llvm-project/llvm/lib/Target/ARM/ARMInstrNEON.td

5553 lines
253 KiB
TableGen
Raw Normal View History

//===- ARMInstrNEON.td - NEON support for ARM -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the ARM NEON instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// NEON-specific Operands.
//===----------------------------------------------------------------------===//
2011-10-18 05:00:11 +08:00
def nModImm : Operand<i32> {
let PrintMethod = "printNEONModImmOperand";
}
def nImmSplatI8AsmOperand : AsmOperandClass { let Name = "NEONi8splat"; }
def nImmSplatI8 : Operand<i32> {
let PrintMethod = "printNEONModImmOperand";
let ParserMatchClass = nImmSplatI8AsmOperand;
}
def nImmSplatI16AsmOperand : AsmOperandClass { let Name = "NEONi16splat"; }
def nImmSplatI16 : Operand<i32> {
let PrintMethod = "printNEONModImmOperand";
let ParserMatchClass = nImmSplatI16AsmOperand;
}
def nImmSplatI32AsmOperand : AsmOperandClass { let Name = "NEONi32splat"; }
def nImmSplatI32 : Operand<i32> {
let PrintMethod = "printNEONModImmOperand";
let ParserMatchClass = nImmSplatI32AsmOperand;
}
def nImmVMOVI32AsmOperand : AsmOperandClass { let Name = "NEONi32vmov"; }
def nImmVMOVI32 : Operand<i32> {
let PrintMethod = "printNEONModImmOperand";
let ParserMatchClass = nImmVMOVI32AsmOperand;
}
def nImmVMOVF32 : Operand<i32> {
let PrintMethod = "printFPImmOperand";
let ParserMatchClass = FPImmOperand;
}
def nImmSplatI64AsmOperand : AsmOperandClass { let Name = "NEONi64splat"; }
def nImmSplatI64 : Operand<i32> {
let PrintMethod = "printNEONModImmOperand";
let ParserMatchClass = nImmSplatI64AsmOperand;
}
def VectorIndex8Operand : AsmOperandClass { let Name = "VectorIndex8"; }
def VectorIndex16Operand : AsmOperandClass { let Name = "VectorIndex16"; }
def VectorIndex32Operand : AsmOperandClass { let Name = "VectorIndex32"; }
def VectorIndex8 : Operand<i32>, ImmLeaf<i32, [{
return ((uint64_t)Imm) < 8;
}]> {
let ParserMatchClass = VectorIndex8Operand;
let PrintMethod = "printVectorIndex";
let MIOperandInfo = (ops i32imm);
}
def VectorIndex16 : Operand<i32>, ImmLeaf<i32, [{
return ((uint64_t)Imm) < 4;
}]> {
let ParserMatchClass = VectorIndex16Operand;
let PrintMethod = "printVectorIndex";
let MIOperandInfo = (ops i32imm);
}
def VectorIndex32 : Operand<i32>, ImmLeaf<i32, [{
return ((uint64_t)Imm) < 2;
}]> {
let ParserMatchClass = VectorIndex32Operand;
let PrintMethod = "printVectorIndex";
let MIOperandInfo = (ops i32imm);
}
2011-11-30 07:33:40 +08:00
// Register list of one D register.
def VecListOneDAsmOperand : AsmOperandClass {
let Name = "VecListOneD";
let ParserMethod = "parseVectorList";
2011-11-30 07:51:09 +08:00
let RenderMethod = "addVecListOperands";
}
def VecListOneD : RegisterOperand<DPR, "printVectorListOne"> {
let ParserMatchClass = VecListOneDAsmOperand;
}
// Register list of two sequential D registers.
def VecListTwoDAsmOperand : AsmOperandClass {
let Name = "VecListTwoD";
let ParserMethod = "parseVectorList";
2011-11-30 07:51:09 +08:00
let RenderMethod = "addVecListOperands";
}
def VecListTwoD : RegisterOperand<DPR, "printVectorListTwo"> {
let ParserMatchClass = VecListTwoDAsmOperand;
}
// Register list of three sequential D registers.
def VecListThreeDAsmOperand : AsmOperandClass {
let Name = "VecListThreeD";
let ParserMethod = "parseVectorList";
2011-11-30 07:51:09 +08:00
let RenderMethod = "addVecListOperands";
}
def VecListThreeD : RegisterOperand<DPR, "printVectorListThree"> {
let ParserMatchClass = VecListThreeDAsmOperand;
}
// Register list of four sequential D registers.
def VecListFourDAsmOperand : AsmOperandClass {
let Name = "VecListFourD";
let ParserMethod = "parseVectorList";
2011-11-30 07:51:09 +08:00
let RenderMethod = "addVecListOperands";
}
def VecListFourD : RegisterOperand<DPR, "printVectorListFour"> {
let ParserMatchClass = VecListFourDAsmOperand;
}
// Register list of two D registers spaced by 2 (two sequential Q registers).
def VecListTwoQAsmOperand : AsmOperandClass {
let Name = "VecListTwoQ";
let ParserMethod = "parseVectorList";
2011-11-30 07:51:09 +08:00
let RenderMethod = "addVecListOperands";
}
def VecListTwoQ : RegisterOperand<DPR, "printVectorListTwo"> {
let ParserMatchClass = VecListTwoQAsmOperand;
}
// Register list of one D register, with "all lanes" subscripting.
def VecListOneDAllLanesAsmOperand : AsmOperandClass {
let Name = "VecListOneDAllLanes";
let ParserMethod = "parseVectorList";
let RenderMethod = "addVecListOperands";
}
def VecListOneDAllLanes : RegisterOperand<DPR, "printVectorListOneAllLanes"> {
let ParserMatchClass = VecListOneDAllLanesAsmOperand;
}
// Register list of two D registers, with "all lanes" subscripting.
def VecListTwoDAllLanesAsmOperand : AsmOperandClass {
let Name = "VecListTwoDAllLanes";
let ParserMethod = "parseVectorList";
let RenderMethod = "addVecListOperands";
}
def VecListTwoDAllLanes : RegisterOperand<DPR, "printVectorListTwoAllLanes"> {
let ParserMatchClass = VecListTwoDAllLanesAsmOperand;
}
//===----------------------------------------------------------------------===//
// NEON-specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDTARMVCMP : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<1, 2>]>;
def SDTARMVCMPZ : SDTypeProfile<1, 1, []>;
def NEONvceq : SDNode<"ARMISD::VCEQ", SDTARMVCMP>;
def NEONvceqz : SDNode<"ARMISD::VCEQZ", SDTARMVCMPZ>;
def NEONvcge : SDNode<"ARMISD::VCGE", SDTARMVCMP>;
def NEONvcgez : SDNode<"ARMISD::VCGEZ", SDTARMVCMPZ>;
def NEONvclez : SDNode<"ARMISD::VCLEZ", SDTARMVCMPZ>;
def NEONvcgeu : SDNode<"ARMISD::VCGEU", SDTARMVCMP>;
def NEONvcgt : SDNode<"ARMISD::VCGT", SDTARMVCMP>;
def NEONvcgtz : SDNode<"ARMISD::VCGTZ", SDTARMVCMPZ>;
def NEONvcltz : SDNode<"ARMISD::VCLTZ", SDTARMVCMPZ>;
def NEONvcgtu : SDNode<"ARMISD::VCGTU", SDTARMVCMP>;
def NEONvtst : SDNode<"ARMISD::VTST", SDTARMVCMP>;
// Types for vector shift by immediates. The "SHX" version is for long and
// narrow operations where the source and destination vectors have different
// types. The "SHINS" version is for shift and insert operations.
def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
SDTCisVT<2, i32>]>;
def SDTARMVSHX : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
SDTCisVT<2, i32>]>;
def SDTARMVSHINS : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>, SDTCisVT<3, i32>]>;
def NEONvshl : SDNode<"ARMISD::VSHL", SDTARMVSH>;
def NEONvshrs : SDNode<"ARMISD::VSHRs", SDTARMVSH>;
def NEONvshru : SDNode<"ARMISD::VSHRu", SDTARMVSH>;
def NEONvshlls : SDNode<"ARMISD::VSHLLs", SDTARMVSHX>;
def NEONvshllu : SDNode<"ARMISD::VSHLLu", SDTARMVSHX>;
def NEONvshlli : SDNode<"ARMISD::VSHLLi", SDTARMVSHX>;
def NEONvshrn : SDNode<"ARMISD::VSHRN", SDTARMVSHX>;
def NEONvrshrs : SDNode<"ARMISD::VRSHRs", SDTARMVSH>;
def NEONvrshru : SDNode<"ARMISD::VRSHRu", SDTARMVSH>;
def NEONvrshrn : SDNode<"ARMISD::VRSHRN", SDTARMVSHX>;
def NEONvqshls : SDNode<"ARMISD::VQSHLs", SDTARMVSH>;
def NEONvqshlu : SDNode<"ARMISD::VQSHLu", SDTARMVSH>;
def NEONvqshlsu : SDNode<"ARMISD::VQSHLsu", SDTARMVSH>;
def NEONvqshrns : SDNode<"ARMISD::VQSHRNs", SDTARMVSHX>;
def NEONvqshrnu : SDNode<"ARMISD::VQSHRNu", SDTARMVSHX>;
def NEONvqshrnsu : SDNode<"ARMISD::VQSHRNsu", SDTARMVSHX>;
def NEONvqrshrns : SDNode<"ARMISD::VQRSHRNs", SDTARMVSHX>;
def NEONvqrshrnu : SDNode<"ARMISD::VQRSHRNu", SDTARMVSHX>;
def NEONvqrshrnsu : SDNode<"ARMISD::VQRSHRNsu", SDTARMVSHX>;
def NEONvsli : SDNode<"ARMISD::VSLI", SDTARMVSHINS>;
def NEONvsri : SDNode<"ARMISD::VSRI", SDTARMVSHINS>;
def SDTARMVGETLN : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisInt<1>,
SDTCisVT<2, i32>]>;
def NEONvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>;
def NEONvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>;
def SDTARMVMOVIMM : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
def NEONvmovImm : SDNode<"ARMISD::VMOVIMM", SDTARMVMOVIMM>;
def NEONvmvnImm : SDNode<"ARMISD::VMVNIMM", SDTARMVMOVIMM>;
def NEONvmovFPImm : SDNode<"ARMISD::VMOVFPIMM", SDTARMVMOVIMM>;
def SDTARMVORRIMM : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
SDTCisVT<2, i32>]>;
def NEONvorrImm : SDNode<"ARMISD::VORRIMM", SDTARMVORRIMM>;
def NEONvbicImm : SDNode<"ARMISD::VBICIMM", SDTARMVORRIMM>;
def NEONvbsl : SDNode<"ARMISD::VBSL",
SDTypeProfile<1, 3, [SDTCisVec<0>,
SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>]>>;
def NEONvdup : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>;
// VDUPLANE can produce a quad-register result from a double-register source,
// so the result is not constrained to match the source.
def NEONvduplane : SDNode<"ARMISD::VDUPLANE",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
SDTCisVT<2, i32>]>>;
def SDTARMVEXT : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>, SDTCisVT<3, i32>]>;
def NEONvext : SDNode<"ARMISD::VEXT", SDTARMVEXT>;
def SDTARMVSHUF : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
def NEONvrev64 : SDNode<"ARMISD::VREV64", SDTARMVSHUF>;
def NEONvrev32 : SDNode<"ARMISD::VREV32", SDTARMVSHUF>;
def NEONvrev16 : SDNode<"ARMISD::VREV16", SDTARMVSHUF>;
def SDTARMVSHUF2 : SDTypeProfile<2, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>]>;
def NEONzip : SDNode<"ARMISD::VZIP", SDTARMVSHUF2>;
def NEONuzp : SDNode<"ARMISD::VUZP", SDTARMVSHUF2>;
def NEONtrn : SDNode<"ARMISD::VTRN", SDTARMVSHUF2>;
def SDTARMVMULL : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
SDTCisSameAs<1, 2>]>;
def NEONvmulls : SDNode<"ARMISD::VMULLs", SDTARMVMULL>;
def NEONvmullu : SDNode<"ARMISD::VMULLu", SDTARMVMULL>;
def SDTARMFMAX : SDTypeProfile<1, 2, [SDTCisVT<0, f32>, SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>]>;
def NEONfmax : SDNode<"ARMISD::FMAX", SDTARMFMAX>;
def NEONfmin : SDNode<"ARMISD::FMIN", SDTARMFMAX>;
def NEONimmAllZerosV: PatLeaf<(NEONvmovImm (i32 timm)), [{
ConstantSDNode *ConstVal = cast<ConstantSDNode>(N->getOperand(0));
unsigned EltBits = 0;
uint64_t EltVal = ARM_AM::decodeNEONModImm(ConstVal->getZExtValue(), EltBits);
return (EltBits == 32 && EltVal == 0);
}]>;
def NEONimmAllOnesV: PatLeaf<(NEONvmovImm (i32 timm)), [{
ConstantSDNode *ConstVal = cast<ConstantSDNode>(N->getOperand(0));
unsigned EltBits = 0;
uint64_t EltVal = ARM_AM::decodeNEONModImm(ConstVal->getZExtValue(), EltBits);
return (EltBits == 8 && EltVal == 0xff);
}]>;
//===----------------------------------------------------------------------===//
// NEON load / store instructions
//===----------------------------------------------------------------------===//
// Use VLDM to load a Q register as a D register pair.
// This is a pseudo instruction that is expanded to VLDMD after reg alloc.
def VLDMQIA
: PseudoVFPLdStM<(outs QPR:$dst), (ins GPR:$Rn),
IIC_fpLoad_m, "",
[(set QPR:$dst, (v2f64 (load GPR:$Rn)))]>;
// Use VSTM to store a Q register as a D register pair.
// This is a pseudo instruction that is expanded to VSTMD after reg alloc.
def VSTMQIA
: PseudoVFPLdStM<(outs), (ins QPR:$src, GPR:$Rn),
IIC_fpStore_m, "",
[(store (v2f64 QPR:$src), GPR:$Rn)]>;
// Classes for VLD* pseudo-instructions with multi-register operands.
// These are expanded to real instructions after register allocation.
class VLDQPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QPR:$dst), (ins addrmode6:$addr), itin, "">;
class VLDQWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QPR:$dst, GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset), itin,
"$addr.addr = $wb">;
class VLDQWBfixedPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QPR:$dst, GPR:$wb),
(ins addrmode6:$addr), itin,
"$addr.addr = $wb">;
class VLDQWBregisterPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QPR:$dst, GPR:$wb),
(ins addrmode6:$addr, rGPR:$offset), itin,
"$addr.addr = $wb">;
class VLDQQPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QQPR:$dst), (ins addrmode6:$addr), itin, "">;
class VLDQQWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QQPR:$dst, GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset), itin,
"$addr.addr = $wb">;
class VLDQQQQPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QQQQPR:$dst), (ins addrmode6:$addr, QQQQPR:$src),itin,
"$src = $dst">;
class VLDQQQQWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QQQQPR:$dst, GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src), itin,
"$addr.addr = $wb, $src = $dst">;
let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
// VLD1 : Vector Load (multiple single elements)
class VLD1D<bits<4> op7_4, string Dt>
: NLdSt<0,0b10,0b0111,op7_4, (outs VecListOneD:$Vd),
(ins addrmode6:$Rn), IIC_VLD1,
"vld1", Dt, "$Vd, $Rn", "", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLDInstruction";
}
class VLD1Q<bits<4> op7_4, string Dt>
: NLdSt<0,0b10,0b1010,op7_4, (outs VecListTwoD:$Vd),
(ins addrmode6:$Rn), IIC_VLD1x2,
"vld1", Dt, "$Vd, $Rn", "", []> {
let Rm = 0b1111;
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
}
def VLD1d8 : VLD1D<{0,0,0,?}, "8">;
def VLD1d16 : VLD1D<{0,1,0,?}, "16">;
def VLD1d32 : VLD1D<{1,0,0,?}, "32">;
def VLD1d64 : VLD1D<{1,1,0,?}, "64">;
def VLD1q8 : VLD1Q<{0,0,?,?}, "8">;
def VLD1q16 : VLD1Q<{0,1,?,?}, "16">;
def VLD1q32 : VLD1Q<{1,0,?,?}, "32">;
def VLD1q64 : VLD1Q<{1,1,?,?}, "64">;
def VLD1q8Pseudo : VLDQPseudo<IIC_VLD1x2>;
def VLD1q16Pseudo : VLDQPseudo<IIC_VLD1x2>;
def VLD1q32Pseudo : VLDQPseudo<IIC_VLD1x2>;
def VLD1q64Pseudo : VLDQPseudo<IIC_VLD1x2>;
// ...with address register writeback:
multiclass VLD1DWB<bits<4> op7_4, string Dt> {
def _fixed : NLdSt<0,0b10, 0b0111,op7_4, (outs VecListOneD:$Vd, GPR:$wb),
(ins addrmode6:$Rn), IIC_VLD1u,
"vld1", Dt, "$Vd, $Rn!",
"$Rn.addr = $wb", []> {
let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLDInstruction";
let AsmMatchConverter = "cvtVLDwbFixed";
}
def _register : NLdSt<0,0b10,0b0111,op7_4, (outs VecListOneD:$Vd, GPR:$wb),
(ins addrmode6:$Rn, rGPR:$Rm), IIC_VLD1u,
"vld1", Dt, "$Vd, $Rn, $Rm",
"$Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLDInstruction";
let AsmMatchConverter = "cvtVLDwbRegister";
}
}
multiclass VLD1QWB<bits<4> op7_4, string Dt> {
def _fixed : NLdSt<0,0b10,0b1010,op7_4, (outs VecListTwoD:$Vd, GPR:$wb),
(ins addrmode6:$Rn), IIC_VLD1x2u,
"vld1", Dt, "$Vd, $Rn!",
"$Rn.addr = $wb", []> {
let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
let AsmMatchConverter = "cvtVLDwbFixed";
}
def _register : NLdSt<0,0b10,0b1010,op7_4, (outs VecListTwoD:$Vd, GPR:$wb),
(ins addrmode6:$Rn, rGPR:$Rm), IIC_VLD1x2u,
"vld1", Dt, "$Vd, $Rn, $Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
let AsmMatchConverter = "cvtVLDwbRegister";
}
}
defm VLD1d8wb : VLD1DWB<{0,0,0,?}, "8">;
defm VLD1d16wb : VLD1DWB<{0,1,0,?}, "16">;
defm VLD1d32wb : VLD1DWB<{1,0,0,?}, "32">;
defm VLD1d64wb : VLD1DWB<{1,1,0,?}, "64">;
defm VLD1q8wb : VLD1QWB<{0,0,?,?}, "8">;
defm VLD1q16wb : VLD1QWB<{0,1,?,?}, "16">;
defm VLD1q32wb : VLD1QWB<{1,0,?,?}, "32">;
defm VLD1q64wb : VLD1QWB<{1,1,?,?}, "64">;
def VLD1q8PseudoWB_fixed : VLDQWBfixedPseudo<IIC_VLD1x2u>;
def VLD1q16PseudoWB_fixed : VLDQWBfixedPseudo<IIC_VLD1x2u>;
def VLD1q32PseudoWB_fixed : VLDQWBfixedPseudo<IIC_VLD1x2u>;
def VLD1q64PseudoWB_fixed : VLDQWBfixedPseudo<IIC_VLD1x2u>;
def VLD1q8PseudoWB_register : VLDQWBregisterPseudo<IIC_VLD1x2u>;
def VLD1q16PseudoWB_register : VLDQWBregisterPseudo<IIC_VLD1x2u>;
def VLD1q32PseudoWB_register : VLDQWBregisterPseudo<IIC_VLD1x2u>;
def VLD1q64PseudoWB_register : VLDQWBregisterPseudo<IIC_VLD1x2u>;
// ...with 3 registers
class VLD1D3<bits<4> op7_4, string Dt>
: NLdSt<0,0b10,0b0110,op7_4, (outs VecListThreeD:$Vd),
(ins addrmode6:$Rn), IIC_VLD1x3, "vld1", Dt,
"$Vd, $Rn", "", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLDInstruction";
}
multiclass VLD1D3WB<bits<4> op7_4, string Dt> {
def _fixed : NLdSt<0,0b10,0b0110, op7_4, (outs VecListThreeD:$Vd, GPR:$wb),
(ins addrmode6:$Rn), IIC_VLD1x2u,
"vld1", Dt, "$Vd, $Rn!",
"$Rn.addr = $wb", []> {
let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLDInstruction";
let AsmMatchConverter = "cvtVLDwbFixed";
}
def _register : NLdSt<0,0b10,0b0110,op7_4, (outs VecListThreeD:$Vd, GPR:$wb),
(ins addrmode6:$Rn, rGPR:$Rm), IIC_VLD1x2u,
"vld1", Dt, "$Vd, $Rn, $Rm",
"$Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLDInstruction";
let AsmMatchConverter = "cvtVLDwbRegister";
}
}
def VLD1d8T : VLD1D3<{0,0,0,?}, "8">;
def VLD1d16T : VLD1D3<{0,1,0,?}, "16">;
def VLD1d32T : VLD1D3<{1,0,0,?}, "32">;
def VLD1d64T : VLD1D3<{1,1,0,?}, "64">;
defm VLD1d8Twb : VLD1D3WB<{0,0,0,?}, "8">;
defm VLD1d16Twb : VLD1D3WB<{0,1,0,?}, "16">;
defm VLD1d32Twb : VLD1D3WB<{1,0,0,?}, "32">;
defm VLD1d64Twb : VLD1D3WB<{1,1,0,?}, "64">;
def VLD1d64TPseudo : VLDQQPseudo<IIC_VLD1x3>;
// ...with 4 registers
class VLD1D4<bits<4> op7_4, string Dt>
: NLdSt<0, 0b10, 0b0010, op7_4, (outs VecListFourD:$Vd),
(ins addrmode6:$Rn), IIC_VLD1x4, "vld1", Dt,
"$Vd, $Rn", "", []> {
let Rm = 0b1111;
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
}
multiclass VLD1D4WB<bits<4> op7_4, string Dt> {
def _fixed : NLdSt<0,0b10,0b0010, op7_4, (outs VecListFourD:$Vd, GPR:$wb),
(ins addrmode6:$Rn), IIC_VLD1x2u,
"vld1", Dt, "$Vd, $Rn!",
"$Rn.addr = $wb", []> {
let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
let AsmMatchConverter = "cvtVLDwbFixed";
}
def _register : NLdSt<0,0b10,0b0010,op7_4, (outs VecListFourD:$Vd, GPR:$wb),
(ins addrmode6:$Rn, rGPR:$Rm), IIC_VLD1x2u,
"vld1", Dt, "$Vd, $Rn, $Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
let AsmMatchConverter = "cvtVLDwbRegister";
}
}
def VLD1d8Q : VLD1D4<{0,0,?,?}, "8">;
def VLD1d16Q : VLD1D4<{0,1,?,?}, "16">;
def VLD1d32Q : VLD1D4<{1,0,?,?}, "32">;
def VLD1d64Q : VLD1D4<{1,1,?,?}, "64">;
defm VLD1d8Qwb : VLD1D4WB<{0,0,?,?}, "8">;
defm VLD1d16Qwb : VLD1D4WB<{0,1,?,?}, "16">;
defm VLD1d32Qwb : VLD1D4WB<{1,0,?,?}, "32">;
defm VLD1d64Qwb : VLD1D4WB<{1,1,?,?}, "64">;
def VLD1d64QPseudo : VLDQQPseudo<IIC_VLD1x4>;
// VLD2 : Vector Load (multiple 2-element structures)
class VLD2D<bits<4> op11_8, bits<4> op7_4, string Dt, RegisterOperand VdTy>
: NLdSt<0, 0b10, op11_8, op7_4, (outs VdTy:$Vd),
(ins addrmode6:$Rn), IIC_VLD2,
"vld2", Dt, "$Vd, $Rn", "", []> {
let Rm = 0b1111;
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
}
class VLD2Q<bits<4> op7_4, string Dt, RegisterOperand VdTy>
: NLdSt<0, 0b10, 0b0011, op7_4,
(outs VdTy:$Vd),
(ins addrmode6:$Rn), IIC_VLD2x2,
"vld2", Dt, "$Vd, $Rn", "", []> {
let Rm = 0b1111;
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
}
def VLD2d8 : VLD2D<0b1000, {0,0,?,?}, "8", VecListTwoD>;
def VLD2d16 : VLD2D<0b1000, {0,1,?,?}, "16", VecListTwoD>;
def VLD2d32 : VLD2D<0b1000, {1,0,?,?}, "32", VecListTwoD>;
def VLD2q8 : VLD2Q<{0,0,?,?}, "8", VecListFourD>;
def VLD2q16 : VLD2Q<{0,1,?,?}, "16", VecListFourD>;
def VLD2q32 : VLD2Q<{1,0,?,?}, "32", VecListFourD>;
def VLD2d8Pseudo : VLDQPseudo<IIC_VLD2>;
def VLD2d16Pseudo : VLDQPseudo<IIC_VLD2>;
def VLD2d32Pseudo : VLDQPseudo<IIC_VLD2>;
def VLD2q8Pseudo : VLDQQPseudo<IIC_VLD2x2>;
def VLD2q16Pseudo : VLDQQPseudo<IIC_VLD2x2>;
def VLD2q32Pseudo : VLDQQPseudo<IIC_VLD2x2>;
// ...with address register writeback:
class VLD2DWB<bits<4> op11_8, bits<4> op7_4, string Dt, RegisterOperand VdTy>
: NLdSt<0, 0b10, op11_8, op7_4, (outs VdTy:$Vd, GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm), IIC_VLD2u,
"vld2", Dt, "$Vd, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
}
class VLD2QWB<bits<4> op7_4, string Dt, RegisterOperand VdTy>
: NLdSt<0, 0b10, 0b0011, op7_4,
(outs VdTy:$Vd, GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm), IIC_VLD2x2u,
"vld2", Dt, "$Vd, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
}
def VLD2d8_UPD : VLD2DWB<0b1000, {0,0,?,?}, "8", VecListTwoD>;
def VLD2d16_UPD : VLD2DWB<0b1000, {0,1,?,?}, "16", VecListTwoD>;
def VLD2d32_UPD : VLD2DWB<0b1000, {1,0,?,?}, "32", VecListTwoD>;
def VLD2q8_UPD : VLD2QWB<{0,0,?,?}, "8", VecListFourD>;
def VLD2q16_UPD : VLD2QWB<{0,1,?,?}, "16", VecListFourD>;
def VLD2q32_UPD : VLD2QWB<{1,0,?,?}, "32", VecListFourD>;
def VLD2d8Pseudo_UPD : VLDQWBPseudo<IIC_VLD2u>;
def VLD2d16Pseudo_UPD : VLDQWBPseudo<IIC_VLD2u>;
def VLD2d32Pseudo_UPD : VLDQWBPseudo<IIC_VLD2u>;
def VLD2q8Pseudo_UPD : VLDQQWBPseudo<IIC_VLD2x2u>;
def VLD2q16Pseudo_UPD : VLDQQWBPseudo<IIC_VLD2x2u>;
def VLD2q32Pseudo_UPD : VLDQQWBPseudo<IIC_VLD2x2u>;
// ...with double-spaced registers
def VLD2b8 : VLD2D<0b1001, {0,0,?,?}, "8", VecListTwoQ>;
def VLD2b16 : VLD2D<0b1001, {0,1,?,?}, "16", VecListTwoQ>;
def VLD2b32 : VLD2D<0b1001, {1,0,?,?}, "32", VecListTwoQ>;
def VLD2b8_UPD : VLD2DWB<0b1001, {0,0,?,?}, "8", VecListTwoQ>;
def VLD2b16_UPD : VLD2DWB<0b1001, {0,1,?,?}, "16", VecListTwoQ>;
def VLD2b32_UPD : VLD2DWB<0b1001, {1,0,?,?}, "32", VecListTwoQ>;
// VLD3 : Vector Load (multiple 3-element structures)
class VLD3D<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdSt<0, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3),
(ins addrmode6:$Rn), IIC_VLD3,
"vld3", Dt, "\\{$Vd, $dst2, $dst3\\}, $Rn", "", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLDInstruction";
}
def VLD3d8 : VLD3D<0b0100, {0,0,0,?}, "8">;
def VLD3d16 : VLD3D<0b0100, {0,1,0,?}, "16">;
def VLD3d32 : VLD3D<0b0100, {1,0,0,?}, "32">;
def VLD3d8Pseudo : VLDQQPseudo<IIC_VLD3>;
def VLD3d16Pseudo : VLDQQPseudo<IIC_VLD3>;
def VLD3d32Pseudo : VLDQQPseudo<IIC_VLD3>;
// ...with address register writeback:
class VLD3DWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdSt<0, 0b10, op11_8, op7_4,
(outs DPR:$Vd, DPR:$dst2, DPR:$dst3, GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm), IIC_VLD3u,
"vld3", Dt, "\\{$Vd, $dst2, $dst3\\}, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLDInstruction";
}
def VLD3d8_UPD : VLD3DWB<0b0100, {0,0,0,?}, "8">;
def VLD3d16_UPD : VLD3DWB<0b0100, {0,1,0,?}, "16">;
def VLD3d32_UPD : VLD3DWB<0b0100, {1,0,0,?}, "32">;
2010-10-09 09:45:34 +08:00
def VLD3d8Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3u>;
def VLD3d16Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3u>;
def VLD3d32Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3u>;
// ...with double-spaced registers:
def VLD3q8 : VLD3D<0b0101, {0,0,0,?}, "8">;
def VLD3q16 : VLD3D<0b0101, {0,1,0,?}, "16">;
def VLD3q32 : VLD3D<0b0101, {1,0,0,?}, "32">;
def VLD3q8_UPD : VLD3DWB<0b0101, {0,0,0,?}, "8">;
def VLD3q16_UPD : VLD3DWB<0b0101, {0,1,0,?}, "16">;
def VLD3q32_UPD : VLD3DWB<0b0101, {1,0,0,?}, "32">;
2010-10-09 09:45:34 +08:00
def VLD3q8Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
def VLD3q16Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
def VLD3q32Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
// ...alternate versions to be allocated odd register numbers:
def VLD3q8oddPseudo : VLDQQQQPseudo<IIC_VLD3>;
def VLD3q16oddPseudo : VLDQQQQPseudo<IIC_VLD3>;
def VLD3q32oddPseudo : VLDQQQQPseudo<IIC_VLD3>;
2010-10-09 09:45:34 +08:00
def VLD3q8oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
def VLD3q16oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
def VLD3q32oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD3u>;
// VLD4 : Vector Load (multiple 4-element structures)
class VLD4D<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdSt<0, 0b10, op11_8, op7_4,
(outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4),
(ins addrmode6:$Rn), IIC_VLD4,
"vld4", Dt, "\\{$Vd, $dst2, $dst3, $dst4\\}, $Rn", "", []> {
let Rm = 0b1111;
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
}
def VLD4d8 : VLD4D<0b0000, {0,0,?,?}, "8">;
def VLD4d16 : VLD4D<0b0000, {0,1,?,?}, "16">;
def VLD4d32 : VLD4D<0b0000, {1,0,?,?}, "32">;
def VLD4d8Pseudo : VLDQQPseudo<IIC_VLD4>;
def VLD4d16Pseudo : VLDQQPseudo<IIC_VLD4>;
def VLD4d32Pseudo : VLDQQPseudo<IIC_VLD4>;
// ...with address register writeback:
class VLD4DWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdSt<0, 0b10, op11_8, op7_4,
(outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm), IIC_VLD4u,
"vld4", Dt, "\\{$Vd, $dst2, $dst3, $dst4\\}, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVLDInstruction";
}
def VLD4d8_UPD : VLD4DWB<0b0000, {0,0,?,?}, "8">;
def VLD4d16_UPD : VLD4DWB<0b0000, {0,1,?,?}, "16">;
def VLD4d32_UPD : VLD4DWB<0b0000, {1,0,?,?}, "32">;
def VLD4d8Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4u>;
def VLD4d16Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4u>;
def VLD4d32Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4u>;
// ...with double-spaced registers:
def VLD4q8 : VLD4D<0b0001, {0,0,?,?}, "8">;
def VLD4q16 : VLD4D<0b0001, {0,1,?,?}, "16">;
def VLD4q32 : VLD4D<0b0001, {1,0,?,?}, "32">;
def VLD4q8_UPD : VLD4DWB<0b0001, {0,0,?,?}, "8">;
def VLD4q16_UPD : VLD4DWB<0b0001, {0,1,?,?}, "16">;
def VLD4q32_UPD : VLD4DWB<0b0001, {1,0,?,?}, "32">;
def VLD4q8Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
def VLD4q16Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
def VLD4q32Pseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
// ...alternate versions to be allocated odd register numbers:
def VLD4q8oddPseudo : VLDQQQQPseudo<IIC_VLD4>;
def VLD4q16oddPseudo : VLDQQQQPseudo<IIC_VLD4>;
def VLD4q32oddPseudo : VLDQQQQPseudo<IIC_VLD4>;
def VLD4q8oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
def VLD4q16oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
def VLD4q32oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
// Classes for VLD*LN pseudo-instructions with multi-register operands.
