!state)
return;
SVal strLength = getCStringLength(C, state, Arg, ArgVal);
// If the argument isn't a valid C string, there's no valid state to
// transition to.
if (strLength.isUndef())
return;
DefinedOrUnknownSVal result = UnknownVal();
// If the check is for strnlen() then bind the return value to no more than
// the maxlen value.
if (IsStrnlen) {
QualType cmpTy = C.getSValBuilder().getConditionType();
// It's a little unfortunate to be getting this again,
// but it's not that expensive...
const Expr *maxlenExpr = CE->getArg(1);
SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
if (strLengthNL && maxlenValNL) {
ProgramStateRef stateStringTooLong, stateStringNotTooLong;
// Check if the strLength is greater than the maxlen.
std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
C.getSValBuilder()
.evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
.castAs<DefinedOrUnknownSVal>());
if (stateStringTooLong && !stateStringNotTooLong) {
// If the string is longer than maxlen, return maxlen.
result = *maxlenValNL;
} else if (stateStringNotTooLong && !stateStringTooLong) {
// If the string is shorter than maxlen, return its length.
result = *strLengthNL;
}
}
if (result.isUnknown()) {
// If we don't have enough information for a comparison, there's
// no guarantee the full string length will actually be returned.
// All we know is the return value is the min of the string length
// and the limit. This is better than nothing.
result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
C.blockCount());
NonLoc resultNL = result.castAs<NonLoc>();
if (strLengthNL) {
state = state->assume(C.getSValBuilder().evalBinOpNN(
state, BO_LE, resultNL, *strLengthNL, cmpTy)
.castAs<DefinedOrUnknownSVal>(), true);
}
if (maxlenValNL) {
state = state->assume(C.getSValBuilder().evalBinOpNN(
state, BO_LE, resultNL, *maxlenValNL, cmpTy)
.castAs<DefinedOrUnknownSVal>(), true);
}
}
} else {
// This is a plain strlen(), not strnlen().
result = strLength.castAs<DefinedOrUnknownSVal>();
// If we don't know the length of the string, conjure a return
// value, so it can be used in constraints, at least.
if (result.isUnknown()) {
result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
C.blockCount());
}
}
// Bind the return value.
assert(!result.isUnknown() && "Should have conjured a value by now");
state = state->BindExpr(CE, LCtx, result);
C.addTransition(state);
}
void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 2)
return;
// char *strcpy(char *restrict dst, const char *restrict src);
evalStrcpyCommon(C, CE,
/* returnEnd = */ false,
/* isBounded = */ false,
/* isAppending = */ false);
}
void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 3)
return;
// char *strncpy(char *restrict dst, const char *restrict src, size_t n);
evalStrcpyCommon(C, CE,
/* returnEnd = */ false,
/* isBounded = */ true,
/* isAppending = */ false);
}
void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 2)
return;
// char *stpcpy(char *restrict dst, const char *restrict src);
evalStrcpyCommon(C, CE,
/* returnEnd = */ true,
/* isBounded = */ false,
/* isAppending = */ false);
}
void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 2)
return;
//char *strcat(char *restrict s1, const char *restrict s2);
evalStrcpyCommon(C, CE,
/* returnEnd = */ false,
/* isBounded = */ false,
/* isAppending = */ true);
}
void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 3)
return;
//char *strncat(char *restrict s1, const char *restrict s2, size_t n);
evalStrcpyCommon(C, CE,
/* returnEnd = */ false,
/* isBounded = */ true,
/* isAppending = */ true);
}
void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
bool returnEnd, bool isBounded,
bool isAppending) const {
CurrentFunctionDescription = "string copy function";
ProgramStateRef state = C.getState();
const LocationContext *LCtx = C.getLocationContext();
// Check that the destination is non-null.
const Expr *Dst = CE->getArg(0);
SVal DstVal = state->getSVal(Dst, LCtx);
state = checkNonNull(C, state, Dst, DstVal);
if (!state)
return;
// Check that the source is non-null.
const Expr *srcExpr = CE->getArg(1);
SVal srcVal = state->getSVal(srcExpr, LCtx);
state = checkNonNull(C, state, srcExpr, srcVal);
if (!state)
return;
// Get the string length of the source.
SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
// If the source isn't a valid C string, give up.
if (strLength.isUndef())
return;
SValBuilder &svalBuilder = C.getSValBuilder();
QualType cmpTy = svalBuilder.getConditionType();
QualType sizeTy = svalBuilder.getContext().getSizeType();
// These two values allow checking two kinds of errors:
// - actual overflows caused by a source that doesn't fit in the destination
// - potential overflows caused by a bound that could exceed the destination
SVal amountCopied = UnknownVal();
SVal maxLastElementIndex = UnknownVal();
const char *boundWarning = nullptr;
// If the function is strncpy, strncat, etc... it is bounded.
if (isBounded) {
// Get the max number of characters to copy.
const Expr *lenExpr = CE->getArg(2);
SVal lenVal = state->getSVal(lenExpr, LCtx);
// Protect against misdeclared strncpy().
lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
// If we know both values, we might be able to figure out how much
// we're copying.
if (strLengthNL && lenValNL) {
ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
// Check if the max number to copy is less than the length of the src.
// If the bound is equal to the source length, strncpy won't null-
// terminate the result!
std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
.castAs<DefinedOrUnknownSVal>());
if (stateSourceTooLong && !stateSourceNotTooLong) {
// Max number to copy is less than the length of the src, so the actual
// strLength copied is the max number arg.
state = stateSourceTooLong;
amountCopied = lenVal;
} else if (!stateSourceTooLong && stateSourceNotTooLong) {
// The source buffer entirely fits in the bound.
state = stateSourceNotTooLong;
amountCopied = strLength;
}
}
// We still want to know if the bound is known to be too large.
if (lenValNL) {
if (isAppending) {
// For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
// Get the string length of the destination. If the destination is
// memory that can't have a string length, we shouldn't be copying
// into it anyway.
SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
if (dstStrLength.isUndef())
return;
if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) {
maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
*lenValNL,
*dstStrLengthNL,
sizeTy);
boundWarning = "Size argument is greater than the free space in the "
"destination buffer";
}
} else {
// For strncpy, this is just checking that lenVal <= sizeof(dst)
// (Yes, strncpy and strncat differ in how they treat termination.
// strncat ALWAYS terminates, but strncpy doesn't.)
// We need a special case for when the copy size is zero, in which
// case strncpy will do no work at all. Our bounds check uses n-1
// as the last element accessed, so n == 0 is problematic.
ProgramStateRef StateZeroSize, StateNonZeroSize;
std::tie(StateZeroSize, StateNonZeroSize) =
assumeZero(C, state, *lenValNL, sizeTy);
// If the size is known to be zero, we're done.
if (StateZeroSize && !StateNonZeroSize) {
StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
C.addTransition(StateZeroSize);
return;
}
// Otherwise, go ahead and figure out the last element we'll touch.
// We don't record the non-zero assumption here because we can't
// be sure. We won't warn on a possible zero.
NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
one, sizeTy);
boundWarning = "Size argument is greater than the length of the "
"destination buffer";
}
}
// If we couldn't pin down the copy length, at least bound it.
// FIXME: We should actually run this code path for append as well, but
// right now it creates problems with constraints (since we can end up
// trying to pass constraints from symbol to symbol).
if (amountCopied.isUnknown() && !isAppending) {
// Try to get a "hypothetical" string length symbol, which we can later
// set as a real value if that turns out to be the case.
amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
assert(!amountCopied.isUndef());
if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) {
if (lenValNL) {
// amountCopied <= lenVal
SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
*amountCopiedNL,
*lenValNL,
cmpTy);
state = state->assume(
copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true);
if (!state)
return;
}
if (strLengthNL) {
// amountCopied <= strlen(source)
SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
*amountCopiedNL,
*strLengthNL,
cmpTy);
state = state->assume(
copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true);
if (!state)
return;
}
}
}
} else {
// The function isn't bounded. The amount copied should match the length
// of the source buffer.
amountCopied = strLength;
}
assert(state);
// This represents the number of characters copied into the destination
// buffer. (It may not actually be the strlen if the destination buffer
// is not terminated.)
