llvm-project/bolt/lib/Passes/CacheMetrics.cpp

317 lines
12 KiB
C++
Raw Normal View History

//===------ CacheMetrics.cpp - Calculate metrics for instruction cache ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Functions to show metrics of cache lines
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/CacheMetrics.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "llvm/Support/CommandLine.h"
#include <unordered_map>
using namespace llvm;
using namespace bolt;
2017-12-02 08:54:08 +08:00
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<double> ForwardWeight;
extern cl::opt<double> BackwardWeight;
extern cl::opt<unsigned> ForwardDistance;
extern cl::opt<unsigned> BackwardDistance;
extern cl::opt<unsigned> ITLBPageSize;
extern cl::opt<unsigned> ITLBEntries;
2017-12-02 08:54:08 +08:00
}
namespace {
/// Initialize and return a position map for binary basic blocks
void extractBasicBlockInfo(
const std::vector<BinaryFunction *> &BinaryFunctions,
std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
for (BinaryFunction *BF : BinaryFunctions) {
const BinaryContext &BC = BF->getBinaryContext();
for (BinaryBasicBlock *BB : BF->layout()) {
if (BF->isSimple() || BC.HasRelocations) {
// Use addresses/sizes as in the output binary
BBAddr[BB] = BB->getOutputAddressRange().first;
BBSize[BB] = BB->getOutputSize();
} else {
// Output ranges should match the input if the body hasn't changed
BBAddr[BB] = BB->getInputAddressRange().first + BF->getAddress();
BBSize[BB] = BB->getOriginalSize();
}
}
}
}
/// Calculate TSP metric, which quantifies the number of fallthrough jumps in
/// the ordering of basic blocks
double calcTSPScore(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
double Score = 0;
for (BinaryFunction *BF : BinaryFunctions) {
if (!BF->hasProfile())
continue;
for (BinaryBasicBlock *SrcBB : BF->layout()) {
auto BI = SrcBB->branch_info_begin();
for (BinaryBasicBlock *DstBB : SrcBB->successors()) {
if (SrcBB != DstBB && BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
BBAddr.at(SrcBB) + BBSize.at(SrcBB) == BBAddr.at(DstBB))
Score += BI->Count;
++BI;
}
}
}
return Score;
}
2017-12-02 08:54:08 +08:00
/// Calculate Ext-TSP metric, which quantifies the expected number of i-cache
/// misses for a given ordering of basic blocks
double calcExtTSPScore(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
2017-12-02 08:54:08 +08:00
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
double Score = 0.0;
for (BinaryFunction *BF : BinaryFunctions) {
if (!BF->hasProfile())
continue;
for (BinaryBasicBlock *SrcBB : BF->layout()) {
auto BI = SrcBB->branch_info_begin();
for (BinaryBasicBlock *DstBB : SrcBB->successors()) {
if (DstBB != SrcBB) {
2017-12-02 08:54:08 +08:00
Score += CacheMetrics::extTSPScore(BBAddr.at(SrcBB),
BBSize.at(SrcBB),
BBAddr.at(DstBB),
BI->Count);
}
++BI;
}
}
}
return Score;
}
using Predecessors = std::vector<std::pair<BinaryFunction *, uint64_t>>;
/// Build a simplified version of the call graph: For every function, keep
/// its callers and the frequencies of the calls
std::unordered_map<const BinaryFunction *, Predecessors>
extractFunctionCalls(const std::vector<BinaryFunction *> &BinaryFunctions) {
std::unordered_map<const BinaryFunction *, Predecessors> Calls;
for (BinaryFunction *SrcFunction : BinaryFunctions) {
const BinaryContext &BC = SrcFunction->getBinaryContext();
for (BinaryBasicBlock *BB : SrcFunction->layout()) {
// Find call instructions and extract target symbols from each one
for (MCInst &Inst : *BB) {
if (!BC.MIB->isCall(Inst))
continue;
// Call info
const MCSymbol* DstSym = BC.MIB->getTargetSymbol(Inst);
uint64_t Count = BB->getKnownExecutionCount();
// Ignore calls w/o information
if (DstSym == nullptr || Count == 0)
continue;
const BinaryFunction *DstFunction = BC.getFunctionForSymbol(DstSym);
// Ignore recursive calls
if (DstFunction == nullptr ||
DstFunction->layout_empty() ||
DstFunction == SrcFunction)
continue;
// Record the call
Calls[DstFunction].emplace_back(SrcFunction, Count);
}
}
}
return Calls;
}
/// Compute expected hit ratio of the i-TLB cache (optimized by HFSortPlus alg).