// These are expanded to real instructions after register allocation.
class VLDQLNPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QPR:$dst),
(ins addrmode6:$addr, QPR:$src, nohash_imm:$lane),
itin, "$src = $dst">;
class VLDQLNWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QPR:$dst, GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset, QPR:$src,
nohash_imm:$lane), itin, "$addr.addr = $wb, $src = $dst">;
class VLDQQLNPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QQPR:$dst),
(ins addrmode6:$addr, QQPR:$src, nohash_imm:$lane),
itin, "$src = $dst">;
class VLDQQLNWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QQPR:$dst, GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset, QQPR:$src,
nohash_imm:$lane), itin, "$addr.addr = $wb, $src = $dst">;
class VLDQQQQLNPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QQQQPR:$dst),
(ins addrmode6:$addr, QQQQPR:$src, nohash_imm:$lane),
itin, "$src = $dst">;
class VLDQQQQLNWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs QQQQPR:$dst, GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src,
nohash_imm:$lane), itin, "$addr.addr = $wb, $src = $dst">;
// VLD1LN : Vector Load (single element to one lane)
class VLD1LN<bits<4> op11_8, bits<4> op7_4, string Dt, ValueType Ty,
PatFrag LoadOp>
: NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd),
(ins addrmode6:$Rn, DPR:$src, nohash_imm:$lane),
IIC_VLD1ln, "vld1", Dt, "\\{$Vd[$lane]\\}, $Rn",
"$src = $Vd",
[(set DPR:$Vd, (vector_insert (Ty DPR:$src),
(i32 (LoadOp addrmode6:$Rn)),
imm:$lane))]> {
let Rm = 0b1111;
let DecoderMethod = "DecodeVLD1LN";
}
class VLD1LN32<bits<4> op11_8, bits<4> op7_4, string Dt, ValueType Ty,
PatFrag LoadOp>
: NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd),
(ins addrmode6oneL32:$Rn, DPR:$src, nohash_imm:$lane),
IIC_VLD1ln, "vld1", Dt, "\\{$Vd[$lane]\\}, $Rn",
"$src = $Vd",
[(set DPR:$Vd, (vector_insert (Ty DPR:$src),
(i32 (LoadOp addrmode6oneL32:$Rn)),
imm:$lane))]> {
let Rm = 0b1111;
let DecoderMethod = "DecodeVLD1LN";
}
class VLD1QLNPseudo<ValueType Ty, PatFrag LoadOp> : VLDQLNPseudo<IIC_VLD1ln> {
let Pattern = [(set QPR:$dst, (vector_insert (Ty QPR:$src),
(i32 (LoadOp addrmode6:$addr)),
imm:$lane))];
}
def VLD1LNd8 : VLD1LN<0b0000, {?,?,?,0}, "8", v8i8, extloadi8> {
let Inst{7-5} = lane{2-0};
}
def VLD1LNd16 : VLD1LN<0b0100, {?,?,0,?}, "16", v4i16, extloadi16> {
let Inst{7-6} = lane{1-0};
let Inst{4} = Rn{4};
}
def VLD1LNd32 : VLD1LN32<0b1000, {?,0,?,?}, "32", v2i32, load> {
let Inst{7} = lane{0};
let Inst{5} = Rn{4};
let Inst{4} = Rn{4};
}
def VLD1LNq8Pseudo : VLD1QLNPseudo<v16i8, extloadi8>;
def VLD1LNq16Pseudo : VLD1QLNPseudo<v8i16, extloadi16>;
def VLD1LNq32Pseudo : VLD1QLNPseudo<v4i32, load>;
def : Pat<(vector_insert (v2f32 DPR:$src),
(f32 (load addrmode6:$addr)), imm:$lane),
(VLD1LNd32 addrmode6:$addr, DPR:$src, imm:$lane)>;
def : Pat<(vector_insert (v4f32 QPR:$src),
(f32 (load addrmode6:$addr)), imm:$lane),
(VLD1LNq32Pseudo addrmode6:$addr, QPR:$src, imm:$lane)>;
let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
// ...with address register writeback:
class VLD1LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm,
DPR:$src, nohash_imm:$lane), IIC_VLD1lnu, "vld1", Dt,
"\\{$Vd[$lane]\\}, $Rn$Rm",
"$src = $Vd, $Rn.addr = $wb", []> {
let DecoderMethod = "DecodeVLD1LN";
}
def VLD1LNd8_UPD : VLD1LNWB<0b0000, {?,?,?,0}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VLD1LNd16_UPD : VLD1LNWB<0b0100, {?,?,0,?}, "16"> {
let Inst{7-6} = lane{1-0};
let Inst{4} = Rn{4};
}
def VLD1LNd32_UPD : VLD1LNWB<0b1000, {?,0,?,?}, "32"> {
let Inst{7} = lane{0};
let Inst{5} = Rn{4};
let Inst{4} = Rn{4};
}
def VLD1LNq8Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD1lnu>;
def VLD1LNq16Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD1lnu>;
def VLD1LNq32Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD1lnu>;
// VLD2LN : Vector Load (single 2-element structure to one lane)
class VLD2LN<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2),
(ins addrmode6:$Rn, DPR:$src1, DPR:$src2, nohash_imm:$lane),
IIC_VLD2ln, "vld2", Dt, "\\{$Vd[$lane], $dst2[$lane]\\}, $Rn",
"$src1 = $Vd, $src2 = $dst2", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD2LN";
}
def VLD2LNd8 : VLD2LN<0b0001, {?,?,?,?}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VLD2LNd16 : VLD2LN<0b0101, {?,?,0,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD2LNd32 : VLD2LN<0b1001, {?,0,0,?}, "32"> {
let Inst{7} = lane{0};
}
def VLD2LNd8Pseudo : VLDQLNPseudo<IIC_VLD2ln>;
def VLD2LNd16Pseudo : VLDQLNPseudo<IIC_VLD2ln>;
def VLD2LNd32Pseudo : VLDQLNPseudo<IIC_VLD2ln>;
// ...with double-spaced registers:
def VLD2LNq16 : VLD2LN<0b0101, {?,?,1,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD2LNq32 : VLD2LN<0b1001, {?,1,0,?}, "32"> {
let Inst{7} = lane{0};
}
def VLD2LNq16Pseudo : VLDQQLNPseudo<IIC_VLD2ln>;
def VLD2LNq32Pseudo : VLDQQLNPseudo<IIC_VLD2ln>;
// ...with address register writeback:
class VLD2LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm,
DPR:$src1, DPR:$src2, nohash_imm:$lane), IIC_VLD2lnu, "vld2", Dt,
"\\{$Vd[$lane], $dst2[$lane]\\}, $Rn$Rm",
"$src1 = $Vd, $src2 = $dst2, $Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD2LN";
}
def VLD2LNd8_UPD : VLD2LNWB<0b0001, {?,?,?,?}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VLD2LNd16_UPD : VLD2LNWB<0b0101, {?,?,0,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD2LNd32_UPD : VLD2LNWB<0b1001, {?,0,0,?}, "32"> {
let Inst{7} = lane{0};
}
def VLD2LNd8Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD2lnu>;
def VLD2LNd16Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD2lnu>;
def VLD2LNd32Pseudo_UPD : VLDQLNWBPseudo<IIC_VLD2lnu>;
def VLD2LNq16_UPD : VLD2LNWB<0b0101, {?,?,1,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD2LNq32_UPD : VLD2LNWB<0b1001, {?,1,0,?}, "32"> {
let Inst{7} = lane{0};
}
def VLD2LNq16Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD2lnu>;
def VLD2LNq32Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD2lnu>;
// VLD3LN : Vector Load (single 3-element structure to one lane)
class VLD3LN<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3),
(ins addrmode6:$Rn, DPR:$src1, DPR:$src2, DPR:$src3,
2010-10-09 09:45:34 +08:00
nohash_imm:$lane), IIC_VLD3ln, "vld3", Dt,
"\\{$Vd[$lane], $dst2[$lane], $dst3[$lane]\\}, $Rn",
"$src1 = $Vd, $src2 = $dst2, $src3 = $dst3", []> {
let Rm = 0b1111;
let DecoderMethod = "DecodeVLD3LN";
}
def VLD3LNd8 : VLD3LN<0b0010, {?,?,?,0}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VLD3LNd16 : VLD3LN<0b0110, {?,?,0,0}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD3LNd32 : VLD3LN<0b1010, {?,0,0,0}, "32"> {
let Inst{7} = lane{0};
}
2010-10-09 09:45:34 +08:00
def VLD3LNd8Pseudo : VLDQQLNPseudo<IIC_VLD3ln>;
def VLD3LNd16Pseudo : VLDQQLNPseudo<IIC_VLD3ln>;
def VLD3LNd32Pseudo : VLDQQLNPseudo<IIC_VLD3ln>;
// ...with double-spaced registers:
def VLD3LNq16 : VLD3LN<0b0110, {?,?,1,0}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD3LNq32 : VLD3LN<0b1010, {?,1,0,0}, "32"> {
let Inst{7} = lane{0};
}
2010-10-09 09:45:34 +08:00
def VLD3LNq16Pseudo : VLDQQQQLNPseudo<IIC_VLD3ln>;
def VLD3LNq32Pseudo : VLDQQQQLNPseudo<IIC_VLD3ln>;
// ...with address register writeback:
class VLD3LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b10, op11_8, op7_4,
(outs DPR:$Vd, DPR:$dst2, DPR:$dst3, GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm,
DPR:$src1, DPR:$src2, DPR:$src3, nohash_imm:$lane),
2010-10-09 09:45:34 +08:00
IIC_VLD3lnu, "vld3", Dt,
"\\{$Vd[$lane], $dst2[$lane], $dst3[$lane]\\}, $Rn$Rm",
"$src1 = $Vd, $src2 = $dst2, $src3 = $dst3, $Rn.addr = $wb",
[]> {
let DecoderMethod = "DecodeVLD3LN";
}
def VLD3LNd8_UPD : VLD3LNWB<0b0010, {?,?,?,0}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VLD3LNd16_UPD : VLD3LNWB<0b0110, {?,?,0,0}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD3LNd32_UPD : VLD3LNWB<0b1010, {?,0,0,0}, "32"> {
let Inst{7} = lane{0};
}
2010-10-09 09:45:34 +08:00
def VLD3LNd8Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD3lnu>;
def VLD3LNd16Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD3lnu>;
def VLD3LNd32Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD3lnu>;
def VLD3LNq16_UPD : VLD3LNWB<0b0110, {?,?,1,0}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD3LNq32_UPD : VLD3LNWB<0b1010, {?,1,0,0}, "32"> {
let Inst{7} = lane{0};
}
2010-10-09 09:45:34 +08:00
def VLD3LNq16Pseudo_UPD : VLDQQQQLNWBPseudo<IIC_VLD3lnu>;
def VLD3LNq32Pseudo_UPD : VLDQQQQLNWBPseudo<IIC_VLD3lnu>;
// VLD4LN : Vector Load (single 4-element structure to one lane)
class VLD4LN<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b10, op11_8, op7_4,
(outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4),
(ins addrmode6:$Rn, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4,
nohash_imm:$lane), IIC_VLD4ln, "vld4", Dt,
"\\{$Vd[$lane], $dst2[$lane], $dst3[$lane], $dst4[$lane]\\}, $Rn",
"$src1 = $Vd, $src2 = $dst2, $src3 = $dst3, $src4 = $dst4", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD4LN";
}
def VLD4LNd8 : VLD4LN<0b0011, {?,?,?,?}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VLD4LNd16 : VLD4LN<0b0111, {?,?,0,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD4LNd32 : VLD4LN<0b1011, {?,0,?,?}, "32"> {
let Inst{7} = lane{0};
let Inst{5} = Rn{5};
}
def VLD4LNd8Pseudo : VLDQQLNPseudo<IIC_VLD4ln>;
def VLD4LNd16Pseudo : VLDQQLNPseudo<IIC_VLD4ln>;
def VLD4LNd32Pseudo : VLDQQLNPseudo<IIC_VLD4ln>;
// ...with double-spaced registers:
def VLD4LNq16 : VLD4LN<0b0111, {?,?,1,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD4LNq32 : VLD4LN<0b1011, {?,1,?,?}, "32"> {
let Inst{7} = lane{0};
let Inst{5} = Rn{5};
}
def VLD4LNq16Pseudo : VLDQQQQLNPseudo<IIC_VLD4ln>;
def VLD4LNq32Pseudo : VLDQQQQLNPseudo<IIC_VLD4ln>;
// ...with address register writeback:
class VLD4LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b10, op11_8, op7_4,
(outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm,
DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4, nohash_imm:$lane),
IIC_VLD4lnu, "vld4", Dt,
"\\{$Vd[$lane], $dst2[$lane], $dst3[$lane], $dst4[$lane]\\}, $Rn$Rm",
"$src1 = $Vd, $src2 = $dst2, $src3 = $dst3, $src4 = $dst4, $Rn.addr = $wb",
[]> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD4LN" ;
}
def VLD4LNd8_UPD : VLD4LNWB<0b0011, {?,?,?,?}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VLD4LNd16_UPD : VLD4LNWB<0b0111, {?,?,0,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD4LNd32_UPD : VLD4LNWB<0b1011, {?,0,?,?}, "32"> {
let Inst{7} = lane{0};
let Inst{5} = Rn{5};
}
def VLD4LNd8Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD4lnu>;
def VLD4LNd16Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD4lnu>;
def VLD4LNd32Pseudo_UPD : VLDQQLNWBPseudo<IIC_VLD4lnu>;
def VLD4LNq16_UPD : VLD4LNWB<0b0111, {?,?,1,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VLD4LNq32_UPD : VLD4LNWB<0b1011, {?,1,?,?}, "32"> {
let Inst{7} = lane{0};
let Inst{5} = Rn{5};
}
def VLD4LNq16Pseudo_UPD : VLDQQQQLNWBPseudo<IIC_VLD4lnu>;
def VLD4LNq32Pseudo_UPD : VLDQQQQLNWBPseudo<IIC_VLD4lnu>;
} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
// VLD1DUP : Vector Load (single element to all lanes)
class VLD1DUP<bits<4> op7_4, string Dt, ValueType Ty, PatFrag LoadOp>
: NLdSt<1, 0b10, 0b1100, op7_4, (outs VecListOneDAllLanes:$Vd),
(ins addrmode6dup:$Rn),
IIC_VLD1dup, "vld1", Dt, "$Vd, $Rn", "",
[(set VecListOneDAllLanes:$Vd,
(Ty (NEONvdup (i32 (LoadOp addrmode6dup:$Rn)))))]> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD1DupInstruction";
}
class VLD1QDUPPseudo<ValueType Ty, PatFrag LoadOp> : VLDQPseudo<IIC_VLD1dup> {
let Pattern = [(set QPR:$dst,
(Ty (NEONvdup (i32 (LoadOp addrmode6dup:$addr)))))];
}
def VLD1DUPd8 : VLD1DUP<{0,0,0,?}, "8", v8i8, extloadi8>;
def VLD1DUPd16 : VLD1DUP<{0,1,0,?}, "16", v4i16, extloadi16>;
def VLD1DUPd32 : VLD1DUP<{1,0,0,?}, "32", v2i32, load>;
def VLD1DUPq8Pseudo : VLD1QDUPPseudo<v16i8, extloadi8>;
def VLD1DUPq16Pseudo : VLD1QDUPPseudo<v8i16, extloadi16>;
def VLD1DUPq32Pseudo : VLD1QDUPPseudo<v4i32, load>;
def : Pat<(v2f32 (NEONvdup (f32 (load addrmode6dup:$addr)))),
(VLD1DUPd32 addrmode6:$addr)>;
def : Pat<(v4f32 (NEONvdup (f32 (load addrmode6dup:$addr)))),
(VLD1DUPq32Pseudo addrmode6:$addr)>;
let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
class VLD1QDUP<bits<4> op7_4, string Dt>
: NLdSt<1, 0b10, 0b1100, op7_4, (outs VecListTwoDAllLanes:$Vd),
(ins addrmode6dup:$Rn), IIC_VLD1dup,
"vld1", Dt, "$Vd, $Rn", "", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD1DupInstruction";
}
def VLD1DUPq8 : VLD1QDUP<{0,0,1,0}, "8">;
def VLD1DUPq16 : VLD1QDUP<{0,1,1,?}, "16">;
def VLD1DUPq32 : VLD1QDUP<{1,0,1,?}, "32">;
// ...with address register writeback:
class VLD1DUPWB<bits<4> op7_4, string Dt>
: NLdSt<1, 0b10, 0b1100, op7_4, (outs DPR:$Vd, GPR:$wb),
(ins addrmode6dup:$Rn, am6offset:$Rm), IIC_VLD1dupu,
"vld1", Dt, "\\{$Vd[]\\}, $Rn$Rm", "$Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD1DupInstruction";
}
class VLD1QDUPWB<bits<4> op7_4, string Dt>
: NLdSt<1, 0b10, 0b1100, op7_4, (outs DPR:$Vd, DPR:$dst2, GPR:$wb),
(ins addrmode6dup:$Rn, am6offset:$Rm), IIC_VLD1dupu,
"vld1", Dt, "\\{$Vd[], $dst2[]\\}, $Rn$Rm", "$Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD1DupInstruction";
}
def VLD1DUPd8_UPD : VLD1DUPWB<{0,0,0,0}, "8">;
def VLD1DUPd16_UPD : VLD1DUPWB<{0,1,0,?}, "16">;
def VLD1DUPd32_UPD : VLD1DUPWB<{1,0,0,?}, "32">;
def VLD1DUPq8_UPD : VLD1QDUPWB<{0,0,1,0}, "8">;
def VLD1DUPq16_UPD : VLD1QDUPWB<{0,1,1,?}, "16">;
def VLD1DUPq32_UPD : VLD1QDUPWB<{1,0,1,?}, "32">;
def VLD1DUPq8Pseudo_UPD : VLDQWBPseudo<IIC_VLD1dupu>;
def VLD1DUPq16Pseudo_UPD : VLDQWBPseudo<IIC_VLD1dupu>;
def VLD1DUPq32Pseudo_UPD : VLDQWBPseudo<IIC_VLD1dupu>;
// VLD2DUP : Vector Load (single 2-element structure to all lanes)
class VLD2DUP<bits<4> op7_4, string Dt>
: NLdSt<1, 0b10, 0b1101, op7_4, (outs DPR:$Vd, DPR:$dst2),
(ins addrmode6dup:$Rn), IIC_VLD2dup,
"vld2", Dt, "\\{$Vd[], $dst2[]\\}, $Rn", "", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD2DupInstruction";
}
def VLD2DUPd8 : VLD2DUP<{0,0,0,?}, "8">;
def VLD2DUPd16 : VLD2DUP<{0,1,0,?}, "16">;
def VLD2DUPd32 : VLD2DUP<{1,0,0,?}, "32">;
def VLD2DUPd8Pseudo : VLDQPseudo<IIC_VLD2dup>;
def VLD2DUPd16Pseudo : VLDQPseudo<IIC_VLD2dup>;
def VLD2DUPd32Pseudo : VLDQPseudo<IIC_VLD2dup>;
// ...with double-spaced registers (not used for codegen):
def VLD2DUPd8x2 : VLD2DUP<{0,0,1,?}, "8">;
def VLD2DUPd16x2 : VLD2DUP<{0,1,1,?}, "16">;
def VLD2DUPd32x2 : VLD2DUP<{1,0,1,?}, "32">;
// ...with address register writeback:
class VLD2DUPWB<bits<4> op7_4, string Dt>
: NLdSt<1, 0b10, 0b1101, op7_4, (outs DPR:$Vd, DPR:$dst2, GPR:$wb),
(ins addrmode6dup:$Rn, am6offset:$Rm), IIC_VLD2dupu,
"vld2", Dt, "\\{$Vd[], $dst2[]\\}, $Rn$Rm", "$Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD2DupInstruction";
}
def VLD2DUPd8_UPD : VLD2DUPWB<{0,0,0,0}, "8">;
def VLD2DUPd16_UPD : VLD2DUPWB<{0,1,0,?}, "16">;
def VLD2DUPd32_UPD : VLD2DUPWB<{1,0,0,?}, "32">;
def VLD2DUPd8x2_UPD : VLD2DUPWB<{0,0,1,0}, "8">;
def VLD2DUPd16x2_UPD : VLD2DUPWB<{0,1,1,?}, "16">;
def VLD2DUPd32x2_UPD : VLD2DUPWB<{1,0,1,?}, "32">;
def VLD2DUPd8Pseudo_UPD : VLDQWBPseudo<IIC_VLD2dupu>;
def VLD2DUPd16Pseudo_UPD : VLDQWBPseudo<IIC_VLD2dupu>;
def VLD2DUPd32Pseudo_UPD : VLDQWBPseudo<IIC_VLD2dupu>;
// VLD3DUP : Vector Load (single 3-element structure to all lanes)
class VLD3DUP<bits<4> op7_4, string Dt>
: NLdSt<1, 0b10, 0b1110, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3),
(ins addrmode6dup:$Rn), IIC_VLD3dup,
"vld3", Dt, "\\{$Vd[], $dst2[], $dst3[]\\}, $Rn", "", []> {
let Rm = 0b1111;
let Inst{4} = 0;
let DecoderMethod = "DecodeVLD3DupInstruction";
}
def VLD3DUPd8 : VLD3DUP<{0,0,0,?}, "8">;
def VLD3DUPd16 : VLD3DUP<{0,1,0,?}, "16">;
def VLD3DUPd32 : VLD3DUP<{1,0,0,?}, "32">;
def VLD3DUPd8Pseudo : VLDQQPseudo<IIC_VLD3dup>;
def VLD3DUPd16Pseudo : VLDQQPseudo<IIC_VLD3dup>;
def VLD3DUPd32Pseudo : VLDQQPseudo<IIC_VLD3dup>;
// ...with double-spaced registers (not used for codegen):
def VLD3DUPd8x2 : VLD3DUP<{0,0,1,?}, "8">;
def VLD3DUPd16x2 : VLD3DUP<{0,1,1,?}, "16">;
def VLD3DUPd32x2 : VLD3DUP<{1,0,1,?}, "32">;
// ...with address register writeback:
class VLD3DUPWB<bits<4> op7_4, string Dt>
: NLdSt<1, 0b10, 0b1110, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, GPR:$wb),
(ins addrmode6dup:$Rn, am6offset:$Rm), IIC_VLD3dupu,
"vld3", Dt, "\\{$Vd[], $dst2[], $dst3[]\\}, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{4} = 0;
let DecoderMethod = "DecodeVLD3DupInstruction";
}
def VLD3DUPd8_UPD : VLD3DUPWB<{0,0,0,0}, "8">;
def VLD3DUPd16_UPD : VLD3DUPWB<{0,1,0,?}, "16">;
def VLD3DUPd32_UPD : VLD3DUPWB<{1,0,0,?}, "32">;
def VLD3DUPd8x2_UPD : VLD3DUPWB<{0,0,1,0}, "8">;
def VLD3DUPd16x2_UPD : VLD3DUPWB<{0,1,1,?}, "16">;
def VLD3DUPd32x2_UPD : VLD3DUPWB<{1,0,1,?}, "32">;
def VLD3DUPd8Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3dupu>;
def VLD3DUPd16Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3dupu>;
def VLD3DUPd32Pseudo_UPD : VLDQQWBPseudo<IIC_VLD3dupu>;
// VLD4DUP : Vector Load (single 4-element structure to all lanes)
class VLD4DUP<bits<4> op7_4, string Dt>
: NLdSt<1, 0b10, 0b1111, op7_4,
(outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4),
(ins addrmode6dup:$Rn), IIC_VLD4dup,
"vld4", Dt, "\\{$Vd[], $dst2[], $dst3[], $dst4[]\\}, $Rn", "", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD4DupInstruction";
}
def VLD4DUPd8 : VLD4DUP<{0,0,0,?}, "8">;
def VLD4DUPd16 : VLD4DUP<{0,1,0,?}, "16">;
def VLD4DUPd32 : VLD4DUP<{1,?,0,?}, "32"> { let Inst{6} = Rn{5}; }
def VLD4DUPd8Pseudo : VLDQQPseudo<IIC_VLD4dup>;
def VLD4DUPd16Pseudo : VLDQQPseudo<IIC_VLD4dup>;
def VLD4DUPd32Pseudo : VLDQQPseudo<IIC_VLD4dup>;
// ...with double-spaced registers (not used for codegen):
def VLD4DUPd8x2 : VLD4DUP<{0,0,1,?}, "8">;
def VLD4DUPd16x2 : VLD4DUP<{0,1,1,?}, "16">;
def VLD4DUPd32x2 : VLD4DUP<{1,?,1,?}, "32"> { let Inst{6} = Rn{5}; }
// ...with address register writeback:
class VLD4DUPWB<bits<4> op7_4, string Dt>
: NLdSt<1, 0b10, 0b1111, op7_4,
(outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb),
(ins addrmode6dup:$Rn, am6offset:$Rm), IIC_VLD4dupu,
"vld4", Dt, "\\{$Vd[], $dst2[], $dst3[], $dst4[]\\}, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVLD4DupInstruction";
}
def VLD4DUPd8_UPD : VLD4DUPWB<{0,0,0,0}, "8">;
def VLD4DUPd16_UPD : VLD4DUPWB<{0,1,0,?}, "16">;
def VLD4DUPd32_UPD : VLD4DUPWB<{1,?,0,?}, "32"> { let Inst{6} = Rn{5}; }
def VLD4DUPd8x2_UPD : VLD4DUPWB<{0,0,1,0}, "8">;
def VLD4DUPd16x2_UPD : VLD4DUPWB<{0,1,1,?}, "16">;
def VLD4DUPd32x2_UPD : VLD4DUPWB<{1,?,1,?}, "32"> { let Inst{6} = Rn{5}; }
def VLD4DUPd8Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4dupu>;
def VLD4DUPd16Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4dupu>;
def VLD4DUPd32Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4dupu>;
} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in {
// Classes for VST* pseudo-instructions with multi-register operands.