SVal finalStrLength = UnknownVal();
// If this is an appending function (strcat, strncat...) then set the
// string length to strlen(src) + strlen(dst) since the buffer will
// ultimately contain both.
if (isAppending) {
// Get the string length of the destination. If the destination is memory
// that can't have a string length, we shouldn't be copying into it anyway.
SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
if (dstStrLength.isUndef())
return;
Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>();
Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
// If we know both string lengths, we might know the final string length.
if (srcStrLengthNL && dstStrLengthNL) {
// Make sure the two lengths together don't overflow a size_t.
state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
if (!state)
return;
finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
*dstStrLengthNL, sizeTy);
}
// If we couldn't get a single value for the final string length,
// we can at least bound it by the individual lengths.
if (finalStrLength.isUnknown()) {
// Try to get a "hypothetical" string length symbol, which we can later
// set as a real value if that turns out to be the case.
finalStrLength = getCStringLength(C, state, CE, DstVal, true);
assert(!finalStrLength.isUndef());
if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
if (srcStrLengthNL) {
// finalStrLength >= srcStrLength
SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
*finalStrLengthNL,
*srcStrLengthNL,
cmpTy);
state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
true);
if (!state)
return;
}
if (dstStrLengthNL) {
// finalStrLength >= dstStrLength
SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
*finalStrLengthNL,
*dstStrLengthNL,
cmpTy);
state =
state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
if (!state)
return;
}
}
}
} else {
// Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
// the final string length will match the input string length.
finalStrLength = amountCopied;
}
// The final result of the function will either be a pointer past the last
// copied element, or a pointer to the start of the destination buffer.
SVal Result = (returnEnd ? UnknownVal() : DstVal);
assert(state);
// If the destination is a MemRegion, try to check for a buffer overflow and
// record the new string length.
if (Optional<loc::MemRegionVal> dstRegVal =
DstVal.getAs<loc::MemRegionVal>()) {
QualType ptrTy = Dst->getType();
// If we have an exact value on a bounded copy, use that to check for
// overflows, rather than our estimate about how much is actually copied.
if (boundWarning) {
if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
*maxLastNL, ptrTy);
state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
boundWarning);
if (!state)
return;
}
}
// Then, if the final length is known...
if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
*knownStrLength, ptrTy);
// ...and we haven't checked the bound, we'll check the actual copy.
if (!boundWarning) {
const char * const warningMsg =
"String copy function overflows destination buffer";
state = CheckLocation(C, state, Dst, lastElement, warningMsg);
if (!state)
return;
}
// If this is a stpcpy-style copy, the last element is the return value.
if (returnEnd)
Result = lastElement;
}
// Invalidate the destination (regular invalidation without pointer-escaping
// the address of the top-level region). This must happen before we set the
// C string length because invalidation will clear the length.
// FIXME: Even if we can't perfectly model the copy, we should see if we
// can use LazyCompoundVals to copy the source values into the destination.
// This would probably remove any existing bindings past the end of the
// string, but that's still an improvement over blank invalidation.
state = InvalidateBuffer(C, state, Dst, *dstRegVal,
/*IsSourceBuffer*/false, nullptr);
// Invalidate the source (const-invalidation without const-pointer-escaping
// the address of the top-level region).
state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true,
nullptr);
// Set the C string length of the destination, if we know it.
if (isBounded && !isAppending) {
// strncpy is annoying in that it doesn't guarantee to null-terminate
// the result string. If the original string didn't fit entirely inside
// the bound (including the null-terminator), we don't know how long the
// result is.
if (amountCopied != strLength)
finalStrLength = UnknownVal();
}
state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
}
assert(state);
// If this is a stpcpy-style copy, but we were unable to check for a buffer
// overflow, we still need a result. Conjure a return value.