/// Given an assignment of functions to the i-TLB pages), we divide all
/// functions calls into two categories:
/// - 'short' ones that have a caller-callee distance less than a page;
/// - 'long' ones where the distance exceeds a page.
/// The short calls are likely to result in a i-TLB cache hit. For the long ones,
/// the hit/miss result depends on the 'hotness' of the page (i.e., how often
/// the page is accessed). Assuming that functions are sent to the i-TLB cache
/// in a random order, the probability that a page is present in the cache is
/// proportional to the number of samples corresponding to the functions on the
/// page. The following procedure detects short and long calls, and estimates
/// the expected number of cache misses for the long ones.
double expectedCacheHitRatio(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
2017-12-02 08:54:08 +08:00
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
2017-12-02 08:54:08 +08:00
const double PageSize = opts::ITLBPageSize;
const uint64_t CacheEntries = opts::ITLBEntries;
std::unordered_map<const BinaryFunction *, Predecessors> Calls =
extractFunctionCalls(BinaryFunctions);
// Compute 'hotness' of the functions
double TotalSamples = 0;
std::unordered_map<BinaryFunction *, double> FunctionSamples;
for (BinaryFunction *BF : BinaryFunctions) {
double Samples = 0;
for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF]) {
Samples += Pair.second;
}
Samples = std::max(Samples, (double)BF->getKnownExecutionCount());
FunctionSamples[BF] = Samples;
TotalSamples += Samples;
}
// Compute 'hotness' of the pages
std::unordered_map<uint64_t, double> PageSamples;
for (BinaryFunction *BF : BinaryFunctions) {
if (BF->layout_empty())
continue;
double Page = BBAddr.at(BF->layout_front()) / PageSize;
PageSamples[Page] += FunctionSamples.at(BF);
}
// Computing the expected number of misses for every function
double Misses = 0;
for (BinaryFunction *BF : BinaryFunctions) {
// Skip the function if it has no samples
if (BF->layout_empty() || FunctionSamples.at(BF) == 0.0)
continue;
double Samples = FunctionSamples.at(BF);
double Page = BBAddr.at(BF->layout_front()) / PageSize;
// The probability that the page is not present in the cache
double MissProb = pow(1.0 - PageSamples[Page] / TotalSamples, CacheEntries);
// Processing all callers of the function
for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF]) {
BinaryFunction *SrcFunction = Pair.first;
double SrcPage = BBAddr.at(SrcFunction->layout_front()) / PageSize;
// Is this a 'long' or a 'short' call?