// These are expanded to real instructions after register allocation.
class VSTQPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs), (ins addrmode6:$addr, QPR:$src), itin, "">;
class VSTQWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset, QPR:$src), itin,
"$addr.addr = $wb">;
class VSTQWBfixedPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs GPR:$wb),
(ins addrmode6:$addr, QPR:$src), itin,
"$addr.addr = $wb">;
class VSTQWBregisterPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs GPR:$wb),
(ins addrmode6:$addr, rGPR:$offset, QPR:$src), itin,
"$addr.addr = $wb">;
class VSTQQPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs), (ins addrmode6:$addr, QQPR:$src), itin, "">;
class VSTQQWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset, QQPR:$src), itin,
"$addr.addr = $wb">;
class VSTQQQQPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs), (ins addrmode6:$addr, QQQQPR:$src), itin, "">;
class VSTQQQQWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src), itin,
"$addr.addr = $wb">;
// VST1 : Vector Store (multiple single elements)
class VST1D<bits<4> op7_4, string Dt>
: NLdSt<0,0b00,0b0111,op7_4, (outs), (ins addrmode6:$Rn, VecListOneD:$Vd),
IIC_VST1, "vst1", Dt, "$Vd, $Rn", "", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVSTInstruction";
}
class VST1Q<bits<4> op7_4, string Dt>
: NLdSt<0,0b00,0b1010,op7_4, (outs), (ins addrmode6:$Rn, VecListTwoD:$Vd),
IIC_VST1x2, "vst1", Dt, "$Vd, $Rn", "", []> {
let Rm = 0b1111;
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
}
def VST1d8 : VST1D<{0,0,0,?}, "8">;
def VST1d16 : VST1D<{0,1,0,?}, "16">;
def VST1d32 : VST1D<{1,0,0,?}, "32">;
def VST1d64 : VST1D<{1,1,0,?}, "64">;
def VST1q8 : VST1Q<{0,0,?,?}, "8">;
def VST1q16 : VST1Q<{0,1,?,?}, "16">;
def VST1q32 : VST1Q<{1,0,?,?}, "32">;
def VST1q64 : VST1Q<{1,1,?,?}, "64">;
def VST1q8Pseudo : VSTQPseudo<IIC_VST1x2>;
def VST1q16Pseudo : VSTQPseudo<IIC_VST1x2>;
def VST1q32Pseudo : VSTQPseudo<IIC_VST1x2>;
def VST1q64Pseudo : VSTQPseudo<IIC_VST1x2>;
// ...with address register writeback:
multiclass VST1DWB<bits<4> op7_4, string Dt> {
def _fixed : NLdSt<0,0b00, 0b0111,op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, VecListOneD:$Vd), IIC_VLD1u,
"vst1", Dt, "$Vd, $Rn!",
"$Rn.addr = $wb", []> {
let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVSTInstruction";
let AsmMatchConverter = "cvtVSTwbFixed";
}
def _register : NLdSt<0,0b00,0b0111,op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, rGPR:$Rm, VecListOneD:$Vd),
IIC_VLD1u,
"vst1", Dt, "$Vd, $Rn, $Rm",
"$Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVSTInstruction";
let AsmMatchConverter = "cvtVSTwbRegister";
}
}
multiclass VST1QWB<bits<4> op7_4, string Dt> {
def _fixed : NLdSt<0,0b00,0b1010,op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, VecListTwoD:$Vd), IIC_VLD1x2u,
"vst1", Dt, "$Vd, $Rn!",
"$Rn.addr = $wb", []> {
let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
let AsmMatchConverter = "cvtVSTwbFixed";
}
def _register : NLdSt<0,0b00,0b1010,op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, rGPR:$Rm, VecListTwoD:$Vd),
IIC_VLD1x2u,
"vst1", Dt, "$Vd, $Rn, $Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
let AsmMatchConverter = "cvtVSTwbRegister";
}
}
defm VST1d8wb : VST1DWB<{0,0,0,?}, "8">;
defm VST1d16wb : VST1DWB<{0,1,0,?}, "16">;
defm VST1d32wb : VST1DWB<{1,0,0,?}, "32">;
defm VST1d64wb : VST1DWB<{1,1,0,?}, "64">;
defm VST1q8wb : VST1QWB<{0,0,?,?}, "8">;
defm VST1q16wb : VST1QWB<{0,1,?,?}, "16">;
defm VST1q32wb : VST1QWB<{1,0,?,?}, "32">;
defm VST1q64wb : VST1QWB<{1,1,?,?}, "64">;
def VST1q8PseudoWB_fixed : VSTQWBfixedPseudo<IIC_VST1x2u>;
def VST1q16PseudoWB_fixed : VSTQWBfixedPseudo<IIC_VST1x2u>;
def VST1q32PseudoWB_fixed : VSTQWBfixedPseudo<IIC_VST1x2u>;
def VST1q64PseudoWB_fixed : VSTQWBfixedPseudo<IIC_VST1x2u>;
def VST1q8PseudoWB_register : VSTQWBregisterPseudo<IIC_VST1x2u>;
def VST1q16PseudoWB_register : VSTQWBregisterPseudo<IIC_VST1x2u>;
def VST1q32PseudoWB_register : VSTQWBregisterPseudo<IIC_VST1x2u>;
def VST1q64PseudoWB_register : VSTQWBregisterPseudo<IIC_VST1x2u>;
// ...with 3 registers
class VST1D3<bits<4> op7_4, string Dt>
: NLdSt<0, 0b00, 0b0110, op7_4, (outs),
(ins addrmode6:$Rn, VecListThreeD:$Vd),
IIC_VST1x3, "vst1", Dt, "$Vd, $Rn", "", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVSTInstruction";
}
multiclass VST1D3WB<bits<4> op7_4, string Dt> {
def _fixed : NLdSt<0,0b00,0b0110,op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, VecListThreeD:$Vd), IIC_VLD1x3u,
"vst1", Dt, "$Vd, $Rn!",
"$Rn.addr = $wb", []> {
let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
let AsmMatchConverter = "cvtVSTwbFixed";
}
def _register : NLdSt<0,0b00,0b0110,op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, rGPR:$Rm, VecListThreeD:$Vd),
IIC_VLD1x3u,
"vst1", Dt, "$Vd, $Rn, $Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
let AsmMatchConverter = "cvtVSTwbRegister";
}
}
def VST1d8T : VST1D3<{0,0,0,?}, "8">;
def VST1d16T : VST1D3<{0,1,0,?}, "16">;
def VST1d32T : VST1D3<{1,0,0,?}, "32">;
def VST1d64T : VST1D3<{1,1,0,?}, "64">;
defm VST1d8Twb : VST1D3WB<{0,0,0,?}, "8">;
defm VST1d16Twb : VST1D3WB<{0,1,0,?}, "16">;
defm VST1d32Twb : VST1D3WB<{1,0,0,?}, "32">;
defm VST1d64Twb : VST1D3WB<{1,1,0,?}, "64">;
def VST1d64TPseudo : VSTQQPseudo<IIC_VST1x3>;
def VST1d64TPseudoWB_fixed : VSTQQWBPseudo<IIC_VST1x3u>;
def VST1d64TPseudoWB_register : VSTQQWBPseudo<IIC_VST1x3u>;
// ...with 4 registers
class VST1D4<bits<4> op7_4, string Dt>
: NLdSt<0, 0b00, 0b0010, op7_4, (outs),
(ins addrmode6:$Rn, VecListFourD:$Vd),
IIC_VST1x4, "vst1", Dt, "$Vd, $Rn", "",
[]> {
let Rm = 0b1111;
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
}
multiclass VST1D4WB<bits<4> op7_4, string Dt> {
def _fixed : NLdSt<0,0b00,0b0010,op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, VecListFourD:$Vd), IIC_VLD1x4u,
"vst1", Dt, "$Vd, $Rn!",
"$Rn.addr = $wb", []> {
let Rm = 0b1101; // NLdSt will assign to the right encoding bits.
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
let AsmMatchConverter = "cvtVSTwbFixed";
}
def _register : NLdSt<0,0b00,0b0010,op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, rGPR:$Rm, VecListFourD:$Vd),
IIC_VLD1x4u,
"vst1", Dt, "$Vd, $Rn, $Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
let AsmMatchConverter = "cvtVSTwbRegister";
}
}
def VST1d8Q : VST1D4<{0,0,?,?}, "8">;
def VST1d16Q : VST1D4<{0,1,?,?}, "16">;
def VST1d32Q : VST1D4<{1,0,?,?}, "32">;
def VST1d64Q : VST1D4<{1,1,?,?}, "64">;
defm VST1d8Qwb : VST1D4WB<{0,0,?,?}, "8">;
defm VST1d16Qwb : VST1D4WB<{0,1,?,?}, "16">;
defm VST1d32Qwb : VST1D4WB<{1,0,?,?}, "32">;
defm VST1d64Qwb : VST1D4WB<{1,1,?,?}, "64">;
def VST1d64QPseudo : VSTQQPseudo<IIC_VST1x4>;
def VST1d64QPseudoWB_fixed : VSTQQWBPseudo<IIC_VST1x4u>;
def VST1d64QPseudoWB_register : VSTQQWBPseudo<IIC_VST1x4u>;
// VST2 : Vector Store (multiple 2-element structures)
class VST2D<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdSt<0, 0b00, op11_8, op7_4, (outs),
(ins addrmode6:$Rn, DPR:$Vd, DPR:$src2),
IIC_VST2, "vst2", Dt, "\\{$Vd, $src2\\}, $Rn", "", []> {
let Rm = 0b1111;
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
}
class VST2Q<bits<4> op7_4, string Dt>
: NLdSt<0, 0b00, 0b0011, op7_4, (outs),
(ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4),
IIC_VST2x2, "vst2", Dt, "\\{$Vd, $src2, $src3, $src4\\}, $Rn",
"", []> {
let Rm = 0b1111;
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
}
def VST2d8 : VST2D<0b1000, {0,0,?,?}, "8">;
def VST2d16 : VST2D<0b1000, {0,1,?,?}, "16">;
def VST2d32 : VST2D<0b1000, {1,0,?,?}, "32">;
def VST2q8 : VST2Q<{0,0,?,?}, "8">;
def VST2q16 : VST2Q<{0,1,?,?}, "16">;
def VST2q32 : VST2Q<{1,0,?,?}, "32">;
def VST2d8Pseudo : VSTQPseudo<IIC_VST2>;
def VST2d16Pseudo : VSTQPseudo<IIC_VST2>;
def VST2d32Pseudo : VSTQPseudo<IIC_VST2>;
def VST2q8Pseudo : VSTQQPseudo<IIC_VST2x2>;
def VST2q16Pseudo : VSTQQPseudo<IIC_VST2x2>;
def VST2q32Pseudo : VSTQQPseudo<IIC_VST2x2>;
// ...with address register writeback:
class VST2DWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm, DPR:$Vd, DPR:$src2),
IIC_VST2u, "vst2", Dt, "\\{$Vd, $src2\\}, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
}
class VST2QWB<bits<4> op7_4, string Dt>
: NLdSt<0, 0b00, 0b0011, op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm,
DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4), IIC_VST2x2u,
"vst2", Dt, "\\{$Vd, $src2, $src3, $src4\\}, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
}
def VST2d8_UPD : VST2DWB<0b1000, {0,0,?,?}, "8">;
def VST2d16_UPD : VST2DWB<0b1000, {0,1,?,?}, "16">;
def VST2d32_UPD : VST2DWB<0b1000, {1,0,?,?}, "32">;
def VST2q8_UPD : VST2QWB<{0,0,?,?}, "8">;
def VST2q16_UPD : VST2QWB<{0,1,?,?}, "16">;
def VST2q32_UPD : VST2QWB<{1,0,?,?}, "32">;
def VST2d8Pseudo_UPD : VSTQWBPseudo<IIC_VST2u>;
def VST2d16Pseudo_UPD : VSTQWBPseudo<IIC_VST2u>;
def VST2d32Pseudo_UPD : VSTQWBPseudo<IIC_VST2u>;
def VST2q8Pseudo_UPD : VSTQQWBPseudo<IIC_VST2x2u>;
def VST2q16Pseudo_UPD : VSTQQWBPseudo<IIC_VST2x2u>;
def VST2q32Pseudo_UPD : VSTQQWBPseudo<IIC_VST2x2u>;
// ...with double-spaced registers
def VST2b8 : VST2D<0b1001, {0,0,?,?}, "8">;
def VST2b16 : VST2D<0b1001, {0,1,?,?}, "16">;
def VST2b32 : VST2D<0b1001, {1,0,?,?}, "32">;
def VST2b8_UPD : VST2DWB<0b1001, {0,0,?,?}, "8">;
def VST2b16_UPD : VST2DWB<0b1001, {0,1,?,?}, "16">;
def VST2b32_UPD : VST2DWB<0b1001, {1,0,?,?}, "32">;
// VST3 : Vector Store (multiple 3-element structures)
class VST3D<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdSt<0, 0b00, op11_8, op7_4, (outs),
(ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3), IIC_VST3,
"vst3", Dt, "\\{$Vd, $src2, $src3\\}, $Rn", "", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVSTInstruction";
}
def VST3d8 : VST3D<0b0100, {0,0,0,?}, "8">;
def VST3d16 : VST3D<0b0100, {0,1,0,?}, "16">;
def VST3d32 : VST3D<0b0100, {1,0,0,?}, "32">;
def VST3d8Pseudo : VSTQQPseudo<IIC_VST3>;
def VST3d16Pseudo : VSTQQPseudo<IIC_VST3>;
def VST3d32Pseudo : VSTQQPseudo<IIC_VST3>;
// ...with address register writeback:
class VST3DWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm,
DPR:$Vd, DPR:$src2, DPR:$src3), IIC_VST3u,
"vst3", Dt, "\\{$Vd, $src2, $src3\\}, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVSTInstruction";
}
def VST3d8_UPD : VST3DWB<0b0100, {0,0,0,?}, "8">;
def VST3d16_UPD : VST3DWB<0b0100, {0,1,0,?}, "16">;
def VST3d32_UPD : VST3DWB<0b0100, {1,0,0,?}, "32">;
def VST3d8Pseudo_UPD : VSTQQWBPseudo<IIC_VST3u>;
def VST3d16Pseudo_UPD : VSTQQWBPseudo<IIC_VST3u>;
def VST3d32Pseudo_UPD : VSTQQWBPseudo<IIC_VST3u>;
// ...with double-spaced registers:
def VST3q8 : VST3D<0b0101, {0,0,0,?}, "8">;
def VST3q16 : VST3D<0b0101, {0,1,0,?}, "16">;
def VST3q32 : VST3D<0b0101, {1,0,0,?}, "32">;
def VST3q8_UPD : VST3DWB<0b0101, {0,0,0,?}, "8">;
def VST3q16_UPD : VST3DWB<0b0101, {0,1,0,?}, "16">;
def VST3q32_UPD : VST3DWB<0b0101, {1,0,0,?}, "32">;
def VST3q8Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
def VST3q16Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
def VST3q32Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
// ...alternate versions to be allocated odd register numbers:
def VST3q8oddPseudo : VSTQQQQPseudo<IIC_VST3>;
def VST3q16oddPseudo : VSTQQQQPseudo<IIC_VST3>;
def VST3q32oddPseudo : VSTQQQQPseudo<IIC_VST3>;
def VST3q8oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
def VST3q16oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
def VST3q32oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST3u>;
// VST4 : Vector Store (multiple 4-element structures)
class VST4D<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdSt<0, 0b00, op11_8, op7_4, (outs),
(ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4),
IIC_VST4, "vst4", Dt, "\\{$Vd, $src2, $src3, $src4\\}, $Rn",
"", []> {
let Rm = 0b1111;
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
}
def VST4d8 : VST4D<0b0000, {0,0,?,?}, "8">;
def VST4d16 : VST4D<0b0000, {0,1,?,?}, "16">;
def VST4d32 : VST4D<0b0000, {1,0,?,?}, "32">;
def VST4d8Pseudo : VSTQQPseudo<IIC_VST4>;
def VST4d16Pseudo : VSTQQPseudo<IIC_VST4>;
def VST4d32Pseudo : VSTQQPseudo<IIC_VST4>;
// ...with address register writeback:
class VST4DWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm,
DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4), IIC_VST4u,
"vst4", Dt, "\\{$Vd, $src2, $src3, $src4\\}, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{5-4} = Rn{5-4};
let DecoderMethod = "DecodeVSTInstruction";
}
def VST4d8_UPD : VST4DWB<0b0000, {0,0,?,?}, "8">;
def VST4d16_UPD : VST4DWB<0b0000, {0,1,?,?}, "16">;
def VST4d32_UPD : VST4DWB<0b0000, {1,0,?,?}, "32">;
def VST4d8Pseudo_UPD : VSTQQWBPseudo<IIC_VST4u>;
def VST4d16Pseudo_UPD : VSTQQWBPseudo<IIC_VST4u>;
def VST4d32Pseudo_UPD : VSTQQWBPseudo<IIC_VST4u>;
// ...with double-spaced registers:
def VST4q8 : VST4D<0b0001, {0,0,?,?}, "8">;
def VST4q16 : VST4D<0b0001, {0,1,?,?}, "16">;
def VST4q32 : VST4D<0b0001, {1,0,?,?}, "32">;
def VST4q8_UPD : VST4DWB<0b0001, {0,0,?,?}, "8">;
def VST4q16_UPD : VST4DWB<0b0001, {0,1,?,?}, "16">;
def VST4q32_UPD : VST4DWB<0b0001, {1,0,?,?}, "32">;
def VST4q8Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
def VST4q16Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
def VST4q32Pseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
// ...alternate versions to be allocated odd register numbers:
def VST4q8oddPseudo : VSTQQQQPseudo<IIC_VST4>;
def VST4q16oddPseudo : VSTQQQQPseudo<IIC_VST4>;
def VST4q32oddPseudo : VSTQQQQPseudo<IIC_VST4>;
def VST4q8oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
def VST4q16oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
def VST4q32oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
} // mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1
// Classes for VST*LN pseudo-instructions with multi-register operands.
// These are expanded to real instructions after register allocation.
class VSTQLNPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs), (ins addrmode6:$addr, QPR:$src, nohash_imm:$lane),
itin, "">;
class VSTQLNWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset, QPR:$src,
nohash_imm:$lane), itin, "$addr.addr = $wb">;
class VSTQQLNPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs), (ins addrmode6:$addr, QQPR:$src, nohash_imm:$lane),
itin, "">;
class VSTQQLNWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset, QQPR:$src,
nohash_imm:$lane), itin, "$addr.addr = $wb">;
class VSTQQQQLNPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs), (ins addrmode6:$addr, QQQQPR:$src, nohash_imm:$lane),
itin, "">;
class VSTQQQQLNWBPseudo<InstrItinClass itin>
: PseudoNLdSt<(outs GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src,
nohash_imm:$lane), itin, "$addr.addr = $wb">;
// VST1LN : Vector Store (single element from one lane)
class VST1LN<bits<4> op11_8, bits<4> op7_4, string Dt, ValueType Ty,
PatFrag StoreOp, SDNode ExtractOp>
: NLdStLn<1, 0b00, op11_8, op7_4, (outs),
(ins addrmode6:$Rn, DPR:$Vd, nohash_imm:$lane),
IIC_VST1ln, "vst1", Dt, "\\{$Vd[$lane]\\}, $Rn", "",
[(StoreOp (ExtractOp (Ty DPR:$Vd), imm:$lane), addrmode6:$Rn)]> {
let Rm = 0b1111;
let DecoderMethod = "DecodeVST1LN";
}
class VST1LN32<bits<4> op11_8, bits<4> op7_4, string Dt, ValueType Ty,
PatFrag StoreOp, SDNode ExtractOp>
: NLdStLn<1, 0b00, op11_8, op7_4, (outs),
(ins addrmode6oneL32:$Rn, DPR:$Vd, nohash_imm:$lane),
IIC_VST1ln, "vst1", Dt, "\\{$Vd[$lane]\\}, $Rn", "",
[(StoreOp (ExtractOp (Ty DPR:$Vd), imm:$lane), addrmode6oneL32:$Rn)]>{
let Rm = 0b1111;
let DecoderMethod = "DecodeVST1LN";
}
class VST1QLNPseudo<ValueType Ty, PatFrag StoreOp, SDNode ExtractOp>
: VSTQLNPseudo<IIC_VST1ln> {
let Pattern = [(StoreOp (ExtractOp (Ty QPR:$src), imm:$lane),
addrmode6:$addr)];
}
def VST1LNd8 : VST1LN<0b0000, {?,?,?,0}, "8", v8i8, truncstorei8,
NEONvgetlaneu> {
let Inst{7-5} = lane{2-0};
}
def VST1LNd16 : VST1LN<0b0100, {?,?,0,?}, "16", v4i16, truncstorei16,
NEONvgetlaneu> {
let Inst{7-6} = lane{1-0};
let Inst{4} = Rn{5};
}
def VST1LNd32 : VST1LN32<0b1000, {?,0,?,?}, "32", v2i32, store, extractelt> {
let Inst{7} = lane{0};
let Inst{5-4} = Rn{5-4};
}
def VST1LNq8Pseudo : VST1QLNPseudo<v16i8, truncstorei8, NEONvgetlaneu>;
def VST1LNq16Pseudo : VST1QLNPseudo<v8i16, truncstorei16, NEONvgetlaneu>;
def VST1LNq32Pseudo : VST1QLNPseudo<v4i32, store, extractelt>;
def : Pat<(store (extractelt (v2f32 DPR:$src), imm:$lane), addrmode6:$addr),
(VST1LNd32 addrmode6:$addr, DPR:$src, imm:$lane)>;
def : Pat<(store (extractelt (v4f32 QPR:$src), imm:$lane), addrmode6:$addr),
(VST1LNq32Pseudo addrmode6:$addr, QPR:$src, imm:$lane)>;
// ...with address register writeback:
class VST1LNWB<bits<4> op11_8, bits<4> op7_4, string Dt, ValueType Ty,
PatFrag StoreOp, SDNode ExtractOp>
: NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm,
DPR:$Vd, nohash_imm:$lane), IIC_VST1lnu, "vst1", Dt,
"\\{$Vd[$lane]\\}, $Rn$Rm",
"$Rn.addr = $wb",
[(set GPR:$wb, (StoreOp (ExtractOp (Ty DPR:$Vd), imm:$lane),
addrmode6:$Rn, am6offset:$Rm))]> {
let DecoderMethod = "DecodeVST1LN";
}
class VST1QLNWBPseudo<ValueType Ty, PatFrag StoreOp, SDNode ExtractOp>
: VSTQLNWBPseudo<IIC_VST1lnu> {
let Pattern = [(set GPR:$wb, (StoreOp (ExtractOp (Ty QPR:$src), imm:$lane),
addrmode6:$addr, am6offset:$offset))];
}
def VST1LNd8_UPD : VST1LNWB<0b0000, {?,?,?,0}, "8", v8i8, post_truncsti8,
NEONvgetlaneu> {
let Inst{7-5} = lane{2-0};
}
def VST1LNd16_UPD : VST1LNWB<0b0100, {?,?,0,?}, "16", v4i16, post_truncsti16,
NEONvgetlaneu> {
let Inst{7-6} = lane{1-0};
let Inst{4} = Rn{5};
}
def VST1LNd32_UPD : VST1LNWB<0b1000, {?,0,?,?}, "32", v2i32, post_store,
extractelt> {
let Inst{7} = lane{0};
let Inst{5-4} = Rn{5-4};
}
def VST1LNq8Pseudo_UPD : VST1QLNWBPseudo<v16i8, post_truncsti8, NEONvgetlaneu>;
def VST1LNq16Pseudo_UPD : VST1QLNWBPseudo<v8i16, post_truncsti16,NEONvgetlaneu>;
def VST1LNq32Pseudo_UPD : VST1QLNWBPseudo<v4i32, post_store, extractelt>;
let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in {
// VST2LN : Vector Store (single 2-element structure from one lane)
class VST2LN<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b00, op11_8, op7_4, (outs),
(ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, nohash_imm:$lane),
IIC_VST2ln, "vst2", Dt, "\\{$Vd[$lane], $src2[$lane]\\}, $Rn",
"", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVST2LN";
}
def VST2LNd8 : VST2LN<0b0001, {?,?,?,?}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VST2LNd16 : VST2LN<0b0101, {?,?,0,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST2LNd32 : VST2LN<0b1001, {?,0,0,?}, "32"> {
let Inst{7} = lane{0};
}
def VST2LNd8Pseudo : VSTQLNPseudo<IIC_VST2ln>;
def VST2LNd16Pseudo : VSTQLNPseudo<IIC_VST2ln>;
def VST2LNd32Pseudo : VSTQLNPseudo<IIC_VST2ln>;
// ...with double-spaced registers:
def VST2LNq16 : VST2LN<0b0101, {?,?,1,?}, "16"> {
let Inst{7-6} = lane{1-0};
let Inst{4} = Rn{4};
}
def VST2LNq32 : VST2LN<0b1001, {?,1,0,?}, "32"> {
let Inst{7} = lane{0};
let Inst{4} = Rn{4};
}
def VST2LNq16Pseudo : VSTQQLNPseudo<IIC_VST2ln>;
def VST2LNq32Pseudo : VSTQQLNPseudo<IIC_VST2ln>;
// ...with address register writeback:
class VST2LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb),
(ins addrmode6:$addr, am6offset:$offset,
DPR:$src1, DPR:$src2, nohash_imm:$lane), IIC_VST2lnu, "vst2", Dt,
"\\{$src1[$lane], $src2[$lane]\\}, $addr$offset",
"$addr.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVST2LN";
}
def VST2LNd8_UPD : VST2LNWB<0b0001, {?,?,?,?}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VST2LNd16_UPD : VST2LNWB<0b0101, {?,?,0,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST2LNd32_UPD : VST2LNWB<0b1001, {?,0,0,?}, "32"> {
let Inst{7} = lane{0};
}
def VST2LNd8Pseudo_UPD : VSTQLNWBPseudo<IIC_VST2lnu>;
def VST2LNd16Pseudo_UPD : VSTQLNWBPseudo<IIC_VST2lnu>;
def VST2LNd32Pseudo_UPD : VSTQLNWBPseudo<IIC_VST2lnu>;
def VST2LNq16_UPD : VST2LNWB<0b0101, {?,?,1,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST2LNq32_UPD : VST2LNWB<0b1001, {?,1,0,?}, "32"> {
let Inst{7} = lane{0};
}
def VST2LNq16Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST2lnu>;
def VST2LNq32Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST2lnu>;
// VST3LN : Vector Store (single 3-element structure from one lane)
class VST3LN<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b00, op11_8, op7_4, (outs),
(ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3,
nohash_imm:$lane), IIC_VST3ln, "vst3", Dt,
"\\{$Vd[$lane], $src2[$lane], $src3[$lane]\\}, $Rn", "", []> {
let Rm = 0b1111;
let DecoderMethod = "DecodeVST3LN";
}
def VST3LNd8 : VST3LN<0b0010, {?,?,?,0}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VST3LNd16 : VST3LN<0b0110, {?,?,0,0}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST3LNd32 : VST3LN<0b1010, {?,0,0,0}, "32"> {
let Inst{7} = lane{0};
}
def VST3LNd8Pseudo : VSTQQLNPseudo<IIC_VST3ln>;
def VST3LNd16Pseudo : VSTQQLNPseudo<IIC_VST3ln>;
def VST3LNd32Pseudo : VSTQQLNPseudo<IIC_VST3ln>;
// ...with double-spaced registers:
def VST3LNq16 : VST3LN<0b0110, {?,?,1,0}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST3LNq32 : VST3LN<0b1010, {?,1,0,0}, "32"> {
let Inst{7} = lane{0};
}
def VST3LNq16Pseudo : VSTQQQQLNPseudo<IIC_VST3ln>;
def VST3LNq32Pseudo : VSTQQQQLNPseudo<IIC_VST3ln>;
// ...with address register writeback:
class VST3LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm,
DPR:$Vd, DPR:$src2, DPR:$src3, nohash_imm:$lane),
IIC_VST3lnu, "vst3", Dt,
"\\{$Vd[$lane], $src2[$lane], $src3[$lane]\\}, $Rn$Rm",
"$Rn.addr = $wb", []> {
let DecoderMethod = "DecodeVST3LN";
}
def VST3LNd8_UPD : VST3LNWB<0b0010, {?,?,?,0}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VST3LNd16_UPD : VST3LNWB<0b0110, {?,?,0,0}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST3LNd32_UPD : VST3LNWB<0b1010, {?,0,0,0}, "32"> {
let Inst{7} = lane{0};
}
def VST3LNd8Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST3lnu>;
def VST3LNd16Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST3lnu>;
def VST3LNd32Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST3lnu>;
def VST3LNq16_UPD : VST3LNWB<0b0110, {?,?,1,0}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST3LNq32_UPD : VST3LNWB<0b1010, {?,1,0,0}, "32"> {
let Inst{7} = lane{0};
}
def VST3LNq16Pseudo_UPD : VSTQQQQLNWBPseudo<IIC_VST3lnu>;
def VST3LNq32Pseudo_UPD : VSTQQQQLNWBPseudo<IIC_VST3lnu>;
// VST4LN : Vector Store (single 4-element structure from one lane)
class VST4LN<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b00, op11_8, op7_4, (outs),
(ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4,
nohash_imm:$lane), IIC_VST4ln, "vst4", Dt,
"\\{$Vd[$lane], $src2[$lane], $src3[$lane], $src4[$lane]\\}, $Rn",
"", []> {
let Rm = 0b1111;
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVST4LN";
}
def VST4LNd8 : VST4LN<0b0011, {?,?,?,?}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VST4LNd16 : VST4LN<0b0111, {?,?,0,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST4LNd32 : VST4LN<0b1011, {?,0,?,?}, "32"> {
let Inst{7} = lane{0};
let Inst{5} = Rn{5};
}
def VST4LNd8Pseudo : VSTQQLNPseudo<IIC_VST4ln>;
def VST4LNd16Pseudo : VSTQQLNPseudo<IIC_VST4ln>;
def VST4LNd32Pseudo : VSTQQLNPseudo<IIC_VST4ln>;
// ...with double-spaced registers:
def VST4LNq16 : VST4LN<0b0111, {?,?,1,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST4LNq32 : VST4LN<0b1011, {?,1,?,?}, "32"> {
let Inst{7} = lane{0};
let Inst{5} = Rn{5};
}
def VST4LNq16Pseudo : VSTQQQQLNPseudo<IIC_VST4ln>;
def VST4LNq32Pseudo : VSTQQQQLNPseudo<IIC_VST4ln>;
// ...with address register writeback:
class VST4LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
: NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb),
(ins addrmode6:$Rn, am6offset:$Rm,
DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4, nohash_imm:$lane),
IIC_VST4lnu, "vst4", Dt,
"\\{$Vd[$lane], $src2[$lane], $src3[$lane], $src4[$lane]\\}, $Rn$Rm",
"$Rn.addr = $wb", []> {
let Inst{4} = Rn{4};
let DecoderMethod = "DecodeVST4LN";
}
def VST4LNd8_UPD : VST4LNWB<0b0011, {?,?,?,?}, "8"> {
let Inst{7-5} = lane{2-0};
}
def VST4LNd16_UPD : VST4LNWB<0b0111, {?,?,0,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST4LNd32_UPD : VST4LNWB<0b1011, {?,0,?,?}, "32"> {
let Inst{7} = lane{0};
let Inst{5} = Rn{5};
}
def VST4LNd8Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST4lnu>;
def VST4LNd16Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST4lnu>;
def VST4LNd32Pseudo_UPD : VSTQQLNWBPseudo<IIC_VST4lnu>;
def VST4LNq16_UPD : VST4LNWB<0b0111, {?,?,1,?}, "16"> {
let Inst{7-6} = lane{1-0};
}
def VST4LNq32_UPD : VST4LNWB<0b1011, {?,1,?,?}, "32"> {
let Inst{7} = lane{0};
let Inst{5} = Rn{5};
}
def VST4LNq16Pseudo_UPD : VSTQQQQLNWBPseudo<IIC_VST4lnu>;
def VST4LNq32Pseudo_UPD : VSTQQQQLNWBPseudo<IIC_VST4lnu>;
} // mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1
//===----------------------------------------------------------------------===//
// NEON pattern fragments
//===----------------------------------------------------------------------===//
// Extract D sub-registers of Q registers.
def DSubReg_i8_reg : SDNodeXForm<imm, [{
assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/8, MVT::i32);
}]>;
def DSubReg_i16_reg : SDNodeXForm<imm, [{
assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/4, MVT::i32);
}]>;
def DSubReg_i32_reg : SDNodeXForm<imm, [{
assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/2, MVT::i32);
}]>;
def DSubReg_f64_reg : SDNodeXForm<imm, [{
assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue(), MVT::i32);
}]>;
// Extract S sub-registers of Q/D registers.
def SSubReg_f32_reg : SDNodeXForm<imm, [{
assert(ARM::ssub_3 == ARM::ssub_0+3 && "Unexpected subreg numbering");
return CurDAG->getTargetConstant(ARM::ssub_0 + N->getZExtValue(), MVT::i32);
}]>;
// Translate lane numbers from Q registers to D subregs.
def SubReg_i8_lane : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() & 7, MVT::i32);
}]>;
def SubReg_i16_lane : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() & 3, MVT::i32);
}]>;
def SubReg_i32_lane : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() & 1, MVT::i32);
}]>;
//===----------------------------------------------------------------------===//
// Instruction Classes
//===----------------------------------------------------------------------===//
// Basic 2-register operations: double- and quad-register.
class N2VD<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4, (outs DPR:$Vd),
(ins DPR:$Vm), IIC_VUNAD, OpcodeStr, Dt,"$Vd, $Vm", "",
[(set DPR:$Vd, (ResTy (OpNode (OpTy DPR:$Vm))))]>;
class N2VQ<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4, (outs QPR:$Vd),
(ins QPR:$Vm), IIC_VUNAQ, OpcodeStr, Dt,"$Vd, $Vm", "",
[(set QPR:$Vd, (ResTy (OpNode (OpTy QPR:$Vm))))]>;
// Basic 2-register intrinsics, both double- and quad-register.
class N2VDInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4, (outs DPR:$Vd),
(ins DPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
[(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vm))))]>;
class N2VQInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4, (outs QPR:$Vd),
(ins QPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
[(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vm))))]>;
// Narrow 2-register operations.
class N2VN<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op6, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyD, ValueType TyQ, SDNode OpNode>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, op6, op4, (outs DPR:$Vd),
(ins QPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
[(set DPR:$Vd, (TyD (OpNode (TyQ QPR:$Vm))))]>;
// Narrow 2-register intrinsics.
class N2VNInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op6, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyD, ValueType TyQ, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, op6, op4, (outs DPR:$Vd),
(ins QPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
[(set DPR:$Vd, (TyD (IntOp (TyQ QPR:$Vm))))]>;
// Long 2-register operations (currently only used for VMOVL).
class N2VL<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op6, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, SDNode OpNode>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, op6, op4, (outs QPR:$Vd),
(ins DPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
[(set QPR:$Vd, (TyQ (OpNode (TyD DPR:$Vm))))]>;
// Long 2-register intrinsics.
class N2VLInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op6, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, op6, op4, (outs QPR:$Vd),
(ins DPR:$Vm), itin, OpcodeStr, Dt, "$Vd, $Vm", "",
[(set QPR:$Vd, (TyQ (IntOp (TyD DPR:$Vm))))]>;
// 2-register shuffles (VTRN/VZIP/VUZP), both double- and quad-register.
class N2VDShuffle<bits<2> op19_18, bits<5> op11_7, string OpcodeStr, string Dt>
: N2V<0b11, 0b11, op19_18, 0b10, op11_7, 0, 0, (outs DPR:$Vd, DPR:$Vm),
(ins DPR:$src1, DPR:$src2), IIC_VPERMD,
OpcodeStr, Dt, "$Vd, $Vm",
"$src1 = $Vd, $src2 = $Vm", []>;
class N2VQShuffle<bits<2> op19_18, bits<5> op11_7,
InstrItinClass itin, string OpcodeStr, string Dt>
: N2V<0b11, 0b11, op19_18, 0b10, op11_7, 1, 0, (outs QPR:$Vd, QPR:$Vm),
(ins QPR:$src1, QPR:$src2), itin, OpcodeStr, Dt, "$Vd, $Vm",
"$src1 = $Vd, $src2 = $Vm", []>;
// Basic 3-register operations: double- and quad-register.
class N3VD<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, SDNode OpNode, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs DPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
[(set DPR:$Vd, (ResTy (OpNode (OpTy DPR:$Vn), (OpTy DPR:$Vm))))]> {
let isCommutable = Commutable;
}
// Same as N3VD but no data type.
class N3VDX<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr,
ValueType ResTy, ValueType OpTy,
SDNode OpNode, bit Commutable>
: N3VX<op24, op23, op21_20, op11_8, 0, op4,
(outs DPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, "$Vd, $Vn, $Vm", "",
[(set DPR:$Vd, (ResTy (OpNode (OpTy DPR:$Vn), (OpTy DPR:$Vm))))]>{
let isCommutable = Commutable;
}
class N3VDSL<bits<2> op21_20, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType Ty, SDNode ShOp>
: N3VLane32<0, 1, op21_20, op11_8, 1, 0,
(outs DPR:$Vd), (ins DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
[(set (Ty DPR:$Vd),
(Ty (ShOp (Ty DPR:$Vn),
(Ty (NEONvduplane (Ty DPR_VFP2:$Vm),imm:$lane)))))]> {
let isCommutable = 0;
}
class N3VDSL16<bits<2> op21_20, bits<4> op11_8,
string OpcodeStr, string Dt, ValueType Ty, SDNode ShOp>
: N3VLane16<0, 1, op21_20, op11_8, 1, 0,
(outs DPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
NVMulSLFrm, IIC_VMULi16D, OpcodeStr, Dt,"$Vd, $Vn, $Vm$lane","",
[(set (Ty DPR:$Vd),
(Ty (ShOp (Ty DPR:$Vn),
(Ty (NEONvduplane (Ty DPR_8:$Vm), imm:$lane)))))]> {
let isCommutable = 0;
}
class N3VQ<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, SDNode OpNode, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 1, op4,
(outs QPR:$Vd), (ins QPR:$Vn, QPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
[(set QPR:$Vd, (ResTy (OpNode (OpTy QPR:$Vn), (OpTy QPR:$Vm))))]> {
let isCommutable = Commutable;
}
class N3VQX<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr,
ValueType ResTy, ValueType OpTy, SDNode OpNode, bit Commutable>
: N3VX<op24, op23, op21_20, op11_8, 1, op4,
(outs QPR:$Vd), (ins QPR:$Vn, QPR:$Vm), N3RegFrm, itin,
OpcodeStr, "$Vd, $Vn, $Vm", "",
[(set QPR:$Vd, (ResTy (OpNode (OpTy QPR:$Vn), (OpTy QPR:$Vm))))]>{
let isCommutable = Commutable;
}
class N3VQSL<bits<2> op21_20, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, SDNode ShOp>
: N3VLane32<1, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd), (ins QPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
[(set (ResTy QPR:$Vd),
(ResTy (ShOp (ResTy QPR:$Vn),
(ResTy (NEONvduplane (OpTy DPR_VFP2:$Vm),
imm:$lane)))))]> {
let isCommutable = 0;
}
class N3VQSL16<bits<2> op21_20, bits<4> op11_8, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, SDNode ShOp>
: N3VLane16<1, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd), (ins QPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
NVMulSLFrm, IIC_VMULi16Q, OpcodeStr, Dt,"$Vd, $Vn, $Vm$lane", "",
[(set (ResTy QPR:$Vd),
(ResTy (ShOp (ResTy QPR:$Vn),
(ResTy (NEONvduplane (OpTy DPR_8:$Vm),
imm:$lane)))))]> {
let isCommutable = 0;
}
// Basic 3-register intrinsics, both double- and quad-register.
class N3VDInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
Format f, InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs DPR:$Vd), (ins DPR:$Vn, DPR:$Vm), f, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
[(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vn), (OpTy DPR:$Vm))))]> {
let isCommutable = Commutable;
}
class N3VDIntSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt, ValueType Ty, Intrinsic IntOp>
: N3VLane32<0, 1, op21_20, op11_8, 1, 0,
(outs DPR:$Vd), (ins DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
[(set (Ty DPR:$Vd),
(Ty (IntOp (Ty DPR:$Vn),
(Ty (NEONvduplane (Ty DPR_VFP2:$Vm),
imm:$lane)))))]> {
let isCommutable = 0;
}
class N3VDIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt, ValueType Ty, Intrinsic IntOp>
: N3VLane16<0, 1, op21_20, op11_8, 1, 0,
(outs DPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
[(set (Ty DPR:$Vd),
(Ty (IntOp (Ty DPR:$Vn),
(Ty (NEONvduplane (Ty DPR_8:$Vm), imm:$lane)))))]> {
let isCommutable = 0;
}
class N3VDIntSh<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
Format f, InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs DPR:$Vd), (ins DPR:$Vm, DPR:$Vn), f, itin,
OpcodeStr, Dt, "$Vd, $Vm, $Vn", "",
[(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vm), (OpTy DPR:$Vn))))]> {
let isCommutable = 0;
}
class N3VQInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
Format f, InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 1, op4,
(outs QPR:$Vd), (ins QPR:$Vn, QPR:$Vm), f, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
[(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vn), (OpTy QPR:$Vm))))]> {
let isCommutable = Commutable;
}
class N3VQIntSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3VLane32<1, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd), (ins QPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
[(set (ResTy QPR:$Vd),
(ResTy (IntOp (ResTy QPR:$Vn),
(ResTy (NEONvduplane (OpTy DPR_VFP2:$Vm),
imm:$lane)))))]> {
let isCommutable = 0;
}
class N3VQIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3VLane16<1, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd), (ins QPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
[(set (ResTy QPR:$Vd),
(ResTy (IntOp (ResTy QPR:$Vn),
(ResTy (NEONvduplane (OpTy DPR_8:$Vm),
imm:$lane)))))]> {
let isCommutable = 0;
}
class N3VQIntSh<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
Format f, InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3V<op24, op23, op21_20, op11_8, 1, op4,
(outs QPR:$Vd), (ins QPR:$Vm, QPR:$Vn), f, itin,
OpcodeStr, Dt, "$Vd, $Vm, $Vn", "",
[(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vm), (OpTy QPR:$Vn))))]> {
let isCommutable = 0;
}
// Multiply-Add/Sub operations: double- and quad-register.
class N3VDMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
ValueType Ty, SDPatternOperator MulOp, SDPatternOperator OpNode>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set DPR:$Vd, (Ty (OpNode DPR:$src1,
(Ty (MulOp DPR:$Vn, DPR:$Vm)))))]>;
class N3VDMulOpSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
ValueType Ty, SDPatternOperator MulOp, SDPatternOperator ShOp>
: N3VLane32<0, 1, op21_20, op11_8, 1, 0,
(outs DPR:$Vd),
(ins DPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
NVMulSLFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
[(set (Ty DPR:$Vd),
(Ty (ShOp (Ty DPR:$src1),
(Ty (MulOp DPR:$Vn,
(Ty (NEONvduplane (Ty DPR_VFP2:$Vm),
imm:$lane)))))))]>;
class N3VDMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
ValueType Ty, SDNode MulOp, SDNode ShOp>
: N3VLane16<0, 1, op21_20, op11_8, 1, 0,
(outs DPR:$Vd),
(ins DPR:$src1, DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
NVMulSLFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
[(set (Ty DPR:$Vd),
(Ty (ShOp (Ty DPR:$src1),
(Ty (MulOp DPR:$Vn,
(Ty (NEONvduplane (Ty DPR_8:$Vm),
imm:$lane)))))))]>;
class N3VQMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty,
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
SDPatternOperator MulOp, SDPatternOperator OpNode>
: N3V<op24, op23, op21_20, op11_8, 1, op4,
(outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set QPR:$Vd, (Ty (OpNode QPR:$src1,
(Ty (MulOp QPR:$Vn, QPR:$Vm)))))]>;
class N3VQMulOpSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy,
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
SDPatternOperator MulOp, SDPatternOperator ShOp>
: N3VLane32<1, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd),
(ins QPR:$src1, QPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
NVMulSLFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
[(set (ResTy QPR:$Vd),
(ResTy (ShOp (ResTy QPR:$src1),
(ResTy (MulOp QPR:$Vn,
(ResTy (NEONvduplane (OpTy DPR_VFP2:$Vm),
imm:$lane)))))))]>;
class N3VQMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy,
SDNode MulOp, SDNode ShOp>
: N3VLane16<1, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd),
(ins QPR:$src1, QPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
NVMulSLFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
[(set (ResTy QPR:$Vd),
(ResTy (ShOp (ResTy QPR:$src1),
(ResTy (MulOp QPR:$Vn,
(ResTy (NEONvduplane (OpTy DPR_8:$Vm),
imm:$lane)))))))]>;
// Neon Intrinsic-Op instructions (VABA): double- and quad-register.
class N3VDIntOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType Ty, Intrinsic IntOp, SDNode OpNode>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set DPR:$Vd, (Ty (OpNode DPR:$src1,
(Ty (IntOp (Ty DPR:$Vn), (Ty DPR:$Vm))))))]>;
class N3VQIntOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType Ty, Intrinsic IntOp, SDNode OpNode>
: N3V<op24, op23, op21_20, op11_8, 1, op4,
(outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set QPR:$Vd, (Ty (OpNode QPR:$src1,
(Ty (IntOp (Ty QPR:$Vn), (Ty QPR:$Vm))))))]>;
// Neon 3-argument intrinsics, both double- and quad-register.
// The destination register is also used as the first source operand register.
class N3VDInt3<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$src1),
(OpTy DPR:$Vn), (OpTy DPR:$Vm))))]>;
class N3VQInt3<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3V<op24, op23, op21_20, op11_8, 1, op4,
(outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$src1),
(OpTy QPR:$Vn), (OpTy QPR:$Vm))))]>;
// Long Multiply-Add/Sub operations.
class N3VLMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, SDNode MulOp, SDNode OpNode>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs QPR:$Vd), (ins QPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set QPR:$Vd, (OpNode (TyQ QPR:$src1),
(TyQ (MulOp (TyD DPR:$Vn),
(TyD DPR:$Vm)))))]>;
class N3VLMulOpSL<bit op24, bits<2> op21_20, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, SDNode MulOp, SDNode OpNode>
: N3VLane32<op24, 1, op21_20, op11_8, 1, 0, (outs QPR:$Vd),
(ins QPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
NVMulSLFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
[(set QPR:$Vd,
(OpNode (TyQ QPR:$src1),
(TyQ (MulOp (TyD DPR:$Vn),
(TyD (NEONvduplane (TyD DPR_VFP2:$Vm),
imm:$lane))))))]>;
class N3VLMulOpSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, SDNode MulOp, SDNode OpNode>
: N3VLane16<op24, 1, op21_20, op11_8, 1, 0, (outs QPR:$Vd),
(ins QPR:$src1, DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
NVMulSLFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
[(set QPR:$Vd,
(OpNode (TyQ QPR:$src1),
(TyQ (MulOp (TyD DPR:$Vn),
(TyD (NEONvduplane (TyD DPR_8:$Vm),
imm:$lane))))))]>;
// Long Intrinsic-Op vector operations with explicit extend (VABAL).
class N3VLIntExtOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, Intrinsic IntOp, SDNode ExtOp,
SDNode OpNode>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs QPR:$Vd), (ins QPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set QPR:$Vd, (OpNode (TyQ QPR:$src1),
(TyQ (ExtOp (TyD (IntOp (TyD DPR:$Vn),
(TyD DPR:$Vm)))))))]>;
// Neon Long 3-argument intrinsic. The destination register is
// a quad-register and is also used as the first source operand register.
class N3VLInt3<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, Intrinsic IntOp>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs QPR:$Vd), (ins QPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set QPR:$Vd,
(TyQ (IntOp (TyQ QPR:$src1), (TyD DPR:$Vn), (TyD DPR:$Vm))))]>;
class N3VLInt3SL<bit op24, bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3VLane32<op24, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd),
(ins QPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
NVMulSLFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
[(set (ResTy QPR:$Vd),
(ResTy (IntOp (ResTy QPR:$src1),
(OpTy DPR:$Vn),
(OpTy (NEONvduplane (OpTy DPR_VFP2:$Vm),
imm:$lane)))))]>;
class N3VLInt3SL16<bit op24, bits<2> op21_20, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3VLane16<op24, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd),
(ins QPR:$src1, DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
NVMulSLFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd",
[(set (ResTy QPR:$Vd),
(ResTy (IntOp (ResTy QPR:$src1),
(OpTy DPR:$Vn),
(OpTy (NEONvduplane (OpTy DPR_8:$Vm),
imm:$lane)))))]>;
// Narrowing 3-register intrinsics.
class N3VNInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
string OpcodeStr, string Dt, ValueType TyD, ValueType TyQ,
Intrinsic IntOp, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs DPR:$Vd), (ins QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINi4D,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
[(set DPR:$Vd, (TyD (IntOp (TyQ QPR:$Vn), (TyQ QPR:$Vm))))]> {
let isCommutable = Commutable;
}
// Long 3-register operations.
class N3VL<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, SDNode OpNode, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs QPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
[(set QPR:$Vd, (TyQ (OpNode (TyD DPR:$Vn), (TyD DPR:$Vm))))]> {
let isCommutable = Commutable;
}
class N3VLSL<bit op24, bits<2> op21_20, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, SDNode OpNode>
: N3VLane32<op24, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd), (ins DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
[(set QPR:$Vd,
(TyQ (OpNode (TyD DPR:$Vn),
(TyD (NEONvduplane (TyD DPR_VFP2:$Vm),imm:$lane)))))]>;
class N3VLSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, SDNode OpNode>
: N3VLane16<op24, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
[(set QPR:$Vd,
(TyQ (OpNode (TyD DPR:$Vn),
(TyD (NEONvduplane (TyD DPR_8:$Vm), imm:$lane)))))]>;
// Long 3-register operations with explicitly extended operands.
class N3VLExt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, SDNode OpNode, SDNode ExtOp,
bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs QPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
[(set QPR:$Vd, (OpNode (TyQ (ExtOp (TyD DPR:$Vn))),
(TyQ (ExtOp (TyD DPR:$Vm)))))]> {
let isCommutable = Commutable;
}
// Long 3-register intrinsics with explicit extend (VABDL).
class N3VLIntExt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, Intrinsic IntOp, SDNode ExtOp,
bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs QPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
[(set QPR:$Vd, (TyQ (ExtOp (TyD (IntOp (TyD DPR:$Vn),
(TyD DPR:$Vm))))))]> {
let isCommutable = Commutable;
}
// Long 3-register intrinsics.
class N3VLInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType TyQ, ValueType TyD, Intrinsic IntOp, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs QPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, itin,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
[(set QPR:$Vd, (TyQ (IntOp (TyD DPR:$Vn), (TyD DPR:$Vm))))]> {
let isCommutable = Commutable;
}
class N3VLIntSL<bit op24, bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3VLane32<op24, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd), (ins DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane),
NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
[(set (ResTy QPR:$Vd),
(ResTy (IntOp (OpTy DPR:$Vn),
(OpTy (NEONvduplane (OpTy DPR_VFP2:$Vm),
imm:$lane)))))]>;
class N3VLIntSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3VLane16<op24, 1, op21_20, op11_8, 1, 0,
(outs QPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane),
NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "",
[(set (ResTy QPR:$Vd),
(ResTy (IntOp (OpTy DPR:$Vn),
(OpTy (NEONvduplane (OpTy DPR_8:$Vm),
imm:$lane)))))]>;
// Wide 3-register operations.
class N3VW<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD,
SDNode OpNode, SDNode ExtOp, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
(outs QPR:$Vd), (ins QPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VSUBiD,
OpcodeStr, Dt, "$Vd, $Vn, $Vm", "",
[(set QPR:$Vd, (OpNode (TyQ QPR:$Vn),
(TyQ (ExtOp (TyD DPR:$Vm)))))]> {
let isCommutable = Commutable;
}
// Pairwise long 2-register intrinsics, both double- and quad-register.
class N2VDPLInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4, (outs DPR:$Vd),
(ins DPR:$Vm), IIC_VSHLiD, OpcodeStr, Dt, "$Vd, $Vm", "",
[(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vm))))]>;
class N2VQPLInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4, (outs QPR:$Vd),
(ins QPR:$Vm), IIC_VSHLiD, OpcodeStr, Dt, "$Vd, $Vm", "",
[(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vm))))]>;
// Pairwise long 2-register accumulate intrinsics,
// both double- and quad-register.