if (returnEnd && Result.isUnknown()) {
Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
}
// Set the return value.
state = state->BindExpr(CE, LCtx, Result);
C.addTransition(state);
}
void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 2)
return;
//int strcmp(const char *s1, const char *s2);
evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
}
void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() < 3)
return;
//int strncmp(const char *s1, const char *s2, size_t n);
evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
}
void CStringChecker::evalStrcasecmp(CheckerContext &C,
const CallExpr *CE) const {
if (CE->getNumArgs() < 2)
return;
//int strcasecmp(const char *s1, const char *s2);
evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
}
void CStringChecker::evalStrncasecmp(CheckerContext &C,
const CallExpr *CE) const {
if (CE->getNumArgs() < 3)
return;
//int strncasecmp(const char *s1, const char *s2, size_t n);
evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
}
void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
bool isBounded, bool ignoreCase) const {
CurrentFunctionDescription = "string comparison function";
ProgramStateRef state = C.getState();
const LocationContext *LCtx = C.getLocationContext();
// Check that the first string is non-null
const Expr *s1 = CE->getArg(0);
SVal s1Val = state->getSVal(s1, LCtx);
state = checkNonNull(C, state, s1, s1Val);
if (!state)
return;
// Check that the second string is non-null.
const Expr *s2 = CE->getArg(1);
SVal s2Val = state->getSVal(s2, LCtx);
state = checkNonNull(C, state, s2, s2Val);
if (!state)
return;
// Get the string length of the first string or give up.
SVal s1Length = getCStringLength(C, state, s1, s1Val);
if (s1Length.isUndef())
return;
// Get the string length of the second string or give up.
SVal s2Length = getCStringLength(C, state, s2, s2Val);
if (s2Length.isUndef())
return;
// If we know the two buffers are the same, we know the result is 0.
// First, get the two buffers' addresses. Another checker will have already
// made sure they're not undefined.
DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
// See if they are the same.
SValBuilder &svalBuilder = C.getSValBuilder();
DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
ProgramStateRef StSameBuf, StNotSameBuf;
std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
// If the two arguments might be the same buffer, we know the result is 0,
// and we only need to check one size.
if (StSameBuf) {
StSameBuf = StSameBuf->BindExpr(CE, LCtx,
svalBuilder.makeZeroVal(CE->getType()));
C.addTransition(StSameBuf);
// If the two arguments are GUARANTEED to be the same, we're done!
if (!StNotSameBuf)
return;
}
assert(StNotSameBuf);
state = StNotSameBuf;
// At this point we can go about comparing the two buffers.
// For now, we only do this if they're both known string literals.
// Attempt to extract string literals from both expressions.
const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
bool canComputeResult = false;
SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
C.blockCount());
if (s1StrLiteral && s2StrLiteral) {
StringRef s1StrRef = s1StrLiteral->getString();
StringRef s2StrRef = s2StrLiteral->getString();
if (isBounded) {
// Get the max number of characters to compare.
const Expr *lenExpr = CE->getArg(2);
SVal lenVal = state->getSVal(lenExpr, LCtx);
// If the length is known, we can get the right substrings.
if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
// Create substrings of each to compare the prefix.
s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
canComputeResult = true;
}
} else {
// This is a normal, unbounded strcmp.
canComputeResult = true;
}
if (canComputeResult) {
// Real strcmp stops at null characters.
size_t s1Term = s1StrRef.find('\0');
if (s1Term != StringRef::npos)
s1StrRef = s1StrRef.substr(0, s1Term);
size_t s2Term = s2StrRef.find('\0');
if (s2Term != StringRef::npos)
s2StrRef = s2StrRef.substr(0, s2Term);
// Use StringRef's comparison methods to compute the actual result.
int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef)
: s1StrRef.compare(s2StrRef);
// The strcmp function returns an integer greater than, equal to, or less
// than zero, [c11, p7.24.4.2].
if (compareRes == 0) {
resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
}
else {
DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
// Constrain strcmp's result range based on the result of StringRef's
// comparison methods.
BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT;
SVal compareWithZero =
svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
svalBuilder.getConditionType());
DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
state = state->assume(compareWithZeroVal, true);
}
}
}
state = state->BindExpr(CE, LCtx, resultVal);
// Record this as a possible path.
C.addTransition(state);
}
void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
//char *strsep(char **stringp, const char *delim);
if (CE->getNumArgs() < 2)
return;
// Sanity: does the search string parameter match the return type?
const Expr *SearchStrPtr = CE->getArg(0);
QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType();
if (CharPtrTy.isNull() ||
CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
return;
CurrentFunctionDescription = "strsep()";
ProgramStateRef State = C.getState();
const LocationContext *LCtx = C.getLocationContext();
// Check that the search string pointer is non-null (though it may point to
// a null string).
SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx);
State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
if (!State)
return;
// Check that the delimiter string is non-null.
const Expr *DelimStr = CE->getArg(1);
SVal DelimStrVal = State->getSVal(DelimStr, LCtx);
State = checkNonNull(C, State, DelimStr, DelimStrVal);
if (!State)
return;
SValBuilder &SVB = C.getSValBuilder();
SVal Result;
if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
// Get the current value of the search string pointer, as a char*.
Result = State->getSVal(*SearchStrLoc, CharPtrTy);
// Invalidate the search string, representing the change of one delimiter
// character to NUL.
State = InvalidateBuffer(C, State, SearchStrPtr, Result,
/*IsSourceBuffer*/false, nullptr);
// Overwrite the search string pointer. The new value is either an address
// further along in the same string, or NULL if there are no more tokens.
State = State->bindLoc(*SearchStrLoc,
SVB.conjureSymbolVal(getTag(),
CE,
LCtx,
CharPtrTy,
C.blockCount()),
LCtx);
} else {
assert(SearchStrVal.isUnknown());
// Conjure a symbolic value. It's the best we can do.
Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
}
// Set the return value, and finish.
State = State->BindExpr(CE, LCtx, Result);
C.addTransition(State);
}
// These should probably be moved into a C++ standard library checker.
void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
evalStdCopyCommon(C, CE);
}
void CStringChecker::evalStdCopyBackward(CheckerContext &C,
const CallExpr *CE) const {
evalStdCopyCommon(C, CE);
}
void CStringChecker::evalStdCopyCommon(CheckerContext &C,
const CallExpr *CE) const {
if (CE->getNumArgs() < 3)
return;
ProgramStateRef State = C.getState();
const LocationContext *LCtx = C.getLocationContext();
// template <class _InputIterator, class _OutputIterator>
// _OutputIterator
// copy(_InputIterator __first, _InputIterator __last,
// _OutputIterator __result)
// Invalidate the destination buffer
const Expr *Dst = CE->getArg(2);
SVal DstVal = State->getSVal(Dst, LCtx);
State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
/*Size=*/nullptr);
SValBuilder &SVB = C.getSValBuilder();
SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
State = State->BindExpr(CE, LCtx, ResultVal);
C.addTransition(State);
}
void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
if (CE->getNumArgs() != 3)
return;
CurrentFunctionDescription = "memory set function";
const Expr *Mem = CE->getArg(0);
const Expr *Size = CE->getArg(2);
ProgramStateRef State = C.getState();
// See if the size argument is zero.
const LocationContext *LCtx = C.getLocationContext();
SVal SizeVal = State->getSVal(Size, LCtx);
QualType SizeTy = Size->getType();
ProgramStateRef StateZeroSize, StateNonZeroSize;
std::tie(StateZeroSize, StateNonZeroSize) =
assumeZero(C, State, SizeVal, SizeTy);
// Get the value of the memory area.
SVal MemVal = State->getSVal(Mem, LCtx);
// If the size is zero, there won't be any actual memory access, so
// just bind the return value to the Mem buffer and return.
if (StateZeroSize && !StateNonZeroSize) {
StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal);
C.addTransition(StateZeroSize);
return;
}
// Ensure the memory area is not null.