if (Page != SrcPage) {
// This is a miss
Misses += MissProb * Pair.second;
}
Samples -= Pair.second;
}
assert(Samples >= 0.0 && "Function samples computed incorrectly");
// The remaining samples likely come from the jitted code
Misses += Samples * MissProb;
}
return 100.0 * (1.0 - Misses / TotalSamples);
}
2017-12-02 08:54:08 +08:00
} // end namespace anonymous
double CacheMetrics::extTSPScore(uint64_t SrcAddr,
uint64_t SrcSize,
uint64_t DstAddr,
uint64_t Count) {
assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE);
// Fallthrough
if (SrcAddr + SrcSize == DstAddr) {
// Assume that FallthroughWeight = 1.0 after normalization
return static_cast<double>(Count);
2017-12-02 08:54:08 +08:00
}
// Forward
if (SrcAddr + SrcSize < DstAddr) {
const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
2017-12-02 08:54:08 +08:00
if (Dist <= opts::ForwardDistance) {
double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance;
return opts::ForwardWeight * Prob * Count;
}
return 0;
}
// Backward
const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
2017-12-02 08:54:08 +08:00
if (Dist <= opts::BackwardDistance) {
double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance;
return opts::BackwardWeight * Prob * Count;
}
return 0;
}
void CacheMetrics::printAll(const std::vector<BinaryFunction *> &BFs) {
// Stats related to hot-cold code splitting
size_t NumFunctions = 0;
size_t NumProfiledFunctions = 0;
size_t NumHotFunctions = 0;
size_t NumBlocks = 0;
size_t NumHotBlocks = 0;
size_t TotalCodeMinAddr = std::numeric_limits<size_t>::max();
size_t TotalCodeMaxAddr = 0;
size_t HotCodeMinAddr = std::numeric_limits<size_t>::max();
size_t HotCodeMaxAddr = 0;
for (BinaryFunction *BF : BFs) {
NumFunctions++;
if (BF->hasProfile())
NumProfiledFunctions++;
if (BF->hasValidIndex())
NumHotFunctions++;
for (BinaryBasicBlock *BB : BF->layout()) {
NumBlocks++;
size_t BBAddrMin = BB->getOutputAddressRange().first;
size_t BBAddrMax = BB->getOutputAddressRange().second;
TotalCodeMinAddr = std::min(TotalCodeMinAddr, BBAddrMin);
TotalCodeMaxAddr = std::max(TotalCodeMaxAddr, BBAddrMax);
if (BF->hasValidIndex() && !BB->isCold()) {
NumHotBlocks++;
HotCodeMinAddr = std::min(HotCodeMinAddr, BBAddrMin);
HotCodeMaxAddr = std::max(HotCodeMaxAddr, BBAddrMax);
}
}
}
outs() << format(" There are %zu functions;", NumFunctions)
<< format(" %zu (%.2lf%%) are in the hot section,",
NumHotFunctions, 100.0 * NumHotFunctions / NumFunctions)
<< format(" %zu (%.2lf%%) have profile\n",
NumProfiledFunctions, 100.0 * NumProfiledFunctions / NumFunctions);
outs() << format(" There are %zu basic blocks;", NumBlocks)
<< format(" %zu (%.2lf%%) are in the hot section\n",
NumHotBlocks, 100.0 * NumHotBlocks / NumBlocks);
assert(TotalCodeMinAddr <= TotalCodeMaxAddr && "incorrect output addresses");
size_t HotCodeSize = HotCodeMaxAddr - HotCodeMinAddr;
size_t TotalCodeSize = TotalCodeMaxAddr - TotalCodeMinAddr;
size_t HugePage2MB = 2 << 20;
outs() << format(" Hot code takes %.2lf%% of binary (%zu bytes out of %zu, %.2lf huge pages)\n",
100.0 * HotCodeSize / TotalCodeSize, HotCodeSize, TotalCodeSize,
double(HotCodeSize) / HugePage2MB);
// Stats related to expected cache performance
std::unordered_map<BinaryBasicBlock *, uint64_t> BBAddr;
std::unordered_map<BinaryBasicBlock *, uint64_t> BBSize;
extractBasicBlockInfo(BFs, BBAddr, BBSize);
2017-12-02 08:54:08 +08:00
outs() << " Expected i-TLB cache hit ratio: "
<< format("%.2lf%%\n", expectedCacheHitRatio(BFs, BBAddr, BBSize));
outs() << " TSP score: "
<< format("%.0lf\n", calcTSPScore(BFs, BBAddr, BBSize));
2017-12-02 08:54:08 +08:00
outs() << " ExtTSP score: "
<< format("%.0lf\n", calcExtTSPScore(BFs, BBAddr, BBSize));
}