// The destination register is also used as the first source operand register.
class N2VDPLInt2<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4,
(outs DPR:$Vd), (ins DPR:$src1, DPR:$Vm), IIC_VPALiD,
OpcodeStr, Dt, "$Vd, $Vm", "$src1 = $Vd",
[(set DPR:$Vd, (ResTy (IntOp (ResTy DPR:$src1), (OpTy DPR:$Vm))))]>;
class N2VQPLInt2<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4,
(outs QPR:$Vd), (ins QPR:$src1, QPR:$Vm), IIC_VPALiQ,
OpcodeStr, Dt, "$Vd, $Vm", "$src1 = $Vd",
[(set QPR:$Vd, (ResTy (IntOp (ResTy QPR:$src1), (OpTy QPR:$Vm))))]>;
// Shift by immediate,
// both double- and quad-register.
class N2VDSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
Format f, InstrItinClass itin, Operand ImmTy,
string OpcodeStr, string Dt, ValueType Ty, SDNode OpNode>
: N2VImm<op24, op23, op11_8, op7, 0, op4,
(outs DPR:$Vd), (ins DPR:$Vm, ImmTy:$SIMM), f, itin,
OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
[(set DPR:$Vd, (Ty (OpNode (Ty DPR:$Vm), (i32 imm:$SIMM))))]>;
class N2VQSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
Format f, InstrItinClass itin, Operand ImmTy,
string OpcodeStr, string Dt, ValueType Ty, SDNode OpNode>
: N2VImm<op24, op23, op11_8, op7, 1, op4,
(outs QPR:$Vd), (ins QPR:$Vm, ImmTy:$SIMM), f, itin,
OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
[(set QPR:$Vd, (Ty (OpNode (Ty QPR:$Vm), (i32 imm:$SIMM))))]>;
// Long shift by immediate.
class N2VLSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, SDNode OpNode>
: N2VImm<op24, op23, op11_8, op7, op6, op4,
(outs QPR:$Vd), (ins DPR:$Vm, i32imm:$SIMM), N2RegVShLFrm,
IIC_VSHLiD, OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
[(set QPR:$Vd, (ResTy (OpNode (OpTy DPR:$Vm),
(i32 imm:$SIMM))))]>;
// Narrow shift by immediate.
class N2VNSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Operand ImmTy, SDNode OpNode>
: N2VImm<op24, op23, op11_8, op7, op6, op4,
(outs DPR:$Vd), (ins QPR:$Vm, ImmTy:$SIMM), N2RegVShRFrm, itin,
OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
[(set DPR:$Vd, (ResTy (OpNode (OpTy QPR:$Vm),
(i32 imm:$SIMM))))]>;
// Shift right by immediate and accumulate,
// both double- and quad-register.
class N2VDShAdd<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
Operand ImmTy, string OpcodeStr, string Dt,
ValueType Ty, SDNode ShOp>
: N2VImm<op24, op23, op11_8, op7, 0, op4, (outs DPR:$Vd),
(ins DPR:$src1, DPR:$Vm, ImmTy:$SIMM), N2RegVShRFrm, IIC_VPALiD,
OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "$src1 = $Vd",
[(set DPR:$Vd, (Ty (add DPR:$src1,
(Ty (ShOp DPR:$Vm, (i32 imm:$SIMM))))))]>;
class N2VQShAdd<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
Operand ImmTy, string OpcodeStr, string Dt,
ValueType Ty, SDNode ShOp>
: N2VImm<op24, op23, op11_8, op7, 1, op4, (outs QPR:$Vd),
(ins QPR:$src1, QPR:$Vm, ImmTy:$SIMM), N2RegVShRFrm, IIC_VPALiD,
OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "$src1 = $Vd",
[(set QPR:$Vd, (Ty (add QPR:$src1,
(Ty (ShOp QPR:$Vm, (i32 imm:$SIMM))))))]>;
// Shift by immediate and insert,
// both double- and quad-register.
class N2VDShIns<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
Operand ImmTy, Format f, string OpcodeStr, string Dt,
ValueType Ty,SDNode ShOp>
: N2VImm<op24, op23, op11_8, op7, 0, op4, (outs DPR:$Vd),
(ins DPR:$src1, DPR:$Vm, ImmTy:$SIMM), f, IIC_VSHLiD,
OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "$src1 = $Vd",
[(set DPR:$Vd, (Ty (ShOp DPR:$src1, DPR:$Vm, (i32 imm:$SIMM))))]>;
class N2VQShIns<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
Operand ImmTy, Format f, string OpcodeStr, string Dt,
ValueType Ty,SDNode ShOp>
: N2VImm<op24, op23, op11_8, op7, 1, op4, (outs QPR:$Vd),
(ins QPR:$src1, QPR:$Vm, ImmTy:$SIMM), f, IIC_VSHLiQ,
OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "$src1 = $Vd",
[(set QPR:$Vd, (Ty (ShOp QPR:$src1, QPR:$Vm, (i32 imm:$SIMM))))]>;
// Convert, with fractional bits immediate,
// both double- and quad-register.
class N2VCvtD<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy,
Intrinsic IntOp>
: N2VImm<op24, op23, op11_8, op7, 0, op4,
(outs DPR:$Vd), (ins DPR:$Vm, neon_vcvt_imm32:$SIMM), NVCVTFrm,
IIC_VUNAD, OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
[(set DPR:$Vd, (ResTy (IntOp (OpTy DPR:$Vm), (i32 imm:$SIMM))))]>;
class N2VCvtQ<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy,
Intrinsic IntOp>
: N2VImm<op24, op23, op11_8, op7, 1, op4,
(outs QPR:$Vd), (ins QPR:$Vm, neon_vcvt_imm32:$SIMM), NVCVTFrm,
IIC_VUNAQ, OpcodeStr, Dt, "$Vd, $Vm, $SIMM", "",
[(set QPR:$Vd, (ResTy (IntOp (OpTy QPR:$Vm), (i32 imm:$SIMM))))]>;
//===----------------------------------------------------------------------===//
// Multiclasses
//===----------------------------------------------------------------------===//
// Abbreviations used in multiclass suffixes:
// Q = quarter int (8 bit) elements
// H = half int (16 bit) elements
// S = single int (32 bit) elements
// D = double int (64 bit) elements
// Neon 2-register vector operations and intrinsics.
// Neon 2-register comparisons.
// source operand element sizes of 8, 16 and 32 bits:
multiclass N2V_QHS_cmp<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
bits<5> op11_7, bit op4, string opc, string Dt,
string asm, SDNode OpNode> {
// 64-bit vector types.
def v8i8 : N2V<op24_23, op21_20, 0b00, op17_16, op11_7, 0, op4,
(outs DPR:$Vd), (ins DPR:$Vm), NoItinerary,
opc, !strconcat(Dt, "8"), asm, "",
[(set DPR:$Vd, (v8i8 (OpNode (v8i8 DPR:$Vm))))]>;
def v4i16 : N2V<op24_23, op21_20, 0b01, op17_16, op11_7, 0, op4,
(outs DPR:$Vd), (ins DPR:$Vm), NoItinerary,
opc, !strconcat(Dt, "16"), asm, "",
[(set DPR:$Vd, (v4i16 (OpNode (v4i16 DPR:$Vm))))]>;
def v2i32 : N2V<op24_23, op21_20, 0b10, op17_16, op11_7, 0, op4,
(outs DPR:$Vd), (ins DPR:$Vm), NoItinerary,
opc, !strconcat(Dt, "32"), asm, "",
[(set DPR:$Vd, (v2i32 (OpNode (v2i32 DPR:$Vm))))]>;
def v2f32 : N2V<op24_23, op21_20, 0b10, op17_16, op11_7, 0, op4,
(outs DPR:$Vd), (ins DPR:$Vm), NoItinerary,
opc, "f32", asm, "",
[(set DPR:$Vd, (v2i32 (OpNode (v2f32 DPR:$Vm))))]> {
let Inst{10} = 1; // overwrite F = 1
}
// 128-bit vector types.
def v16i8 : N2V<op24_23, op21_20, 0b00, op17_16, op11_7, 1, op4,
(outs QPR:$Vd), (ins QPR:$Vm), NoItinerary,
opc, !strconcat(Dt, "8"), asm, "",
[(set QPR:$Vd, (v16i8 (OpNode (v16i8 QPR:$Vm))))]>;
def v8i16 : N2V<op24_23, op21_20, 0b01, op17_16, op11_7, 1, op4,
(outs QPR:$Vd), (ins QPR:$Vm), NoItinerary,
opc, !strconcat(Dt, "16"), asm, "",
[(set QPR:$Vd, (v8i16 (OpNode (v8i16 QPR:$Vm))))]>;
def v4i32 : N2V<op24_23, op21_20, 0b10, op17_16, op11_7, 1, op4,
(outs QPR:$Vd), (ins QPR:$Vm), NoItinerary,
opc, !strconcat(Dt, "32"), asm, "",
[(set QPR:$Vd, (v4i32 (OpNode (v4i32 QPR:$Vm))))]>;
def v4f32 : N2V<op24_23, op21_20, 0b10, op17_16, op11_7, 1, op4,
(outs QPR:$Vd), (ins QPR:$Vm), NoItinerary,
opc, "f32", asm, "",
[(set QPR:$Vd, (v4i32 (OpNode (v4f32 QPR:$Vm))))]> {
let Inst{10} = 1; // overwrite F = 1
}
}
// Neon 2-register vector intrinsics,
// element sizes of 8, 16 and 32 bits:
multiclass N2VInt_QHS<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
bits<5> op11_7, bit op4,
InstrItinClass itinD, InstrItinClass itinQ,
string OpcodeStr, string Dt, Intrinsic IntOp> {
// 64-bit vector types.
def v8i8 : N2VDInt<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
itinD, OpcodeStr, !strconcat(Dt, "8"), v8i8, v8i8, IntOp>;
def v4i16 : N2VDInt<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
itinD, OpcodeStr, !strconcat(Dt, "16"),v4i16,v4i16,IntOp>;
def v2i32 : N2VDInt<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
itinD, OpcodeStr, !strconcat(Dt, "32"),v2i32,v2i32,IntOp>;
// 128-bit vector types.
def v16i8 : N2VQInt<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
itinQ, OpcodeStr, !strconcat(Dt, "8"), v16i8,v16i8,IntOp>;
def v8i16 : N2VQInt<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
itinQ, OpcodeStr, !strconcat(Dt, "16"),v8i16,v8i16,IntOp>;
def v4i32 : N2VQInt<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
itinQ, OpcodeStr, !strconcat(Dt, "32"),v4i32,v4i32,IntOp>;
}
// Neon Narrowing 2-register vector operations,
// source operand element sizes of 16, 32 and 64 bits:
multiclass N2VN_HSD<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
bits<5> op11_7, bit op6, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
SDNode OpNode> {
def v8i8 : N2VN<op24_23, op21_20, 0b00, op17_16, op11_7, op6, op4,
itin, OpcodeStr, !strconcat(Dt, "16"),
v8i8, v8i16, OpNode>;
def v4i16 : N2VN<op24_23, op21_20, 0b01, op17_16, op11_7, op6, op4,
itin, OpcodeStr, !strconcat(Dt, "32"),
v4i16, v4i32, OpNode>;
def v2i32 : N2VN<op24_23, op21_20, 0b10, op17_16, op11_7, op6, op4,
itin, OpcodeStr, !strconcat(Dt, "64"),
v2i32, v2i64, OpNode>;
}
// Neon Narrowing 2-register vector intrinsics,
// source operand element sizes of 16, 32 and 64 bits:
multiclass N2VNInt_HSD<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
bits<5> op11_7, bit op6, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
Intrinsic IntOp> {
def v8i8 : N2VNInt<op24_23, op21_20, 0b00, op17_16, op11_7, op6, op4,
itin, OpcodeStr, !strconcat(Dt, "16"),
v8i8, v8i16, IntOp>;
def v4i16 : N2VNInt<op24_23, op21_20, 0b01, op17_16, op11_7, op6, op4,
itin, OpcodeStr, !strconcat(Dt, "32"),
v4i16, v4i32, IntOp>;
def v2i32 : N2VNInt<op24_23, op21_20, 0b10, op17_16, op11_7, op6, op4,
itin, OpcodeStr, !strconcat(Dt, "64"),
v2i32, v2i64, IntOp>;
}
// Neon Lengthening 2-register vector intrinsic (currently specific to VMOVL).
// source operand element sizes of 16, 32 and 64 bits:
multiclass N2VL_QHS<bits<2> op24_23, bits<5> op11_7, bit op6, bit op4,
string OpcodeStr, string Dt, SDNode OpNode> {
def v8i16 : N2VL<op24_23, 0b00, 0b10, 0b00, op11_7, op6, op4, IIC_VQUNAiD,
OpcodeStr, !strconcat(Dt, "8"), v8i16, v8i8, OpNode>;
def v4i32 : N2VL<op24_23, 0b01, 0b00, 0b00, op11_7, op6, op4, IIC_VQUNAiD,
OpcodeStr, !strconcat(Dt, "16"), v4i32, v4i16, OpNode>;
def v2i64 : N2VL<op24_23, 0b10, 0b00, 0b00, op11_7, op6, op4, IIC_VQUNAiD,
OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32, OpNode>;
}
// Neon 3-register vector operations.
// First with only element sizes of 8, 16 and 32 bits:
multiclass N3V_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itinD16, InstrItinClass itinD32,
InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, string Dt,
SDNode OpNode, bit Commutable = 0> {
// 64-bit vector types.
def v8i8 : N3VD<op24, op23, 0b00, op11_8, op4, itinD16,
OpcodeStr, !strconcat(Dt, "8"),
v8i8, v8i8, OpNode, Commutable>;
def v4i16 : N3VD<op24, op23, 0b01, op11_8, op4, itinD16,
OpcodeStr, !strconcat(Dt, "16"),
v4i16, v4i16, OpNode, Commutable>;
def v2i32 : N3VD<op24, op23, 0b10, op11_8, op4, itinD32,
OpcodeStr, !strconcat(Dt, "32"),
v2i32, v2i32, OpNode, Commutable>;
// 128-bit vector types.
def v16i8 : N3VQ<op24, op23, 0b00, op11_8, op4, itinQ16,
OpcodeStr, !strconcat(Dt, "8"),
v16i8, v16i8, OpNode, Commutable>;
def v8i16 : N3VQ<op24, op23, 0b01, op11_8, op4, itinQ16,
OpcodeStr, !strconcat(Dt, "16"),
v8i16, v8i16, OpNode, Commutable>;
def v4i32 : N3VQ<op24, op23, 0b10, op11_8, op4, itinQ32,
OpcodeStr, !strconcat(Dt, "32"),
v4i32, v4i32, OpNode, Commutable>;
}
multiclass N3VSL_HS<bits<4> op11_8, string OpcodeStr, string Dt, SDNode ShOp> {
def v4i16 : N3VDSL16<0b01, op11_8, OpcodeStr, !strconcat(Dt, "16"),
v4i16, ShOp>;
def v2i32 : N3VDSL<0b10, op11_8, IIC_VMULi32D, OpcodeStr, !strconcat(Dt,"32"),
v2i32, ShOp>;
def v8i16 : N3VQSL16<0b01, op11_8, OpcodeStr, !strconcat(Dt, "16"),
v8i16, v4i16, ShOp>;
def v4i32 : N3VQSL<0b10, op11_8, IIC_VMULi32Q, OpcodeStr, !strconcat(Dt,"32"),
v4i32, v2i32, ShOp>;
}
// ....then also with element size 64 bits:
multiclass N3V_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itinD, InstrItinClass itinQ,
string OpcodeStr, string Dt,
SDNode OpNode, bit Commutable = 0>
: N3V_QHS<op24, op23, op11_8, op4, itinD, itinD, itinQ, itinQ,
OpcodeStr, Dt, OpNode, Commutable> {
def v1i64 : N3VD<op24, op23, 0b11, op11_8, op4, itinD,
OpcodeStr, !strconcat(Dt, "64"),
v1i64, v1i64, OpNode, Commutable>;
def v2i64 : N3VQ<op24, op23, 0b11, op11_8, op4, itinQ,
OpcodeStr, !strconcat(Dt, "64"),
v2i64, v2i64, OpNode, Commutable>;
}
// Neon 3-register vector intrinsics.
// First with only element sizes of 16 and 32 bits:
multiclass N3VInt_HS<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
InstrItinClass itinD16, InstrItinClass itinD32,
InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, string Dt,
Intrinsic IntOp, bit Commutable = 0> {
// 64-bit vector types.
def v4i16 : N3VDInt<op24, op23, 0b01, op11_8, op4, f, itinD16,
OpcodeStr, !strconcat(Dt, "16"),
v4i16, v4i16, IntOp, Commutable>;
def v2i32 : N3VDInt<op24, op23, 0b10, op11_8, op4, f, itinD32,
OpcodeStr, !strconcat(Dt, "32"),
v2i32, v2i32, IntOp, Commutable>;
// 128-bit vector types.
def v8i16 : N3VQInt<op24, op23, 0b01, op11_8, op4, f, itinQ16,
OpcodeStr, !strconcat(Dt, "16"),
v8i16, v8i16, IntOp, Commutable>;
def v4i32 : N3VQInt<op24, op23, 0b10, op11_8, op4, f, itinQ32,
OpcodeStr, !strconcat(Dt, "32"),
v4i32, v4i32, IntOp, Commutable>;
}
multiclass N3VInt_HSSh<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
InstrItinClass itinD16, InstrItinClass itinD32,
InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, string Dt,
Intrinsic IntOp> {
// 64-bit vector types.
def v4i16 : N3VDIntSh<op24, op23, 0b01, op11_8, op4, f, itinD16,
OpcodeStr, !strconcat(Dt, "16"),
v4i16, v4i16, IntOp>;
def v2i32 : N3VDIntSh<op24, op23, 0b10, op11_8, op4, f, itinD32,
OpcodeStr, !strconcat(Dt, "32"),
v2i32, v2i32, IntOp>;
// 128-bit vector types.
def v8i16 : N3VQIntSh<op24, op23, 0b01, op11_8, op4, f, itinQ16,
OpcodeStr, !strconcat(Dt, "16"),
v8i16, v8i16, IntOp>;
def v4i32 : N3VQIntSh<op24, op23, 0b10, op11_8, op4, f, itinQ32,
OpcodeStr, !strconcat(Dt, "32"),
v4i32, v4i32, IntOp>;
}
multiclass N3VIntSL_HS<bits<4> op11_8,
InstrItinClass itinD16, InstrItinClass itinD32,
InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, string Dt, Intrinsic IntOp> {
def v4i16 : N3VDIntSL16<0b01, op11_8, itinD16,
OpcodeStr, !strconcat(Dt, "16"), v4i16, IntOp>;
def v2i32 : N3VDIntSL<0b10, op11_8, itinD32,
OpcodeStr, !strconcat(Dt, "32"), v2i32, IntOp>;
def v8i16 : N3VQIntSL16<0b01, op11_8, itinQ16,
OpcodeStr, !strconcat(Dt, "16"), v8i16, v4i16, IntOp>;
def v4i32 : N3VQIntSL<0b10, op11_8, itinQ32,
OpcodeStr, !strconcat(Dt, "32"), v4i32, v2i32, IntOp>;
}
// ....then also with element size of 8 bits:
multiclass N3VInt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
InstrItinClass itinD16, InstrItinClass itinD32,
InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, string Dt,
Intrinsic IntOp, bit Commutable = 0>
: N3VInt_HS<op24, op23, op11_8, op4, f, itinD16, itinD32, itinQ16, itinQ32,
OpcodeStr, Dt, IntOp, Commutable> {
def v8i8 : N3VDInt<op24, op23, 0b00, op11_8, op4, f, itinD16,
OpcodeStr, !strconcat(Dt, "8"),
v8i8, v8i8, IntOp, Commutable>;
def v16i8 : N3VQInt<op24, op23, 0b00, op11_8, op4, f, itinQ16,
OpcodeStr, !strconcat(Dt, "8"),
v16i8, v16i8, IntOp, Commutable>;
}
multiclass N3VInt_QHSSh<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
InstrItinClass itinD16, InstrItinClass itinD32,
InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, string Dt,
Intrinsic IntOp>
: N3VInt_HSSh<op24, op23, op11_8, op4, f, itinD16, itinD32, itinQ16, itinQ32,
OpcodeStr, Dt, IntOp> {
def v8i8 : N3VDIntSh<op24, op23, 0b00, op11_8, op4, f, itinD16,
OpcodeStr, !strconcat(Dt, "8"),
v8i8, v8i8, IntOp>;
def v16i8 : N3VQIntSh<op24, op23, 0b00, op11_8, op4, f, itinQ16,
OpcodeStr, !strconcat(Dt, "8"),
v16i8, v16i8, IntOp>;
}
// ....then also with element size of 64 bits:
multiclass N3VInt_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
InstrItinClass itinD16, InstrItinClass itinD32,
InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, string Dt,
Intrinsic IntOp, bit Commutable = 0>
: N3VInt_QHS<op24, op23, op11_8, op4, f, itinD16, itinD32, itinQ16, itinQ32,
OpcodeStr, Dt, IntOp, Commutable> {
def v1i64 : N3VDInt<op24, op23, 0b11, op11_8, op4, f, itinD32,
OpcodeStr, !strconcat(Dt, "64"),
v1i64, v1i64, IntOp, Commutable>;
def v2i64 : N3VQInt<op24, op23, 0b11, op11_8, op4, f, itinQ32,
OpcodeStr, !strconcat(Dt, "64"),
v2i64, v2i64, IntOp, Commutable>;
}
multiclass N3VInt_QHSDSh<bit op24, bit op23, bits<4> op11_8, bit op4, Format f,
InstrItinClass itinD16, InstrItinClass itinD32,
InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, string Dt,
Intrinsic IntOp>
: N3VInt_QHSSh<op24, op23, op11_8, op4, f, itinD16, itinD32, itinQ16, itinQ32,
OpcodeStr, Dt, IntOp> {
def v1i64 : N3VDIntSh<op24, op23, 0b11, op11_8, op4, f, itinD32,
OpcodeStr, !strconcat(Dt, "64"),
v1i64, v1i64, IntOp>;
def v2i64 : N3VQIntSh<op24, op23, 0b11, op11_8, op4, f, itinQ32,
OpcodeStr, !strconcat(Dt, "64"),
v2i64, v2i64, IntOp>;
}
// Neon Narrowing 3-register vector intrinsics,
// source operand element sizes of 16, 32 and 64 bits:
multiclass N3VNInt_HSD<bit op24, bit op23, bits<4> op11_8, bit op4,
string OpcodeStr, string Dt,
Intrinsic IntOp, bit Commutable = 0> {
def v8i8 : N3VNInt<op24, op23, 0b00, op11_8, op4,
OpcodeStr, !strconcat(Dt, "16"),
v8i8, v8i16, IntOp, Commutable>;
def v4i16 : N3VNInt<op24, op23, 0b01, op11_8, op4,
OpcodeStr, !strconcat(Dt, "32"),
v4i16, v4i32, IntOp, Commutable>;
def v2i32 : N3VNInt<op24, op23, 0b10, op11_8, op4,
OpcodeStr, !strconcat(Dt, "64"),
v2i32, v2i64, IntOp, Commutable>;
}
// Neon Long 3-register vector operations.
multiclass N3VL_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itin16, InstrItinClass itin32,
string OpcodeStr, string Dt,
SDNode OpNode, bit Commutable = 0> {
def v8i16 : N3VL<op24, op23, 0b00, op11_8, op4, itin16,
OpcodeStr, !strconcat(Dt, "8"),
v8i16, v8i8, OpNode, Commutable>;
def v4i32 : N3VL<op24, op23, 0b01, op11_8, op4, itin16,
OpcodeStr, !strconcat(Dt, "16"),
v4i32, v4i16, OpNode, Commutable>;
def v2i64 : N3VL<op24, op23, 0b10, op11_8, op4, itin32,
OpcodeStr, !strconcat(Dt, "32"),
v2i64, v2i32, OpNode, Commutable>;
}
multiclass N3VLSL_HS<bit op24, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
SDNode OpNode> {
def v4i16 : N3VLSL16<op24, 0b01, op11_8, itin, OpcodeStr,
!strconcat(Dt, "16"), v4i32, v4i16, OpNode>;
def v2i32 : N3VLSL<op24, 0b10, op11_8, itin, OpcodeStr,
!strconcat(Dt, "32"), v2i64, v2i32, OpNode>;
}
multiclass N3VLExt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itin16, InstrItinClass itin32,
string OpcodeStr, string Dt,
SDNode OpNode, SDNode ExtOp, bit Commutable = 0> {
def v8i16 : N3VLExt<op24, op23, 0b00, op11_8, op4, itin16,
OpcodeStr, !strconcat(Dt, "8"),
v8i16, v8i8, OpNode, ExtOp, Commutable>;
def v4i32 : N3VLExt<op24, op23, 0b01, op11_8, op4, itin16,
OpcodeStr, !strconcat(Dt, "16"),
v4i32, v4i16, OpNode, ExtOp, Commutable>;
def v2i64 : N3VLExt<op24, op23, 0b10, op11_8, op4, itin32,
OpcodeStr, !strconcat(Dt, "32"),
v2i64, v2i32, OpNode, ExtOp, Commutable>;
}
// Neon Long 3-register vector intrinsics.