// If it is NULL there will be a NULL pointer dereference.
State = checkNonNull(C, StateNonZeroSize, Mem, MemVal);
if (!State)
return;
State = CheckBufferAccess(C, State, Size, Mem);
if (!State)
return;
State = InvalidateBuffer(C, State, Mem, C.getSVal(Mem),
/*IsSourceBuffer*/false, Size);
if (!State)
return;
State = State->BindExpr(CE, LCtx, MemVal);
C.addTransition(State);
}
static bool isCPPStdLibraryFunction(const FunctionDecl *FD, StringRef Name) {
IdentifierInfo *II = FD->getIdentifier();
if (!II)
return false;
if (!AnalysisDeclContext::isInStdNamespace(FD))
return false;
if (II->getName().equals(Name))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// The driver method, and other Checker callbacks.
//===----------------------------------------------------------------------===//
bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
const FunctionDecl *FDecl = C.getCalleeDecl(CE);
if (!FDecl)
return false;
// FIXME: Poorly-factored string switches are slow.
FnCheck evalFunction = nullptr;
if (C.isCLibraryFunction(FDecl, "memcpy"))
evalFunction = &CStringChecker::evalMemcpy;
else if (C.isCLibraryFunction(FDecl, "mempcpy"))
evalFunction = &CStringChecker::evalMempcpy;
else if (C.isCLibraryFunction(FDecl, "memcmp"))
evalFunction = &CStringChecker::evalMemcmp;
else if (C.isCLibraryFunction(FDecl, "memmove"))
evalFunction = &CStringChecker::evalMemmove;
else if (C.isCLibraryFunction(FDecl, "memset"))
evalFunction = &CStringChecker::evalMemset;
else if (C.isCLibraryFunction(FDecl, "strcpy"))
evalFunction = &CStringChecker::evalStrcpy;
else if (C.isCLibraryFunction(FDecl, "strncpy"))
evalFunction = &CStringChecker::evalStrncpy;
else if (C.isCLibraryFunction(FDecl, "stpcpy"))
evalFunction = &CStringChecker::evalStpcpy;
else if (C.isCLibraryFunction(FDecl, "strcat"))
evalFunction = &CStringChecker::evalStrcat;
else if (C.isCLibraryFunction(FDecl, "strncat"))
evalFunction = &CStringChecker::evalStrncat;
else if (C.isCLibraryFunction(FDecl, "strlen"))
evalFunction = &CStringChecker::evalstrLength;
else if (C.isCLibraryFunction(FDecl, "strnlen"))
evalFunction = &CStringChecker::evalstrnLength;
else if (C.isCLibraryFunction(FDecl, "strcmp"))
evalFunction = &CStringChecker::evalStrcmp;
else if (C.isCLibraryFunction(FDecl, "strncmp"))
evalFunction = &CStringChecker::evalStrncmp;
else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
evalFunction = &CStringChecker::evalStrcasecmp;
else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
evalFunction = &CStringChecker::evalStrncasecmp;
else if (C.isCLibraryFunction(FDecl, "strsep"))
evalFunction = &CStringChecker::evalStrsep;
else if (C.isCLibraryFunction(FDecl, "bcopy"))
evalFunction = &CStringChecker::evalBcopy;
else if (C.isCLibraryFunction(FDecl, "bcmp"))
evalFunction = &CStringChecker::evalMemcmp;
else if (isCPPStdLibraryFunction(FDecl, "copy"))
evalFunction = &CStringChecker::evalStdCopy;
else if (isCPPStdLibraryFunction(FDecl, "copy_backward"))
evalFunction = &CStringChecker::evalStdCopyBackward;
// If the callee isn't a string function, let another checker handle it.
if (!evalFunction)
return false;
// Check and evaluate the call.
(this->*evalFunction)(C, CE);
// If the evaluate call resulted in no change, chain to the next eval call
// handler.