// First with only element sizes of 16 and 32 bits:
multiclass N3VLInt_HS<bit op24, bit op23, bits<4> op11_8, bit op4,
2010-04-08 02:21:10 +08:00
InstrItinClass itin16, InstrItinClass itin32,
string OpcodeStr, string Dt,
Intrinsic IntOp, bit Commutable = 0> {
def v4i32 : N3VLInt<op24, op23, 0b01, op11_8, op4, itin16,
OpcodeStr, !strconcat(Dt, "16"),
v4i32, v4i16, IntOp, Commutable>;
2010-04-08 02:21:10 +08:00
def v2i64 : N3VLInt<op24, op23, 0b10, op11_8, op4, itin32,
OpcodeStr, !strconcat(Dt, "32"),
v2i64, v2i32, IntOp, Commutable>;
}
multiclass N3VLIntSL_HS<bit op24, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
Intrinsic IntOp> {
def v4i16 : N3VLIntSL16<op24, 0b01, op11_8, itin,
OpcodeStr, !strconcat(Dt, "16"), v4i32, v4i16, IntOp>;
def v2i32 : N3VLIntSL<op24, 0b10, op11_8, itin,
OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32, IntOp>;
}
// ....then also with element size of 8 bits:
multiclass N3VLInt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
2010-04-08 02:21:10 +08:00
InstrItinClass itin16, InstrItinClass itin32,
string OpcodeStr, string Dt,
Intrinsic IntOp, bit Commutable = 0>
2010-04-08 02:21:10 +08:00
: N3VLInt_HS<op24, op23, op11_8, op4, itin16, itin32, OpcodeStr, Dt,
IntOp, Commutable> {
2010-04-08 02:21:10 +08:00
def v8i16 : N3VLInt<op24, op23, 0b00, op11_8, op4, itin16,
OpcodeStr, !strconcat(Dt, "8"),
v8i16, v8i8, IntOp, Commutable>;
}
// ....with explicit extend (VABDL).
multiclass N3VLIntExt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
Intrinsic IntOp, SDNode ExtOp, bit Commutable = 0> {
def v8i16 : N3VLIntExt<op24, op23, 0b00, op11_8, op4, itin,
OpcodeStr, !strconcat(Dt, "8"),
v8i16, v8i8, IntOp, ExtOp, Commutable>;
def v4i32 : N3VLIntExt<op24, op23, 0b01, op11_8, op4, itin,
OpcodeStr, !strconcat(Dt, "16"),
v4i32, v4i16, IntOp, ExtOp, Commutable>;
def v2i64 : N3VLIntExt<op24, op23, 0b10, op11_8, op4, itin,
OpcodeStr, !strconcat(Dt, "32"),
v2i64, v2i32, IntOp, ExtOp, Commutable>;
}
// Neon Wide 3-register vector intrinsics,
// source operand element sizes of 8, 16 and 32 bits:
multiclass N3VW_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
string OpcodeStr, string Dt,
SDNode OpNode, SDNode ExtOp, bit Commutable = 0> {
def v8i16 : N3VW<op24, op23, 0b00, op11_8, op4,
OpcodeStr, !strconcat(Dt, "8"),
v8i16, v8i8, OpNode, ExtOp, Commutable>;
def v4i32 : N3VW<op24, op23, 0b01, op11_8, op4,
OpcodeStr, !strconcat(Dt, "16"),
v4i32, v4i16, OpNode, ExtOp, Commutable>;
def v2i64 : N3VW<op24, op23, 0b10, op11_8, op4,
OpcodeStr, !strconcat(Dt, "32"),
v2i64, v2i32, OpNode, ExtOp, Commutable>;
}
// Neon Multiply-Op vector operations,
// element sizes of 8, 16 and 32 bits:
multiclass N3VMulOp_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itinD16, InstrItinClass itinD32,
InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, string Dt, SDNode OpNode> {
// 64-bit vector types.
def v8i8 : N3VDMulOp<op24, op23, 0b00, op11_8, op4, itinD16,
OpcodeStr, !strconcat(Dt, "8"), v8i8, mul, OpNode>;
def v4i16 : N3VDMulOp<op24, op23, 0b01, op11_8, op4, itinD16,
OpcodeStr, !strconcat(Dt, "16"), v4i16, mul, OpNode>;
def v2i32 : N3VDMulOp<op24, op23, 0b10, op11_8, op4, itinD32,
OpcodeStr, !strconcat(Dt, "32"), v2i32, mul, OpNode>;
// 128-bit vector types.
def v16i8 : N3VQMulOp<op24, op23, 0b00, op11_8, op4, itinQ16,
OpcodeStr, !strconcat(Dt, "8"), v16i8, mul, OpNode>;
def v8i16 : N3VQMulOp<op24, op23, 0b01, op11_8, op4, itinQ16,
OpcodeStr, !strconcat(Dt, "16"), v8i16, mul, OpNode>;
def v4i32 : N3VQMulOp<op24, op23, 0b10, op11_8, op4, itinQ32,
OpcodeStr, !strconcat(Dt, "32"), v4i32, mul, OpNode>;
}
multiclass N3VMulOpSL_HS<bits<4> op11_8,
InstrItinClass itinD16, InstrItinClass itinD32,
InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, string Dt, SDNode ShOp> {
def v4i16 : N3VDMulOpSL16<0b01, op11_8, itinD16,
OpcodeStr, !strconcat(Dt, "16"), v4i16, mul, ShOp>;
def v2i32 : N3VDMulOpSL<0b10, op11_8, itinD32,
OpcodeStr, !strconcat(Dt, "32"), v2i32, mul, ShOp>;
def v8i16 : N3VQMulOpSL16<0b01, op11_8, itinQ16,
OpcodeStr, !strconcat(Dt, "16"), v8i16, v4i16,
mul, ShOp>;
def v4i32 : N3VQMulOpSL<0b10, op11_8, itinQ32,
OpcodeStr, !strconcat(Dt, "32"), v4i32, v2i32,
mul, ShOp>;
}
// Neon Intrinsic-Op vector operations,
// element sizes of 8, 16 and 32 bits:
multiclass N3VIntOp_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itinD, InstrItinClass itinQ,
string OpcodeStr, string Dt, Intrinsic IntOp,
SDNode OpNode> {
// 64-bit vector types.
def v8i8 : N3VDIntOp<op24, op23, 0b00, op11_8, op4, itinD,
OpcodeStr, !strconcat(Dt, "8"), v8i8, IntOp, OpNode>;
def v4i16 : N3VDIntOp<op24, op23, 0b01, op11_8, op4, itinD,
OpcodeStr, !strconcat(Dt, "16"), v4i16, IntOp, OpNode>;
def v2i32 : N3VDIntOp<op24, op23, 0b10, op11_8, op4, itinD,
OpcodeStr, !strconcat(Dt, "32"), v2i32, IntOp, OpNode>;
// 128-bit vector types.
def v16i8 : N3VQIntOp<op24, op23, 0b00, op11_8, op4, itinQ,
OpcodeStr, !strconcat(Dt, "8"), v16i8, IntOp, OpNode>;
def v8i16 : N3VQIntOp<op24, op23, 0b01, op11_8, op4, itinQ,
OpcodeStr, !strconcat(Dt, "16"), v8i16, IntOp, OpNode>;
def v4i32 : N3VQIntOp<op24, op23, 0b10, op11_8, op4, itinQ,
OpcodeStr, !strconcat(Dt, "32"), v4i32, IntOp, OpNode>;
}
// Neon 3-argument intrinsics,
// element sizes of 8, 16 and 32 bits:
multiclass N3VInt3_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
2010-04-08 02:20:42 +08:00
InstrItinClass itinD, InstrItinClass itinQ,
string OpcodeStr, string Dt, Intrinsic IntOp> {
// 64-bit vector types.
2010-04-08 02:20:42 +08:00
def v8i8 : N3VDInt3<op24, op23, 0b00, op11_8, op4, itinD,
OpcodeStr, !strconcat(Dt, "8"), v8i8, v8i8, IntOp>;
2010-04-08 02:20:42 +08:00
def v4i16 : N3VDInt3<op24, op23, 0b01, op11_8, op4, itinD,
OpcodeStr, !strconcat(Dt, "16"), v4i16, v4i16, IntOp>;
2010-04-08 02:20:42 +08:00
def v2i32 : N3VDInt3<op24, op23, 0b10, op11_8, op4, itinD,
OpcodeStr, !strconcat(Dt, "32"), v2i32, v2i32, IntOp>;
// 128-bit vector types.
2010-04-08 02:20:42 +08:00
def v16i8 : N3VQInt3<op24, op23, 0b00, op11_8, op4, itinQ,
OpcodeStr, !strconcat(Dt, "8"), v16i8, v16i8, IntOp>;
2010-04-08 02:20:42 +08:00
def v8i16 : N3VQInt3<op24, op23, 0b01, op11_8, op4, itinQ,
OpcodeStr, !strconcat(Dt, "16"), v8i16, v8i16, IntOp>;
2010-04-08 02:20:42 +08:00
def v4i32 : N3VQInt3<op24, op23, 0b10, op11_8, op4, itinQ,
OpcodeStr, !strconcat(Dt, "32"), v4i32, v4i32, IntOp>;
}
// Neon Long Multiply-Op vector operations,
// element sizes of 8, 16 and 32 bits:
multiclass N3VLMulOp_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itin16, InstrItinClass itin32,
string OpcodeStr, string Dt, SDNode MulOp,
SDNode OpNode> {
def v8i16 : N3VLMulOp<op24, op23, 0b00, op11_8, op4, itin16, OpcodeStr,
!strconcat(Dt, "8"), v8i16, v8i8, MulOp, OpNode>;
def v4i32 : N3VLMulOp<op24, op23, 0b01, op11_8, op4, itin16, OpcodeStr,
!strconcat(Dt, "16"), v4i32, v4i16, MulOp, OpNode>;
def v2i64 : N3VLMulOp<op24, op23, 0b10, op11_8, op4, itin32, OpcodeStr,
!strconcat(Dt, "32"), v2i64, v2i32, MulOp, OpNode>;
}
multiclass N3VLMulOpSL_HS<bit op24, bits<4> op11_8, string OpcodeStr,
string Dt, SDNode MulOp, SDNode OpNode> {
def v4i16 : N3VLMulOpSL16<op24, 0b01, op11_8, IIC_VMACi16D, OpcodeStr,
!strconcat(Dt,"16"), v4i32, v4i16, MulOp, OpNode>;
def v2i32 : N3VLMulOpSL<op24, 0b10, op11_8, IIC_VMACi32D, OpcodeStr,
!strconcat(Dt, "32"), v2i64, v2i32, MulOp, OpNode>;
}
// Neon Long 3-argument intrinsics.
// First with only element sizes of 16 and 32 bits:
multiclass N3VLInt3_HS<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itin16, InstrItinClass itin32,
string OpcodeStr, string Dt, Intrinsic IntOp> {
def v4i32 : N3VLInt3<op24, op23, 0b01, op11_8, op4, itin16,
OpcodeStr, !strconcat(Dt, "16"), v4i32, v4i16, IntOp>;
def v2i64 : N3VLInt3<op24, op23, 0b10, op11_8, op4, itin32,
OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32, IntOp>;
}
multiclass N3VLInt3SL_HS<bit op24, bits<4> op11_8,
string OpcodeStr, string Dt, Intrinsic IntOp> {
def v4i16 : N3VLInt3SL16<op24, 0b01, op11_8, IIC_VMACi16D,
OpcodeStr, !strconcat(Dt,"16"), v4i32, v4i16, IntOp>;
def v2i32 : N3VLInt3SL<op24, 0b10, op11_8, IIC_VMACi32D,
OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32, IntOp>;
}
// ....then also with element size of 8 bits:
multiclass N3VLInt3_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itin16, InstrItinClass itin32,
string OpcodeStr, string Dt, Intrinsic IntOp>
: N3VLInt3_HS<op24, op23, op11_8, op4, itin16, itin32, OpcodeStr, Dt, IntOp> {
def v8i16 : N3VLInt3<op24, op23, 0b00, op11_8, op4, itin16,
OpcodeStr, !strconcat(Dt, "8"), v8i16, v8i8, IntOp>;
}
// ....with explicit extend (VABAL).
multiclass N3VLIntExtOp_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
Intrinsic IntOp, SDNode ExtOp, SDNode OpNode> {
def v8i16 : N3VLIntExtOp<op24, op23, 0b00, op11_8, op4, itin,
OpcodeStr, !strconcat(Dt, "8"), v8i16, v8i8,
IntOp, ExtOp, OpNode>;
def v4i32 : N3VLIntExtOp<op24, op23, 0b01, op11_8, op4, itin,
OpcodeStr, !strconcat(Dt, "16"), v4i32, v4i16,
IntOp, ExtOp, OpNode>;
def v2i64 : N3VLIntExtOp<op24, op23, 0b10, op11_8, op4, itin,
OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32,
IntOp, ExtOp, OpNode>;
}
// Neon Pairwise long 2-register intrinsics,
// element sizes of 8, 16 and 32 bits:
multiclass N2VPLInt_QHS<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
bits<5> op11_7, bit op4,
string OpcodeStr, string Dt, Intrinsic IntOp> {
// 64-bit vector types.
def v8i8 : N2VDPLInt<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "8"), v4i16, v8i8, IntOp>;
def v4i16 : N2VDPLInt<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "16"), v2i32, v4i16, IntOp>;
def v2i32 : N2VDPLInt<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "32"), v1i64, v2i32, IntOp>;
// 128-bit vector types.
def v16i8 : N2VQPLInt<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "8"), v8i16, v16i8, IntOp>;
def v8i16 : N2VQPLInt<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "16"), v4i32, v8i16, IntOp>;
def v4i32 : N2VQPLInt<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "32"), v2i64, v4i32, IntOp>;
}
// Neon Pairwise long 2-register accumulate intrinsics,
// element sizes of 8, 16 and 32 bits:
multiclass N2VPLInt2_QHS<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
bits<5> op11_7, bit op4,
string OpcodeStr, string Dt, Intrinsic IntOp> {
// 64-bit vector types.
def v8i8 : N2VDPLInt2<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "8"), v4i16, v8i8, IntOp>;
def v4i16 : N2VDPLInt2<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "16"), v2i32, v4i16, IntOp>;
def v2i32 : N2VDPLInt2<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "32"), v1i64, v2i32, IntOp>;
// 128-bit vector types.
def v16i8 : N2VQPLInt2<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "8"), v8i16, v16i8, IntOp>;
def v8i16 : N2VQPLInt2<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "16"), v4i32, v8i16, IntOp>;
def v4i32 : N2VQPLInt2<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
OpcodeStr, !strconcat(Dt, "32"), v2i64, v4i32, IntOp>;
}
// Neon 2-register vector shift by immediate,
// with f of either N2RegVShLFrm or N2RegVShRFrm
// element sizes of 8, 16, 32 and 64 bits:
multiclass N2VShL_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
SDNode OpNode> {
// 64-bit vector types.
def v8i8 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
OpcodeStr, !strconcat(Dt, "8"), v8i8, OpNode> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v4i16 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
OpcodeStr, !strconcat(Dt, "16"), v4i16, OpNode> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v2i32 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
OpcodeStr, !strconcat(Dt, "32"), v2i32, OpNode> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
def v1i64 : N2VDSh<op24, op23, op11_8, 1, op4, N2RegVShLFrm, itin, i32imm,
OpcodeStr, !strconcat(Dt, "64"), v1i64, OpNode>;
// imm6 = xxxxxx
// 128-bit vector types.
def v16i8 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
OpcodeStr, !strconcat(Dt, "8"), v16i8, OpNode> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v8i16 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
OpcodeStr, !strconcat(Dt, "16"), v8i16, OpNode> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v4i32 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShLFrm, itin, i32imm,
OpcodeStr, !strconcat(Dt, "32"), v4i32, OpNode> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
def v2i64 : N2VQSh<op24, op23, op11_8, 1, op4, N2RegVShLFrm, itin, i32imm,
OpcodeStr, !strconcat(Dt, "64"), v2i64, OpNode>;
// imm6 = xxxxxx
}
multiclass N2VShR_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
SDNode OpNode> {
// 64-bit vector types.
def v8i8 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm8,
OpcodeStr, !strconcat(Dt, "8"), v8i8, OpNode> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v4i16 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm16,
OpcodeStr, !strconcat(Dt, "16"), v4i16, OpNode> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v2i32 : N2VDSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm32,
OpcodeStr, !strconcat(Dt, "32"), v2i32, OpNode> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
def v1i64 : N2VDSh<op24, op23, op11_8, 1, op4, N2RegVShRFrm, itin, shr_imm64,
OpcodeStr, !strconcat(Dt, "64"), v1i64, OpNode>;
// imm6 = xxxxxx
// 128-bit vector types.
def v16i8 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm8,
OpcodeStr, !strconcat(Dt, "8"), v16i8, OpNode> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v8i16 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm16,
OpcodeStr, !strconcat(Dt, "16"), v8i16, OpNode> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v4i32 : N2VQSh<op24, op23, op11_8, 0, op4, N2RegVShRFrm, itin, shr_imm32,
OpcodeStr, !strconcat(Dt, "32"), v4i32, OpNode> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
def v2i64 : N2VQSh<op24, op23, op11_8, 1, op4, N2RegVShRFrm, itin, shr_imm64,
OpcodeStr, !strconcat(Dt, "64"), v2i64, OpNode>;
// imm6 = xxxxxx
}
// Neon Shift-Accumulate vector operations,
// element sizes of 8, 16, 32 and 64 bits:
multiclass N2VShAdd_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
string OpcodeStr, string Dt, SDNode ShOp> {
// 64-bit vector types.
def v8i8 : N2VDShAdd<op24, op23, op11_8, 0, op4, shr_imm8,
OpcodeStr, !strconcat(Dt, "8"), v8i8, ShOp> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v4i16 : N2VDShAdd<op24, op23, op11_8, 0, op4, shr_imm16,
OpcodeStr, !strconcat(Dt, "16"), v4i16, ShOp> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v2i32 : N2VDShAdd<op24, op23, op11_8, 0, op4, shr_imm32,
OpcodeStr, !strconcat(Dt, "32"), v2i32, ShOp> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
def v1i64 : N2VDShAdd<op24, op23, op11_8, 1, op4, shr_imm64,
OpcodeStr, !strconcat(Dt, "64"), v1i64, ShOp>;
// imm6 = xxxxxx
// 128-bit vector types.
def v16i8 : N2VQShAdd<op24, op23, op11_8, 0, op4, shr_imm8,
OpcodeStr, !strconcat(Dt, "8"), v16i8, ShOp> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v8i16 : N2VQShAdd<op24, op23, op11_8, 0, op4, shr_imm16,
OpcodeStr, !strconcat(Dt, "16"), v8i16, ShOp> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v4i32 : N2VQShAdd<op24, op23, op11_8, 0, op4, shr_imm32,
OpcodeStr, !strconcat(Dt, "32"), v4i32, ShOp> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
def v2i64 : N2VQShAdd<op24, op23, op11_8, 1, op4, shr_imm64,
OpcodeStr, !strconcat(Dt, "64"), v2i64, ShOp>;
// imm6 = xxxxxx
}
// Neon Shift-Insert vector operations,
// with f of either N2RegVShLFrm or N2RegVShRFrm
// element sizes of 8, 16, 32 and 64 bits:
multiclass N2VShInsL_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
string OpcodeStr> {
// 64-bit vector types.
def v8i8 : N2VDShIns<op24, op23, op11_8, 0, op4, i32imm,
N2RegVShLFrm, OpcodeStr, "8", v8i8, NEONvsli> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v4i16 : N2VDShIns<op24, op23, op11_8, 0, op4, i32imm,
N2RegVShLFrm, OpcodeStr, "16", v4i16, NEONvsli> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v2i32 : N2VDShIns<op24, op23, op11_8, 0, op4, i32imm,
N2RegVShLFrm, OpcodeStr, "32", v2i32, NEONvsli> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
def v1i64 : N2VDShIns<op24, op23, op11_8, 1, op4, i32imm,
N2RegVShLFrm, OpcodeStr, "64", v1i64, NEONvsli>;
// imm6 = xxxxxx
// 128-bit vector types.
def v16i8 : N2VQShIns<op24, op23, op11_8, 0, op4, i32imm,
N2RegVShLFrm, OpcodeStr, "8", v16i8, NEONvsli> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v8i16 : N2VQShIns<op24, op23, op11_8, 0, op4, i32imm,
N2RegVShLFrm, OpcodeStr, "16", v8i16, NEONvsli> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v4i32 : N2VQShIns<op24, op23, op11_8, 0, op4, i32imm,
N2RegVShLFrm, OpcodeStr, "32", v4i32, NEONvsli> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
def v2i64 : N2VQShIns<op24, op23, op11_8, 1, op4, i32imm,
N2RegVShLFrm, OpcodeStr, "64", v2i64, NEONvsli>;
// imm6 = xxxxxx
}
multiclass N2VShInsR_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
string OpcodeStr> {
// 64-bit vector types.
def v8i8 : N2VDShIns<op24, op23, op11_8, 0, op4, shr_imm8,
N2RegVShRFrm, OpcodeStr, "8", v8i8, NEONvsri> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v4i16 : N2VDShIns<op24, op23, op11_8, 0, op4, shr_imm16,
N2RegVShRFrm, OpcodeStr, "16", v4i16, NEONvsri> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v2i32 : N2VDShIns<op24, op23, op11_8, 0, op4, shr_imm32,
N2RegVShRFrm, OpcodeStr, "32", v2i32, NEONvsri> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
def v1i64 : N2VDShIns<op24, op23, op11_8, 1, op4, shr_imm64,
N2RegVShRFrm, OpcodeStr, "64", v1i64, NEONvsri>;
// imm6 = xxxxxx
// 128-bit vector types.
def v16i8 : N2VQShIns<op24, op23, op11_8, 0, op4, shr_imm8,
N2RegVShRFrm, OpcodeStr, "8", v16i8, NEONvsri> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v8i16 : N2VQShIns<op24, op23, op11_8, 0, op4, shr_imm16,
N2RegVShRFrm, OpcodeStr, "16", v8i16, NEONvsri> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v4i32 : N2VQShIns<op24, op23, op11_8, 0, op4, shr_imm32,
N2RegVShRFrm, OpcodeStr, "32", v4i32, NEONvsri> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
def v2i64 : N2VQShIns<op24, op23, op11_8, 1, op4, shr_imm64,
N2RegVShRFrm, OpcodeStr, "64", v2i64, NEONvsri>;
// imm6 = xxxxxx
}
// Neon Shift Long operations,
// element sizes of 8, 16, 32 bits:
multiclass N2VLSh_QHS<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6,
bit op4, string OpcodeStr, string Dt, SDNode OpNode> {
def v8i16 : N2VLSh<op24, op23, op11_8, op7, op6, op4,
OpcodeStr, !strconcat(Dt, "8"), v8i16, v8i8, OpNode> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v4i32 : N2VLSh<op24, op23, op11_8, op7, op6, op4,
OpcodeStr, !strconcat(Dt, "16"), v4i32, v4i16, OpNode> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v2i64 : N2VLSh<op24, op23, op11_8, op7, op6, op4,
OpcodeStr, !strconcat(Dt, "32"), v2i64, v2i32, OpNode> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
}
// Neon Shift Narrow operations,
// element sizes of 16, 32, 64 bits:
multiclass N2VNSh_HSD<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6,
bit op4, InstrItinClass itin, string OpcodeStr, string Dt,
SDNode OpNode> {
def v8i8 : N2VNSh<op24, op23, op11_8, op7, op6, op4, itin,
OpcodeStr, !strconcat(Dt, "16"),
v8i8, v8i16, shr_imm8, OpNode> {
let Inst{21-19} = 0b001; // imm6 = 001xxx
}
def v4i16 : N2VNSh<op24, op23, op11_8, op7, op6, op4, itin,
OpcodeStr, !strconcat(Dt, "32"),
v4i16, v4i32, shr_imm16, OpNode> {
let Inst{21-20} = 0b01; // imm6 = 01xxxx
}
def v2i32 : N2VNSh<op24, op23, op11_8, op7, op6, op4, itin,
OpcodeStr, !strconcat(Dt, "64"),
v2i32, v2i64, shr_imm32, OpNode> {
let Inst{21} = 0b1; // imm6 = 1xxxxx
}
}
//===----------------------------------------------------------------------===//
// Instruction Definitions.
//===----------------------------------------------------------------------===//
// Vector Add Operations.
// VADD : Vector Add (integer and floating-point)
defm VADD : N3V_QHSD<0, 0, 0b1000, 0, IIC_VBINiD, IIC_VBINiQ, "vadd", "i",
add, 1>;
def VADDfd : N3VD<0, 0, 0b00, 0b1101, 0, IIC_VBIND, "vadd", "f32",
v2f32, v2f32, fadd, 1>;
def VADDfq : N3VQ<0, 0, 0b00, 0b1101, 0, IIC_VBINQ, "vadd", "f32",
v4f32, v4f32, fadd, 1>;
// VADDL : Vector Add Long (Q = D + D)
defm VADDLs : N3VLExt_QHS<0,1,0b0000,0, IIC_VSHLiD, IIC_VSHLiD,
"vaddl", "s", add, sext, 1>;
defm VADDLu : N3VLExt_QHS<1,1,0b0000,0, IIC_VSHLiD, IIC_VSHLiD,
"vaddl", "u", add, zext, 1>;
// VADDW : Vector Add Wide (Q = Q + D)
defm VADDWs : N3VW_QHS<0,1,0b0001,0, "vaddw", "s", add, sext, 0>;
defm VADDWu : N3VW_QHS<1,1,0b0001,0, "vaddw", "u", add, zext, 0>;
// VHADD : Vector Halving Add
defm VHADDs : N3VInt_QHS<0, 0, 0b0000, 0, N3RegFrm,
IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
"vhadd", "s", int_arm_neon_vhadds, 1>;
defm VHADDu : N3VInt_QHS<1, 0, 0b0000, 0, N3RegFrm,
IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
"vhadd", "u", int_arm_neon_vhaddu, 1>;
// VRHADD : Vector Rounding Halving Add
defm VRHADDs : N3VInt_QHS<0, 0, 0b0001, 0, N3RegFrm,
IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
"vrhadd", "s", int_arm_neon_vrhadds, 1>;
defm VRHADDu : N3VInt_QHS<1, 0, 0b0001, 0, N3RegFrm,
IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
"vrhadd", "u", int_arm_neon_vrhaddu, 1>;
// VQADD : Vector Saturating Add
defm VQADDs : N3VInt_QHSD<0, 0, 0b0000, 1, N3RegFrm,
IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
"vqadd", "s", int_arm_neon_vqadds, 1>;
defm VQADDu : N3VInt_QHSD<1, 0, 0b0000, 1, N3RegFrm,
IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q,
"vqadd", "u", int_arm_neon_vqaddu, 1>;
// VADDHN : Vector Add and Narrow Returning High Half (D = Q + Q)
defm VADDHN : N3VNInt_HSD<0,1,0b0100,0, "vaddhn", "i",
int_arm_neon_vaddhn, 1>;
// VRADDHN : Vector Rounding Add and Narrow Returning High Half (D = Q + Q)
defm VRADDHN : N3VNInt_HSD<1,1,0b0100,0, "vraddhn", "i",
int_arm_neon_vraddhn, 1>;
// Vector Multiply Operations.
// VMUL : Vector Multiply (integer, polynomial and floating-point)
defm VMUL : N3V_QHS<0, 0, 0b1001, 1, IIC_VMULi16D, IIC_VMULi32D,
IIC_VMULi16Q, IIC_VMULi32Q, "vmul", "i", mul, 1>;
def VMULpd : N3VDInt<1, 0, 0b00, 0b1001, 1, N3RegFrm, IIC_VMULi16D, "vmul",
"p8", v8i8, v8i8, int_arm_neon_vmulp, 1>;
def VMULpq : N3VQInt<1, 0, 0b00, 0b1001, 1, N3RegFrm, IIC_VMULi16Q, "vmul",
"p8", v16i8, v16i8, int_arm_neon_vmulp, 1>;
def VMULfd : N3VD<1, 0, 0b00, 0b1101, 1, IIC_VFMULD, "vmul", "f32",
v2f32, v2f32, fmul, 1>;
def VMULfq : N3VQ<1, 0, 0b00, 0b1101, 1, IIC_VFMULQ, "vmul", "f32",
v4f32, v4f32, fmul, 1>;
defm VMULsl : N3VSL_HS<0b1000, "vmul", "i", mul>;
def VMULslfd : N3VDSL<0b10, 0b1001, IIC_VBIND, "vmul", "f32", v2f32, fmul>;
def VMULslfq : N3VQSL<0b10, 0b1001, IIC_VBINQ, "vmul", "f32", v4f32,
v2f32, fmul>;
def : Pat<(v8i16 (mul (v8i16 QPR:$src1),
(v8i16 (NEONvduplane (v8i16 QPR:$src2), imm:$lane)))),
(v8i16 (VMULslv8i16 (v8i16 QPR:$src1),
(v4i16 (EXTRACT_SUBREG QPR:$src2,
(DSubReg_i16_reg imm:$lane))),
(SubReg_i16_lane imm:$lane)))>;
def : Pat<(v4i32 (mul (v4i32 QPR:$src1),
(v4i32 (NEONvduplane (v4i32 QPR:$src2), imm:$lane)))),
(v4i32 (VMULslv4i32 (v4i32 QPR:$src1),
(v2i32 (EXTRACT_SUBREG QPR:$src2,
(DSubReg_i32_reg imm:$lane))),
(SubReg_i32_lane imm:$lane)))>;
def : Pat<(v4f32 (fmul (v4f32 QPR:$src1),
(v4f32 (NEONvduplane (v4f32 QPR:$src2), imm:$lane)))),
(v4f32 (VMULslfq (v4f32 QPR:$src1),
(v2f32 (EXTRACT_SUBREG QPR:$src2,
(DSubReg_i32_reg imm:$lane))),
(SubReg_i32_lane imm:$lane)))>;
// VQDMULH : Vector Saturating Doubling Multiply Returning High Half
defm VQDMULH : N3VInt_HS<0, 0, 0b1011, 0, N3RegFrm, IIC_VMULi16D, IIC_VMULi32D,
IIC_VMULi16Q, IIC_VMULi32Q,
"vqdmulh", "s", int_arm_neon_vqdmulh, 1>;
defm VQDMULHsl: N3VIntSL_HS<0b1100, IIC_VMULi16D, IIC_VMULi32D,
IIC_VMULi16Q, IIC_VMULi32Q,
"vqdmulh", "s", int_arm_neon_vqdmulh>;
def : Pat<(v8i16 (int_arm_neon_vqdmulh (v8i16 QPR:$src1),
(v8i16 (NEONvduplane (v8i16 QPR:$src2),
imm:$lane)))),
(v8i16 (VQDMULHslv8i16 (v8i16 QPR:$src1),
(v4i16 (EXTRACT_SUBREG QPR:$src2,
(DSubReg_i16_reg imm:$lane))),
(SubReg_i16_lane imm:$lane)))>;
def : Pat<(v4i32 (int_arm_neon_vqdmulh (v4i32 QPR:$src1),
(v4i32 (NEONvduplane (v4i32 QPR:$src2),
imm:$lane)))),
(v4i32 (VQDMULHslv4i32 (v4i32 QPR:$src1),
(v2i32 (EXTRACT_SUBREG QPR:$src2,
(DSubReg_i32_reg imm:$lane))),
(SubReg_i32_lane imm:$lane)))>;
// VQRDMULH : Vector Rounding Saturating Doubling Multiply Returning High Half
defm VQRDMULH : N3VInt_HS<1, 0, 0b1011, 0, N3RegFrm,
IIC_VMULi16D,IIC_VMULi32D,IIC_VMULi16Q,IIC_VMULi32Q,
"vqrdmulh", "s", int_arm_neon_vqrdmulh, 1>;
defm VQRDMULHsl : N3VIntSL_HS<0b1101, IIC_VMULi16D, IIC_VMULi32D,
IIC_VMULi16Q, IIC_VMULi32Q,
"vqrdmulh", "s", int_arm_neon_vqrdmulh>;
def : Pat<(v8i16 (int_arm_neon_vqrdmulh (v8i16 QPR:$src1),
(v8i16 (NEONvduplane (v8i16 QPR:$src2),
imm:$lane)))),
(v8i16 (VQRDMULHslv8i16 (v8i16 QPR:$src1),
(v4i16 (EXTRACT_SUBREG QPR:$src2,
(DSubReg_i16_reg imm:$lane))),
(SubReg_i16_lane imm:$lane)))>;
def : Pat<(v4i32 (int_arm_neon_vqrdmulh (v4i32 QPR:$src1),
(v4i32 (NEONvduplane (v4i32 QPR:$src2),
imm:$lane)))),
(v4i32 (VQRDMULHslv4i32 (v4i32 QPR:$src1),
(v2i32 (EXTRACT_SUBREG QPR:$src2,
(DSubReg_i32_reg imm:$lane))),
(SubReg_i32_lane imm:$lane)))>;
// VMULL : Vector Multiply Long (integer and polynomial) (Q = D * D)
defm VMULLs : N3VL_QHS<0,1,0b1100,0, IIC_VMULi16D, IIC_VMULi32D,
"vmull", "s", NEONvmulls, 1>;
defm VMULLu : N3VL_QHS<1,1,0b1100,0, IIC_VMULi16D, IIC_VMULi32D,
"vmull", "u", NEONvmullu, 1>;
def VMULLp : N3VLInt<0, 1, 0b00, 0b1110, 0, IIC_VMULi16D, "vmull", "p8",
v8i16, v8i8, int_arm_neon_vmullp, 1>;
defm VMULLsls : N3VLSL_HS<0, 0b1010, IIC_VMULi16D, "vmull", "s", NEONvmulls>;
defm VMULLslu : N3VLSL_HS<1, 0b1010, IIC_VMULi16D, "vmull", "u", NEONvmullu>;
// VQDMULL : Vector Saturating Doubling Multiply Long (Q = D * D)
2010-04-08 02:21:10 +08:00
defm VQDMULL : N3VLInt_HS<0,1,0b1101,0, IIC_VMULi16D, IIC_VMULi32D,
"vqdmull", "s", int_arm_neon_vqdmull, 1>;
defm VQDMULLsl: N3VLIntSL_HS<0, 0b1011, IIC_VMULi16D,
"vqdmull", "s", int_arm_neon_vqdmull>;
// Vector Multiply-Accumulate and Multiply-Subtract Operations.
// VMLA : Vector Multiply Accumulate (integer and floating-point)
defm VMLA : N3VMulOp_QHS<0, 0, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D,
IIC_VMACi16Q, IIC_VMACi32Q, "vmla", "i", add>;
def VMLAfd : N3VDMulOp<0, 0, 0b00, 0b1101, 1, IIC_VMACD, "vmla", "f32",
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
v2f32, fmul_su, fadd_mlx>,
Requires<[HasNEON, UseFPVMLx]>;
def VMLAfq : N3VQMulOp<0, 0, 0b00, 0b1101, 1, IIC_VMACQ, "vmla", "f32",
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
v4f32, fmul_su, fadd_mlx>,
Requires<[HasNEON, UseFPVMLx]>;
defm VMLAsl : N3VMulOpSL_HS<0b0000, IIC_VMACi16D, IIC_VMACi32D,
IIC_VMACi16Q, IIC_VMACi32Q, "vmla", "i", add>;
def VMLAslfd : N3VDMulOpSL<0b10, 0b0001, IIC_VMACD, "vmla", "f32",
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
v2f32, fmul_su, fadd_mlx>,
Requires<[HasNEON, UseFPVMLx]>;
def VMLAslfq : N3VQMulOpSL<0b10, 0b0001, IIC_VMACQ, "vmla", "f32",
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
v4f32, v2f32, fmul_su, fadd_mlx>,
Requires<[HasNEON, UseFPVMLx]>;
def : Pat<(v8i16 (add (v8i16 QPR:$src1),
(mul (v8i16 QPR:$src2),
(v8i16 (NEONvduplane (v8i16 QPR:$src3), imm:$lane))))),
(v8i16 (VMLAslv8i16 (v8i16 QPR:$src1), (v8i16 QPR:$src2),
(v4i16 (EXTRACT_SUBREG QPR:$src3,
(DSubReg_i16_reg imm:$lane))),
(SubReg_i16_lane imm:$lane)))>;
def : Pat<(v4i32 (add (v4i32 QPR:$src1),
(mul (v4i32 QPR:$src2),
(v4i32 (NEONvduplane (v4i32 QPR:$src3), imm:$lane))))),
(v4i32 (VMLAslv4i32 (v4i32 QPR:$src1), (v4i32 QPR:$src2),
(v2i32 (EXTRACT_SUBREG QPR:$src3,
(DSubReg_i32_reg imm:$lane))),
(SubReg_i32_lane imm:$lane)))>;
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
def : Pat<(v4f32 (fadd_mlx (v4f32 QPR:$src1),
(fmul_su (v4f32 QPR:$src2),
(v4f32 (NEONvduplane (v4f32 QPR:$src3), imm:$lane))))),
(v4f32 (VMLAslfq (v4f32 QPR:$src1),
(v4f32 QPR:$src2),
(v2f32 (EXTRACT_SUBREG QPR:$src3,
(DSubReg_i32_reg imm:$lane))),
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
(SubReg_i32_lane imm:$lane)))>,
Requires<[HasNEON, UseFPVMLx]>;
// VMLAL : Vector Multiply Accumulate Long (Q += D * D)
defm VMLALs : N3VLMulOp_QHS<0,1,0b1000,0, IIC_VMACi16D, IIC_VMACi32D,
"vmlal", "s", NEONvmulls, add>;
defm VMLALu : N3VLMulOp_QHS<1,1,0b1000,0, IIC_VMACi16D, IIC_VMACi32D,
"vmlal", "u", NEONvmullu, add>;
defm VMLALsls : N3VLMulOpSL_HS<0, 0b0010, "vmlal", "s", NEONvmulls, add>;
defm VMLALslu : N3VLMulOpSL_HS<1, 0b0010, "vmlal", "u", NEONvmullu, add>;
// VQDMLAL : Vector Saturating Doubling Multiply Accumulate Long (Q += D * D)
defm VQDMLAL : N3VLInt3_HS<0, 1, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D,
2010-04-08 02:20:42 +08:00
"vqdmlal", "s", int_arm_neon_vqdmlal>;
defm VQDMLALsl: N3VLInt3SL_HS<0, 0b0011, "vqdmlal", "s", int_arm_neon_vqdmlal>;
// VMLS : Vector Multiply Subtract (integer and floating-point)
defm VMLS : N3VMulOp_QHS<1, 0, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D,
IIC_VMACi16Q, IIC_VMACi32Q, "vmls", "i", sub>;
def VMLSfd : N3VDMulOp<0, 0, 0b10, 0b1101, 1, IIC_VMACD, "vmls", "f32",
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
v2f32, fmul_su, fsub_mlx>,
Requires<[HasNEON, UseFPVMLx]>;
def VMLSfq : N3VQMulOp<0, 0, 0b10, 0b1101, 1, IIC_VMACQ, "vmls", "f32",
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
v4f32, fmul_su, fsub_mlx>,
Requires<[HasNEON, UseFPVMLx]>;
defm VMLSsl : N3VMulOpSL_HS<0b0100, IIC_VMACi16D, IIC_VMACi32D,
IIC_VMACi16Q, IIC_VMACi32Q, "vmls", "i", sub>;
def VMLSslfd : N3VDMulOpSL<0b10, 0b0101, IIC_VMACD, "vmls", "f32",
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
v2f32, fmul_su, fsub_mlx>,
Requires<[HasNEON, UseFPVMLx]>;
def VMLSslfq : N3VQMulOpSL<0b10, 0b0101, IIC_VMACQ, "vmls", "f32",
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
v4f32, v2f32, fmul_su, fsub_mlx>,
Requires<[HasNEON, UseFPVMLx]>;
def : Pat<(v8i16 (sub (v8i16 QPR:$src1),
(mul (v8i16 QPR:$src2),
(v8i16 (NEONvduplane (v8i16 QPR:$src3), imm:$lane))))),
(v8i16 (VMLSslv8i16 (v8i16 QPR:$src1), (v8i16 QPR:$src2),
(v4i16 (EXTRACT_SUBREG QPR:$src3,
(DSubReg_i16_reg imm:$lane))),
(SubReg_i16_lane imm:$lane)))>;
def : Pat<(v4i32 (sub (v4i32 QPR:$src1),
(mul (v4i32 QPR:$src2),
(v4i32 (NEONvduplane (v4i32 QPR:$src3), imm:$lane))))),
(v4i32 (VMLSslv4i32 (v4i32 QPR:$src1), (v4i32 QPR:$src2),
(v2i32 (EXTRACT_SUBREG QPR:$src3,
(DSubReg_i32_reg imm:$lane))),
(SubReg_i32_lane imm:$lane)))>;
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
def : Pat<(v4f32 (fsub_mlx (v4f32 QPR:$src1),
(fmul_su (v4f32 QPR:$src2),
(v4f32 (NEONvduplane (v4f32 QPR:$src3), imm:$lane))))),
(v4f32 (VMLSslfq (v4f32 QPR:$src1), (v4f32 QPR:$src2),
(v2f32 (EXTRACT_SUBREG QPR:$src3,
(DSubReg_i32_reg imm:$lane))),
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
(SubReg_i32_lane imm:$lane)))>,
Requires<[HasNEON, UseFPVMLx]>;
// VMLSL : Vector Multiply Subtract Long (Q -= D * D)
defm VMLSLs : N3VLMulOp_QHS<0,1,0b1010,0, IIC_VMACi16D, IIC_VMACi32D,
"vmlsl", "s", NEONvmulls, sub>;
defm VMLSLu : N3VLMulOp_QHS<1,1,0b1010,0, IIC_VMACi16D, IIC_VMACi32D,
"vmlsl", "u", NEONvmullu, sub>;
defm VMLSLsls : N3VLMulOpSL_HS<0, 0b0110, "vmlsl", "s", NEONvmulls, sub>;
defm VMLSLslu : N3VLMulOpSL_HS<1, 0b0110, "vmlsl", "u", NEONvmullu, sub>;
// VQDMLSL : Vector Saturating Doubling Multiply Subtract Long (Q -= D * D)
defm VQDMLSL : N3VLInt3_HS<0, 1, 0b1011, 0, IIC_VMACi16D, IIC_VMACi32D,
2010-04-08 02:20:42 +08:00
"vqdmlsl", "s", int_arm_neon_vqdmlsl>;
defm VQDMLSLsl: N3VLInt3SL_HS<0, 0b111, "vqdmlsl", "s", int_arm_neon_vqdmlsl>;
// Vector Subtract Operations.
// VSUB : Vector Subtract (integer and floating-point)
defm VSUB : N3V_QHSD<1, 0, 0b1000, 0, IIC_VSUBiD, IIC_VSUBiQ,
"vsub", "i", sub, 0>;
def VSUBfd : N3VD<0, 0, 0b10, 0b1101, 0, IIC_VBIND, "vsub", "f32",
v2f32, v2f32, fsub, 0>;
def VSUBfq : N3VQ<0, 0, 0b10, 0b1101, 0, IIC_VBINQ, "vsub", "f32",
v4f32, v4f32, fsub, 0>;
// VSUBL : Vector Subtract Long (Q = D - D)
defm VSUBLs : N3VLExt_QHS<0,1,0b0010,0, IIC_VSHLiD, IIC_VSHLiD,
"vsubl", "s", sub, sext, 0>;
defm VSUBLu : N3VLExt_QHS<1,1,0b0010,0, IIC_VSHLiD, IIC_VSHLiD,
"vsubl", "u", sub, zext, 0>;
// VSUBW : Vector Subtract Wide (Q = Q - D)
defm VSUBWs : N3VW_QHS<0,1,0b0011,0, "vsubw", "s", sub, sext, 0>;
defm VSUBWu : N3VW_QHS<1,1,0b0011,0, "vsubw", "u", sub, zext, 0>;
// VHSUB : Vector Halving Subtract
defm VHSUBs : N3VInt_QHS<0, 0, 0b0010, 0, N3RegFrm,
IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
"vhsub", "s", int_arm_neon_vhsubs, 0>;
defm VHSUBu : N3VInt_QHS<1, 0, 0b0010, 0, N3RegFrm,
IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
"vhsub", "u", int_arm_neon_vhsubu, 0>;
// VQSUB : Vector Saturing Subtract
defm VQSUBs : N3VInt_QHSD<0, 0, 0b0010, 1, N3RegFrm,
IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
"vqsub", "s", int_arm_neon_vqsubs, 0>;
defm VQSUBu : N3VInt_QHSD<1, 0, 0b0010, 1, N3RegFrm,
IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
"vqsub", "u", int_arm_neon_vqsubu, 0>;
// VSUBHN : Vector Subtract and Narrow Returning High Half (D = Q - Q)
defm VSUBHN : N3VNInt_HSD<0,1,0b0110,0, "vsubhn", "i",
int_arm_neon_vsubhn, 0>;
// VRSUBHN : Vector Rounding Subtract and Narrow Returning High Half (D=Q-Q)
defm VRSUBHN : N3VNInt_HSD<1,1,0b0110,0, "vrsubhn", "i",
int_arm_neon_vrsubhn, 0>;
// Vector Comparisons.
// VCEQ : Vector Compare Equal
defm VCEQ : N3V_QHS<1, 0, 0b1000, 1, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q,
IIC_VSUBi4Q, "vceq", "i", NEONvceq, 1>;
def VCEQfd : N3VD<0,0,0b00,0b1110,0, IIC_VBIND, "vceq", "f32", v2i32, v2f32,
NEONvceq, 1>;
def VCEQfq : N3VQ<0,0,0b00,0b1110,0, IIC_VBINQ, "vceq", "f32", v4i32, v4f32,
NEONvceq, 1>;
defm VCEQz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00010, 0, "vceq", "i",
"$Vd, $Vm, #0", NEONvceqz>;
// VCGE : Vector Compare Greater Than or Equal
defm VCGEs : N3V_QHS<0, 0, 0b0011, 1, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q,
IIC_VSUBi4Q, "vcge", "s", NEONvcge, 0>;
defm VCGEu : N3V_QHS<1, 0, 0b0011, 1, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q,
IIC_VSUBi4Q, "vcge", "u", NEONvcgeu, 0>;
def VCGEfd : N3VD<1,0,0b00,0b1110,0, IIC_VBIND, "vcge", "f32", v2i32, v2f32,
NEONvcge, 0>;
def VCGEfq : N3VQ<1,0,0b00,0b1110,0, IIC_VBINQ, "vcge", "f32", v4i32, v4f32,
NEONvcge, 0>;
defm VCGEz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00001, 0, "vcge", "s",
"$Vd, $Vm, #0", NEONvcgez>;
defm VCLEz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00011, 0, "vcle", "s",
"$Vd, $Vm, #0", NEONvclez>;
// VCGT : Vector Compare Greater Than
defm VCGTs : N3V_QHS<0, 0, 0b0011, 0, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q,
IIC_VSUBi4Q, "vcgt", "s", NEONvcgt, 0>;
defm VCGTu : N3V_QHS<1, 0, 0b0011, 0, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q,
IIC_VSUBi4Q, "vcgt", "u", NEONvcgtu, 0>;
def VCGTfd : N3VD<1,0,0b10,0b1110,0, IIC_VBIND, "vcgt", "f32", v2i32, v2f32,
NEONvcgt, 0>;
def VCGTfq : N3VQ<1,0,0b10,0b1110,0, IIC_VBINQ, "vcgt", "f32", v4i32, v4f32,
NEONvcgt, 0>;
defm VCGTz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00000, 0, "vcgt", "s",
"$Vd, $Vm, #0", NEONvcgtz>;
defm VCLTz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00100, 0, "vclt", "s",
"$Vd, $Vm, #0", NEONvcltz>;
// VACGE : Vector Absolute Compare Greater Than or Equal (aka VCAGE)
def VACGEd : N3VDInt<1, 0, 0b00, 0b1110, 1, N3RegFrm, IIC_VBIND, "vacge",
"f32", v2i32, v2f32, int_arm_neon_vacged, 0>;
def VACGEq : N3VQInt<1, 0, 0b00, 0b1110, 1, N3RegFrm, IIC_VBINQ, "vacge",
"f32", v4i32, v4f32, int_arm_neon_vacgeq, 0>;
// VACGT : Vector Absolute Compare Greater Than (aka VCAGT)
def VACGTd : N3VDInt<1, 0, 0b10, 0b1110, 1, N3RegFrm, IIC_VBIND, "vacgt",
"f32", v2i32, v2f32, int_arm_neon_vacgtd, 0>;
def VACGTq : N3VQInt<1, 0, 0b10, 0b1110, 1, N3RegFrm, IIC_VBINQ, "vacgt",
"f32", v4i32, v4f32, int_arm_neon_vacgtq, 0>;
// VTST : Vector Test Bits
defm VTST : N3V_QHS<0, 0, 0b1000, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
IIC_VBINi4Q, "vtst", "", NEONvtst, 1>;
// Vector Bitwise Operations.
def vnotd : PatFrag<(ops node:$in),
(xor node:$in, (bitconvert (v8i8 NEONimmAllOnesV)))>;
def vnotq : PatFrag<(ops node:$in),
(xor node:$in, (bitconvert (v16i8 NEONimmAllOnesV)))>;
// VAND : Vector Bitwise AND
def VANDd : N3VDX<0, 0, 0b00, 0b0001, 1, IIC_VBINiD, "vand",
v2i32, v2i32, and, 1>;
def VANDq : N3VQX<0, 0, 0b00, 0b0001, 1, IIC_VBINiQ, "vand",
v4i32, v4i32, and, 1>;
// VEOR : Vector Bitwise Exclusive OR
def VEORd : N3VDX<1, 0, 0b00, 0b0001, 1, IIC_VBINiD, "veor",
v2i32, v2i32, xor, 1>;
def VEORq : N3VQX<1, 0, 0b00, 0b0001, 1, IIC_VBINiQ, "veor",
v4i32, v4i32, xor, 1>;
// VORR : Vector Bitwise OR
def VORRd : N3VDX<0, 0, 0b10, 0b0001, 1, IIC_VBINiD, "vorr",
v2i32, v2i32, or, 1>;
def VORRq : N3VQX<0, 0, 0b10, 0b0001, 1, IIC_VBINiQ, "vorr",
v4i32, v4i32, or, 1>;
def VORRiv4i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 0, 0, 1,
(outs DPR:$Vd), (ins nImmSplatI16:$SIMM, DPR:$src),
IIC_VMOVImm,
"vorr", "i16", "$Vd, $SIMM", "$src = $Vd",
[(set DPR:$Vd,
(v4i16 (NEONvorrImm DPR:$src, timm:$SIMM)))]> {
let Inst{9} = SIMM{9};
}
def VORRiv2i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 0, 0, 1,
(outs DPR:$Vd), (ins nImmSplatI32:$SIMM, DPR:$src),
IIC_VMOVImm,
"vorr", "i32", "$Vd, $SIMM", "$src = $Vd",
[(set DPR:$Vd,
(v2i32 (NEONvorrImm DPR:$src, timm:$SIMM)))]> {
let Inst{10-9} = SIMM{10-9};
}
def VORRiv8i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 1, 0, 1,
(outs QPR:$Vd), (ins nImmSplatI16:$SIMM, QPR:$src),
IIC_VMOVImm,
"vorr", "i16", "$Vd, $SIMM", "$src = $Vd",
[(set QPR:$Vd,
(v8i16 (NEONvorrImm QPR:$src, timm:$SIMM)))]> {
let Inst{9} = SIMM{9};
}
def VORRiv4i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 1, 0, 1,
(outs QPR:$Vd), (ins nImmSplatI32:$SIMM, QPR:$src),
IIC_VMOVImm,
"vorr", "i32", "$Vd, $SIMM", "$src = $Vd",
[(set QPR:$Vd,
(v4i32 (NEONvorrImm QPR:$src, timm:$SIMM)))]> {
let Inst{10-9} = SIMM{10-9};
}
// VBIC : Vector Bitwise Bit Clear (AND NOT)
def VBICd : N3VX<0, 0, 0b01, 0b0001, 0, 1, (outs DPR:$Vd),
(ins DPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VBINiD,
"vbic", "$Vd, $Vn, $Vm", "",
[(set DPR:$Vd, (v2i32 (and DPR:$Vn,
(vnotd DPR:$Vm))))]>;
def VBICq : N3VX<0, 0, 0b01, 0b0001, 1, 1, (outs QPR:$Vd),
(ins QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINiQ,
"vbic", "$Vd, $Vn, $Vm", "",
[(set QPR:$Vd, (v4i32 (and QPR:$Vn,
(vnotq QPR:$Vm))))]>;
def VBICiv4i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 0, 1, 1,
(outs DPR:$Vd), (ins nImmSplatI16:$SIMM, DPR:$src),
IIC_VMOVImm,
"vbic", "i16", "$Vd, $SIMM", "$src = $Vd",
[(set DPR:$Vd,
(v4i16 (NEONvbicImm DPR:$src, timm:$SIMM)))]> {
let Inst{9} = SIMM{9};
}
def VBICiv2i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 0, 1, 1,
(outs DPR:$Vd), (ins nImmSplatI32:$SIMM, DPR:$src),
IIC_VMOVImm,
"vbic", "i32", "$Vd, $SIMM", "$src = $Vd",
[(set DPR:$Vd,
(v2i32 (NEONvbicImm DPR:$src, timm:$SIMM)))]> {
let Inst{10-9} = SIMM{10-9};
}
def VBICiv8i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 1, 1, 1,
(outs QPR:$Vd), (ins nImmSplatI16:$SIMM, QPR:$src),
IIC_VMOVImm,
"vbic", "i16", "$Vd, $SIMM", "$src = $Vd",
[(set QPR:$Vd,
(v8i16 (NEONvbicImm QPR:$src, timm:$SIMM)))]> {
let Inst{9} = SIMM{9};
}
def VBICiv4i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 1, 1, 1,
(outs QPR:$Vd), (ins nImmSplatI32:$SIMM, QPR:$src),
IIC_VMOVImm,
"vbic", "i32", "$Vd, $SIMM", "$src = $Vd",
[(set QPR:$Vd,
(v4i32 (NEONvbicImm QPR:$src, timm:$SIMM)))]> {
let Inst{10-9} = SIMM{10-9};
}
// VORN : Vector Bitwise OR NOT
def VORNd : N3VX<0, 0, 0b11, 0b0001, 0, 1, (outs DPR:$Vd),
(ins DPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VBINiD,
"vorn", "$Vd, $Vn, $Vm", "",
[(set DPR:$Vd, (v2i32 (or DPR:$Vn,
(vnotd DPR:$Vm))))]>;
def VORNq : N3VX<0, 0, 0b11, 0b0001, 1, 1, (outs QPR:$Vd),
(ins QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINiQ,
"vorn", "$Vd, $Vn, $Vm", "",
[(set QPR:$Vd, (v4i32 (or QPR:$Vn,
(vnotq QPR:$Vm))))]>;
// VMVN : Vector Bitwise NOT (Immediate)
let isReMaterializable = 1 in {
def VMVNv4i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 0, 1, 1, (outs DPR:$Vd),
(ins nImmSplatI16:$SIMM), IIC_VMOVImm,
"vmvn", "i16", "$Vd, $SIMM", "",
[(set DPR:$Vd, (v4i16 (NEONvmvnImm timm:$SIMM)))]> {
let Inst{9} = SIMM{9};
}
def VMVNv8i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 1, 1, 1, (outs QPR:$Vd),
(ins nImmSplatI16:$SIMM), IIC_VMOVImm,
"vmvn", "i16", "$Vd, $SIMM", "",
[(set QPR:$Vd, (v8i16 (NEONvmvnImm timm:$SIMM)))]> {
let Inst{9} = SIMM{9};
}
def VMVNv2i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 0, 1, 1, (outs DPR:$Vd),
(ins nImmVMOVI32:$SIMM), IIC_VMOVImm,
"vmvn", "i32", "$Vd, $SIMM", "",
[(set DPR:$Vd, (v2i32 (NEONvmvnImm timm:$SIMM)))]> {
let Inst{11-8} = SIMM{11-8};
}
def VMVNv4i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 1, 1, 1, (outs QPR:$Vd),
(ins nImmVMOVI32:$SIMM), IIC_VMOVImm,
"vmvn", "i32", "$Vd, $SIMM", "",
[(set QPR:$Vd, (v4i32 (NEONvmvnImm timm:$SIMM)))]> {
let Inst{11-8} = SIMM{11-8};
}
}
// VMVN : Vector Bitwise NOT
def VMVNd : N2VX<0b11, 0b11, 0b00, 0b00, 0b01011, 0, 0,
(outs DPR:$Vd), (ins DPR:$Vm), IIC_VSUBiD,
"vmvn", "$Vd, $Vm", "",
[(set DPR:$Vd, (v2i32 (vnotd DPR:$Vm)))]>;
def VMVNq : N2VX<0b11, 0b11, 0b00, 0b00, 0b01011, 1, 0,
(outs QPR:$Vd), (ins QPR:$Vm), IIC_VSUBiD,
"vmvn", "$Vd, $Vm", "",
[(set QPR:$Vd, (v4i32 (vnotq QPR:$Vm)))]>;
def : Pat<(v2i32 (vnotd DPR:$src)), (VMVNd DPR:$src)>;
def : Pat<(v4i32 (vnotq QPR:$src)), (VMVNq QPR:$src)>;
// VBSL : Vector Bitwise Select
def VBSLd : N3VX<1, 0, 0b01, 0b0001, 0, 1, (outs DPR:$Vd),
(ins DPR:$src1, DPR:$Vn, DPR:$Vm),
2010-03-27 12:01:23 +08:00
N3RegFrm, IIC_VCNTiD,
"vbsl", "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set DPR:$Vd,
(v2i32 (NEONvbsl DPR:$src1, DPR:$Vn, DPR:$Vm)))]>;
def : Pat<(v2i32 (or (and DPR:$Vn, DPR:$Vd),
(and DPR:$Vm, (vnotd DPR:$Vd)))),
(VBSLd DPR:$Vd, DPR:$Vn, DPR:$Vm)>;
def VBSLq : N3VX<1, 0, 0b01, 0b0001, 1, 1, (outs QPR:$Vd),
(ins QPR:$src1, QPR:$Vn, QPR:$Vm),
2010-03-27 12:01:23 +08:00
N3RegFrm, IIC_VCNTiQ,
"vbsl", "$Vd, $Vn, $Vm", "$src1 = $Vd",
[(set QPR:$Vd,
(v4i32 (NEONvbsl QPR:$src1, QPR:$Vn, QPR:$Vm)))]>;
def : Pat<(v4i32 (or (and QPR:$Vn, QPR:$Vd),
(and QPR:$Vm, (vnotq QPR:$Vd)))),
(VBSLq QPR:$Vd, QPR:$Vn, QPR:$Vm)>;
// VBIF : Vector Bitwise Insert if False
// like VBSL but with: "vbif $dst, $src3, $src1", "$src2 = $dst",
// FIXME: This instruction's encoding MAY NOT BE correct.