// Note, the custom CString evaluation calls assume that basic safety
// properties are held. However, if the user chooses to turn off some of these
// checks, we ignore the issues and leave the call evaluation to a generic
// handler.
return C.isDifferent();
}
void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
// Record string length for char a[] = "abc";
ProgramStateRef state = C.getState();
for (const auto *I : DS->decls()) {
const VarDecl *D = dyn_cast<VarDecl>(I);
if (!D)
continue;
// FIXME: Handle array fields of structs.
if (!D->getType()->isArrayType())
continue;
const Expr *Init = D->getInit();
if (!Init)
continue;
if (!isa<StringLiteral>(Init))
continue;
Loc VarLoc = state->getLValue(D, C.getLocationContext());
const MemRegion *MR = VarLoc.getAsRegion();
if (!MR)
continue;
SVal StrVal = state->getSVal(Init, C.getLocationContext());
assert(StrVal.isValid() && "Initializer string is unknown or undefined");
DefinedOrUnknownSVal strLength =
getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
state = state->set<CStringLength>(MR, strLength);
}
C.addTransition(state);
}
ProgramStateRef
CStringChecker::checkRegionChanges(ProgramStateRef state,
const InvalidatedSymbols *,
ArrayRef<const MemRegion *> ExplicitRegions,
ArrayRef<const MemRegion *> Regions,
const LocationContext *LCtx,
const CallEvent *Call) const {
CStringLengthTy Entries = state->get<CStringLength>();
if (Entries.isEmpty())
return state;
llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
// First build sets for the changed regions and their super-regions.
for (ArrayRef<const MemRegion *>::iterator
I = Regions.begin(), E = Regions.end(); I != E; ++I) {
const MemRegion *MR = *I;
Invalidated.insert(MR);
SuperRegions.insert(MR);
while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
MR = SR->getSuperRegion();
SuperRegions.insert(MR);
}
}
CStringLengthTy::Factory &F = state->get_context<CStringLength>();
// Then loop over the entries in the current state.
for (CStringLengthTy::iterator I = Entries.begin(),
E = Entries.end(); I != E; ++I) {
const MemRegion *MR = I.getKey();
// Is this entry for a super-region of a changed region?
if (SuperRegions.count(MR)) {
Entries = F.remove(Entries, MR);
continue;
}
// Is this entry for a sub-region of a changed region?
const MemRegion *Super = MR;
while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
Super = SR->getSuperRegion();
if (Invalidated.count(Super)) {
Entries = F.remove(Entries, MR);
break;
}
}
}
return state->set<CStringLength>(Entries);
}
void CStringChecker::checkLiveSymbols(ProgramStateRef state,
SymbolReaper &SR) const {
// Mark all symbols in our string length map as valid.
CStringLengthTy Entries = state->get<CStringLength>();
for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
I != E; ++I) {
SVal Len = I.getData();
for (SymExpr::symbol_iterator si = Len.symbol_begin(),
se = Len.symbol_end(); si != se; ++si)
SR.markInUse(*si);
}
}
void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
if (!SR.hasDeadSymbols())
return;
ProgramStateRef state = C.getState();
CStringLengthTy Entries = state->get<CStringLength>();
if (Entries.isEmpty())
return;
CStringLengthTy::Factory &F = state->get_context<CStringLength>();
for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
I != E; ++I) {
SVal Len = I.getData();
if (SymbolRef Sym = Len.getAsSymbol()) {
if (SR.isDead(Sym))
Entries = F.remove(Entries, I.getKey());
}
}
state = state->set<CStringLength>(Entries);
C.addTransition(state);
}
#define REGISTER_CHECKER(name) \
void ento::register##name(CheckerManager &mgr) { \
CStringChecker *checker = mgr.registerChecker<CStringChecker>(); \
checker->Filter.Check##name = true; \
checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \
}
REGISTER_CHECKER(CStringNullArg)
REGISTER_CHECKER(CStringOutOfBounds)
REGISTER_CHECKER(CStringBufferOverlap)
REGISTER_CHECKER(CStringNotNullTerm)
void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
registerCStringNullArg(Mgr);
}