def VBIFd : N3VX<1, 0, 0b11, 0b0001, 0, 1,
(outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm),
N3RegFrm, IIC_VBINiD,
"vbif", "$Vd, $Vn, $Vm", "$src1 = $Vd",
[]>;
def VBIFq : N3VX<1, 0, 0b11, 0b0001, 1, 1,
(outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm),
N3RegFrm, IIC_VBINiQ,
"vbif", "$Vd, $Vn, $Vm", "$src1 = $Vd",
[]>;
// VBIT : Vector Bitwise Insert if True
// like VBSL but with: "vbit $dst, $src2, $src1", "$src3 = $dst",
// FIXME: This instruction's encoding MAY NOT BE correct.
def VBITd : N3VX<1, 0, 0b10, 0b0001, 0, 1,
(outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm),
N3RegFrm, IIC_VBINiD,
"vbit", "$Vd, $Vn, $Vm", "$src1 = $Vd",
[]>;
def VBITq : N3VX<1, 0, 0b10, 0b0001, 1, 1,
(outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm),
N3RegFrm, IIC_VBINiQ,
"vbit", "$Vd, $Vn, $Vm", "$src1 = $Vd",
[]>;
// VBIT/VBIF are not yet implemented. The TwoAddress pass will not go looking
// for equivalent operations with different register constraints; it just
// inserts copies.
// Vector Absolute Differences.
// VABD : Vector Absolute Difference
defm VABDs : N3VInt_QHS<0, 0, 0b0111, 0, N3RegFrm,
IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
"vabd", "s", int_arm_neon_vabds, 1>;
defm VABDu : N3VInt_QHS<1, 0, 0b0111, 0, N3RegFrm,
IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
"vabd", "u", int_arm_neon_vabdu, 1>;
def VABDfd : N3VDInt<1, 0, 0b10, 0b1101, 0, N3RegFrm, IIC_VBIND,
"vabd", "f32", v2f32, v2f32, int_arm_neon_vabds, 1>;
def VABDfq : N3VQInt<1, 0, 0b10, 0b1101, 0, N3RegFrm, IIC_VBINQ,
"vabd", "f32", v4f32, v4f32, int_arm_neon_vabds, 1>;
// VABDL : Vector Absolute Difference Long (Q = | D - D |)
defm VABDLs : N3VLIntExt_QHS<0,1,0b0111,0, IIC_VSUBi4Q,
"vabdl", "s", int_arm_neon_vabds, zext, 1>;
defm VABDLu : N3VLIntExt_QHS<1,1,0b0111,0, IIC_VSUBi4Q,
"vabdl", "u", int_arm_neon_vabdu, zext, 1>;
// VABA : Vector Absolute Difference and Accumulate
defm VABAs : N3VIntOp_QHS<0,0,0b0111,1, IIC_VABAD, IIC_VABAQ,
"vaba", "s", int_arm_neon_vabds, add>;
defm VABAu : N3VIntOp_QHS<1,0,0b0111,1, IIC_VABAD, IIC_VABAQ,
"vaba", "u", int_arm_neon_vabdu, add>;
// VABAL : Vector Absolute Difference and Accumulate Long (Q += | D - D |)
defm VABALs : N3VLIntExtOp_QHS<0,1,0b0101,0, IIC_VABAD,
"vabal", "s", int_arm_neon_vabds, zext, add>;
defm VABALu : N3VLIntExtOp_QHS<1,1,0b0101,0, IIC_VABAD,
"vabal", "u", int_arm_neon_vabdu, zext, add>;
// Vector Maximum and Minimum.
// VMAX : Vector Maximum
defm VMAXs : N3VInt_QHS<0, 0, 0b0110, 0, N3RegFrm,
IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
"vmax", "s", int_arm_neon_vmaxs, 1>;
defm VMAXu : N3VInt_QHS<1, 0, 0b0110, 0, N3RegFrm,
IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
"vmax", "u", int_arm_neon_vmaxu, 1>;
def VMAXfd : N3VDInt<0, 0, 0b00, 0b1111, 0, N3RegFrm, IIC_VBIND,
"vmax", "f32",
v2f32, v2f32, int_arm_neon_vmaxs, 1>;
def VMAXfq : N3VQInt<0, 0, 0b00, 0b1111, 0, N3RegFrm, IIC_VBINQ,
"vmax", "f32",
v4f32, v4f32, int_arm_neon_vmaxs, 1>;
// VMIN : Vector Minimum
defm VMINs : N3VInt_QHS<0, 0, 0b0110, 1, N3RegFrm,
IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
"vmin", "s", int_arm_neon_vmins, 1>;
defm VMINu : N3VInt_QHS<1, 0, 0b0110, 1, N3RegFrm,
IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q,
"vmin", "u", int_arm_neon_vminu, 1>;
def VMINfd : N3VDInt<0, 0, 0b10, 0b1111, 0, N3RegFrm, IIC_VBIND,
"vmin", "f32",
v2f32, v2f32, int_arm_neon_vmins, 1>;
def VMINfq : N3VQInt<0, 0, 0b10, 0b1111, 0, N3RegFrm, IIC_VBINQ,
"vmin", "f32",
v4f32, v4f32, int_arm_neon_vmins, 1>;
// Vector Pairwise Operations.
// VPADD : Vector Pairwise Add
def VPADDi8 : N3VDInt<0, 0, 0b00, 0b1011, 1, N3RegFrm, IIC_VSHLiD,
"vpadd", "i8",
v8i8, v8i8, int_arm_neon_vpadd, 0>;
def VPADDi16 : N3VDInt<0, 0, 0b01, 0b1011, 1, N3RegFrm, IIC_VSHLiD,
"vpadd", "i16",
v4i16, v4i16, int_arm_neon_vpadd, 0>;
def VPADDi32 : N3VDInt<0, 0, 0b10, 0b1011, 1, N3RegFrm, IIC_VSHLiD,
"vpadd", "i32",
v2i32, v2i32, int_arm_neon_vpadd, 0>;
def VPADDf : N3VDInt<1, 0, 0b00, 0b1101, 0, N3RegFrm,
IIC_VPBIND, "vpadd", "f32",
v2f32, v2f32, int_arm_neon_vpadd, 0>;
// VPADDL : Vector Pairwise Add Long
defm VPADDLs : N2VPLInt_QHS<0b11, 0b11, 0b00, 0b00100, 0, "vpaddl", "s",
int_arm_neon_vpaddls>;
defm VPADDLu : N2VPLInt_QHS<0b11, 0b11, 0b00, 0b00101, 0, "vpaddl", "u",
int_arm_neon_vpaddlu>;
// VPADAL : Vector Pairwise Add and Accumulate Long
defm VPADALs : N2VPLInt2_QHS<0b11, 0b11, 0b00, 0b01100, 0, "vpadal", "s",
int_arm_neon_vpadals>;
defm VPADALu : N2VPLInt2_QHS<0b11, 0b11, 0b00, 0b01101, 0, "vpadal", "u",
int_arm_neon_vpadalu>;
// VPMAX : Vector Pairwise Maximum
def VPMAXs8 : N3VDInt<0, 0, 0b00, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
"s8", v8i8, v8i8, int_arm_neon_vpmaxs, 0>;
def VPMAXs16 : N3VDInt<0, 0, 0b01, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
"s16", v4i16, v4i16, int_arm_neon_vpmaxs, 0>;
def VPMAXs32 : N3VDInt<0, 0, 0b10, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
"s32", v2i32, v2i32, int_arm_neon_vpmaxs, 0>;
def VPMAXu8 : N3VDInt<1, 0, 0b00, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
"u8", v8i8, v8i8, int_arm_neon_vpmaxu, 0>;
def VPMAXu16 : N3VDInt<1, 0, 0b01, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
"u16", v4i16, v4i16, int_arm_neon_vpmaxu, 0>;
def VPMAXu32 : N3VDInt<1, 0, 0b10, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax",
"u32", v2i32, v2i32, int_arm_neon_vpmaxu, 0>;
def VPMAXf : N3VDInt<1, 0, 0b00, 0b1111, 0, N3RegFrm, IIC_VPBIND, "vpmax",
"f32", v2f32, v2f32, int_arm_neon_vpmaxs, 0>;
// VPMIN : Vector Pairwise Minimum
def VPMINs8 : N3VDInt<0, 0, 0b00, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
"s8", v8i8, v8i8, int_arm_neon_vpmins, 0>;
def VPMINs16 : N3VDInt<0, 0, 0b01, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
"s16", v4i16, v4i16, int_arm_neon_vpmins, 0>;
def VPMINs32 : N3VDInt<0, 0, 0b10, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
"s32", v2i32, v2i32, int_arm_neon_vpmins, 0>;
def VPMINu8 : N3VDInt<1, 0, 0b00, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
"u8", v8i8, v8i8, int_arm_neon_vpminu, 0>;
def VPMINu16 : N3VDInt<1, 0, 0b01, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
"u16", v4i16, v4i16, int_arm_neon_vpminu, 0>;
def VPMINu32 : N3VDInt<1, 0, 0b10, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin",
"u32", v2i32, v2i32, int_arm_neon_vpminu, 0>;
def VPMINf : N3VDInt<1, 0, 0b10, 0b1111, 0, N3RegFrm, IIC_VPBIND, "vpmin",
"f32", v2f32, v2f32, int_arm_neon_vpmins, 0>;
// Vector Reciprocal and Reciprocal Square Root Estimate and Step.
// VRECPE : Vector Reciprocal Estimate
def VRECPEd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01000, 0,
IIC_VUNAD, "vrecpe", "u32",
v2i32, v2i32, int_arm_neon_vrecpe>;
def VRECPEq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01000, 0,
IIC_VUNAQ, "vrecpe", "u32",
v4i32, v4i32, int_arm_neon_vrecpe>;
def VRECPEfd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01010, 0,
IIC_VUNAD, "vrecpe", "f32",
v2f32, v2f32, int_arm_neon_vrecpe>;
def VRECPEfq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01010, 0,
IIC_VUNAQ, "vrecpe", "f32",
v4f32, v4f32, int_arm_neon_vrecpe>;
// VRECPS : Vector Reciprocal Step
def VRECPSfd : N3VDInt<0, 0, 0b00, 0b1111, 1, N3RegFrm,
IIC_VRECSD, "vrecps", "f32",
v2f32, v2f32, int_arm_neon_vrecps, 1>;
def VRECPSfq : N3VQInt<0, 0, 0b00, 0b1111, 1, N3RegFrm,
IIC_VRECSQ, "vrecps", "f32",
v4f32, v4f32, int_arm_neon_vrecps, 1>;
// VRSQRTE : Vector Reciprocal Square Root Estimate
def VRSQRTEd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01001, 0,
IIC_VUNAD, "vrsqrte", "u32",
v2i32, v2i32, int_arm_neon_vrsqrte>;
def VRSQRTEq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01001, 0,
IIC_VUNAQ, "vrsqrte", "u32",
v4i32, v4i32, int_arm_neon_vrsqrte>;
def VRSQRTEfd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01011, 0,
IIC_VUNAD, "vrsqrte", "f32",
v2f32, v2f32, int_arm_neon_vrsqrte>;
def VRSQRTEfq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01011, 0,
IIC_VUNAQ, "vrsqrte", "f32",
v4f32, v4f32, int_arm_neon_vrsqrte>;
// VRSQRTS : Vector Reciprocal Square Root Step
def VRSQRTSfd : N3VDInt<0, 0, 0b10, 0b1111, 1, N3RegFrm,
IIC_VRECSD, "vrsqrts", "f32",
v2f32, v2f32, int_arm_neon_vrsqrts, 1>;
def VRSQRTSfq : N3VQInt<0, 0, 0b10, 0b1111, 1, N3RegFrm,
IIC_VRECSQ, "vrsqrts", "f32",
v4f32, v4f32, int_arm_neon_vrsqrts, 1>;
// Vector Shifts.
// VSHL : Vector Shift
defm VSHLs : N3VInt_QHSDSh<0, 0, 0b0100, 0, N3RegVShFrm,
IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ, IIC_VSHLiQ,
"vshl", "s", int_arm_neon_vshifts>;
defm VSHLu : N3VInt_QHSDSh<1, 0, 0b0100, 0, N3RegVShFrm,
IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ, IIC_VSHLiQ,
"vshl", "u", int_arm_neon_vshiftu>;
// VSHL : Vector Shift Left (Immediate)
defm VSHLi : N2VShL_QHSD<0, 1, 0b0101, 1, IIC_VSHLiD, "vshl", "i", NEONvshl>;
// VSHR : Vector Shift Right (Immediate)
defm VSHRs : N2VShR_QHSD<0, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "s",NEONvshrs>;
defm VSHRu : N2VShR_QHSD<1, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "u",NEONvshru>;
// VSHLL : Vector Shift Left Long
defm VSHLLs : N2VLSh_QHS<0, 1, 0b1010, 0, 0, 1, "vshll", "s", NEONvshlls>;
defm VSHLLu : N2VLSh_QHS<1, 1, 0b1010, 0, 0, 1, "vshll", "u", NEONvshllu>;
// VSHLL : Vector Shift Left Long (with maximum shift count)
class N2VLShMax<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
bit op6, bit op4, string OpcodeStr, string Dt, ValueType ResTy,
ValueType OpTy, SDNode OpNode>
: N2VLSh<op24, op23, op11_8, op7, op6, op4, OpcodeStr, Dt,
ResTy, OpTy, OpNode> {
let Inst{21-16} = op21_16;
let DecoderMethod = "DecodeVSHLMaxInstruction";
}
def VSHLLi8 : N2VLShMax<1, 1, 0b110010, 0b0011, 0, 0, 0, "vshll", "i8",
v8i16, v8i8, NEONvshlli>;
def VSHLLi16 : N2VLShMax<1, 1, 0b110110, 0b0011, 0, 0, 0, "vshll", "i16",
v4i32, v4i16, NEONvshlli>;
def VSHLLi32 : N2VLShMax<1, 1, 0b111010, 0b0011, 0, 0, 0, "vshll", "i32",
v2i64, v2i32, NEONvshlli>;
// VSHRN : Vector Shift Right and Narrow
defm VSHRN : N2VNSh_HSD<0,1,0b1000,0,0,1, IIC_VSHLiD, "vshrn", "i",
NEONvshrn>;
// VRSHL : Vector Rounding Shift
defm VRSHLs : N3VInt_QHSDSh<0, 0, 0b0101, 0, N3RegVShFrm,
IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
"vrshl", "s", int_arm_neon_vrshifts>;
defm VRSHLu : N3VInt_QHSDSh<1, 0, 0b0101, 0, N3RegVShFrm,
IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
"vrshl", "u", int_arm_neon_vrshiftu>;
// VRSHR : Vector Rounding Shift Right
defm VRSHRs : N2VShR_QHSD<0,1,0b0010,1, IIC_VSHLi4D, "vrshr", "s",NEONvrshrs>;
defm VRSHRu : N2VShR_QHSD<1,1,0b0010,1, IIC_VSHLi4D, "vrshr", "u",NEONvrshru>;
// VRSHRN : Vector Rounding Shift Right and Narrow
defm VRSHRN : N2VNSh_HSD<0, 1, 0b1000, 0, 1, 1, IIC_VSHLi4D, "vrshrn", "i",
NEONvrshrn>;
// VQSHL : Vector Saturating Shift
defm VQSHLs : N3VInt_QHSDSh<0, 0, 0b0100, 1, N3RegVShFrm,
IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
"vqshl", "s", int_arm_neon_vqshifts>;
defm VQSHLu : N3VInt_QHSDSh<1, 0, 0b0100, 1, N3RegVShFrm,
IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
"vqshl", "u", int_arm_neon_vqshiftu>;
// VQSHL : Vector Saturating Shift Left (Immediate)
defm VQSHLsi : N2VShL_QHSD<0,1,0b0111,1, IIC_VSHLi4D, "vqshl", "s",NEONvqshls>;
defm VQSHLui : N2VShL_QHSD<1,1,0b0111,1, IIC_VSHLi4D, "vqshl", "u",NEONvqshlu>;
// VQSHLU : Vector Saturating Shift Left (Immediate, Unsigned)
defm VQSHLsu : N2VShL_QHSD<1,1,0b0110,1, IIC_VSHLi4D,"vqshlu","s",NEONvqshlsu>;
// VQSHRN : Vector Saturating Shift Right and Narrow
defm VQSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 0, 1, IIC_VSHLi4D, "vqshrn", "s",
NEONvqshrns>;
defm VQSHRNu : N2VNSh_HSD<1, 1, 0b1001, 0, 0, 1, IIC_VSHLi4D, "vqshrn", "u",
NEONvqshrnu>;
// VQSHRUN : Vector Saturating Shift Right and Narrow (Unsigned)
defm VQSHRUN : N2VNSh_HSD<1, 1, 0b1000, 0, 0, 1, IIC_VSHLi4D, "vqshrun", "s",
NEONvqshrnsu>;
// VQRSHL : Vector Saturating Rounding Shift
defm VQRSHLs : N3VInt_QHSDSh<0, 0, 0b0101, 1, N3RegVShFrm,
IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
"vqrshl", "s", int_arm_neon_vqrshifts>;
defm VQRSHLu : N3VInt_QHSDSh<1, 0, 0b0101, 1, N3RegVShFrm,
IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q,
"vqrshl", "u", int_arm_neon_vqrshiftu>;
// VQRSHRN : Vector Saturating Rounding Shift Right and Narrow
defm VQRSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 1, 1, IIC_VSHLi4D, "vqrshrn", "s",
NEONvqrshrns>;
defm VQRSHRNu : N2VNSh_HSD<1, 1, 0b1001, 0, 1, 1, IIC_VSHLi4D, "vqrshrn", "u",
NEONvqrshrnu>;
// VQRSHRUN : Vector Saturating Rounding Shift Right and Narrow (Unsigned)
defm VQRSHRUN : N2VNSh_HSD<1, 1, 0b1000, 0, 1, 1, IIC_VSHLi4D, "vqrshrun", "s",
NEONvqrshrnsu>;
// VSRA : Vector Shift Right and Accumulate
defm VSRAs : N2VShAdd_QHSD<0, 1, 0b0001, 1, "vsra", "s", NEONvshrs>;
defm VSRAu : N2VShAdd_QHSD<1, 1, 0b0001, 1, "vsra", "u", NEONvshru>;
// VRSRA : Vector Rounding Shift Right and Accumulate
defm VRSRAs : N2VShAdd_QHSD<0, 1, 0b0011, 1, "vrsra", "s", NEONvrshrs>;
defm VRSRAu : N2VShAdd_QHSD<1, 1, 0b0011, 1, "vrsra", "u", NEONvrshru>;
// VSLI : Vector Shift Left and Insert
defm VSLI : N2VShInsL_QHSD<1, 1, 0b0101, 1, "vsli">;
// VSRI : Vector Shift Right and Insert
defm VSRI : N2VShInsR_QHSD<1, 1, 0b0100, 1, "vsri">;
// Vector Absolute and Saturating Absolute.
// VABS : Vector Absolute Value
defm VABS : N2VInt_QHS<0b11, 0b11, 0b01, 0b00110, 0,
IIC_VUNAiD, IIC_VUNAiQ, "vabs", "s",
int_arm_neon_vabs>;
def VABSfd : N2VDInt<0b11, 0b11, 0b10, 0b01, 0b01110, 0,
IIC_VUNAD, "vabs", "f32",
v2f32, v2f32, int_arm_neon_vabs>;
def VABSfq : N2VQInt<0b11, 0b11, 0b10, 0b01, 0b01110, 0,
IIC_VUNAQ, "vabs", "f32",
v4f32, v4f32, int_arm_neon_vabs>;
// VQABS : Vector Saturating Absolute Value
defm VQABS : N2VInt_QHS<0b11, 0b11, 0b00, 0b01110, 0,
IIC_VQUNAiD, IIC_VQUNAiQ, "vqabs", "s",
int_arm_neon_vqabs>;
// Vector Negate.
def vnegd : PatFrag<(ops node:$in),
(sub (bitconvert (v2i32 NEONimmAllZerosV)), node:$in)>;
def vnegq : PatFrag<(ops node:$in),
(sub (bitconvert (v4i32 NEONimmAllZerosV)), node:$in)>;
class VNEGD<bits<2> size, string OpcodeStr, string Dt, ValueType Ty>
: N2V<0b11, 0b11, size, 0b01, 0b00111, 0, 0, (outs DPR:$Vd), (ins DPR:$Vm),
IIC_VSHLiD, OpcodeStr, Dt, "$Vd, $Vm", "",
[(set DPR:$Vd, (Ty (vnegd DPR:$Vm)))]>;
class VNEGQ<bits<2> size, string OpcodeStr, string Dt, ValueType Ty>
: N2V<0b11, 0b11, size, 0b01, 0b00111, 1, 0, (outs QPR:$Vd), (ins QPR:$Vm),
IIC_VSHLiQ, OpcodeStr, Dt, "$Vd, $Vm", "",
[(set QPR:$Vd, (Ty (vnegq QPR:$Vm)))]>;
// VNEG : Vector Negate (integer)
def VNEGs8d : VNEGD<0b00, "vneg", "s8", v8i8>;
def VNEGs16d : VNEGD<0b01, "vneg", "s16", v4i16>;
def VNEGs32d : VNEGD<0b10, "vneg", "s32", v2i32>;
def VNEGs8q : VNEGQ<0b00, "vneg", "s8", v16i8>;
def VNEGs16q : VNEGQ<0b01, "vneg", "s16", v8i16>;
def VNEGs32q : VNEGQ<0b10, "vneg", "s32", v4i32>;
// VNEG : Vector Negate (floating-point)
def VNEGfd : N2V<0b11, 0b11, 0b10, 0b01, 0b01111, 0, 0,
(outs DPR:$Vd), (ins DPR:$Vm), IIC_VUNAD,
"vneg", "f32", "$Vd, $Vm", "",
[(set DPR:$Vd, (v2f32 (fneg DPR:$Vm)))]>;
def VNEGf32q : N2V<0b11, 0b11, 0b10, 0b01, 0b01111, 1, 0,
(outs QPR:$Vd), (ins QPR:$Vm), IIC_VUNAQ,
"vneg", "f32", "$Vd, $Vm", "",
[(set QPR:$Vd, (v4f32 (fneg QPR:$Vm)))]>;
def : Pat<(v8i8 (vnegd DPR:$src)), (VNEGs8d DPR:$src)>;
def : Pat<(v4i16 (vnegd DPR:$src)), (VNEGs16d DPR:$src)>;
def : Pat<(v2i32 (vnegd DPR:$src)), (VNEGs32d DPR:$src)>;
def : Pat<(v16i8 (vnegq QPR:$src)), (VNEGs8q QPR:$src)>;
def : Pat<(v8i16 (vnegq QPR:$src)), (VNEGs16q QPR:$src)>;
def : Pat<(v4i32 (vnegq QPR:$src)), (VNEGs32q QPR:$src)>;
// VQNEG : Vector Saturating Negate
defm VQNEG : N2VInt_QHS<0b11, 0b11, 0b00, 0b01111, 0,
IIC_VQUNAiD, IIC_VQUNAiQ, "vqneg", "s",
int_arm_neon_vqneg>;
// Vector Bit Counting Operations.
// VCLS : Vector Count Leading Sign Bits
defm VCLS : N2VInt_QHS<0b11, 0b11, 0b00, 0b01000, 0,
IIC_VCNTiD, IIC_VCNTiQ, "vcls", "s",
int_arm_neon_vcls>;
// VCLZ : Vector Count Leading Zeros
defm VCLZ : N2VInt_QHS<0b11, 0b11, 0b00, 0b01001, 0,
IIC_VCNTiD, IIC_VCNTiQ, "vclz", "i",
int_arm_neon_vclz>;
// VCNT : Vector Count One Bits
def VCNTd : N2VDInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0,
IIC_VCNTiD, "vcnt", "8",
v8i8, v8i8, int_arm_neon_vcnt>;
def VCNTq : N2VQInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0,
IIC_VCNTiQ, "vcnt", "8",
v16i8, v16i8, int_arm_neon_vcnt>;
// Vector Swap
def VSWPd : N2VX<0b11, 0b11, 0b00, 0b10, 0b00000, 0, 0,
(outs DPR:$Vd), (ins DPR:$Vm), NoItinerary,
"vswp", "$Vd, $Vm", "", []>;
def VSWPq : N2VX<0b11, 0b11, 0b00, 0b10, 0b00000, 1, 0,
(outs QPR:$Vd), (ins QPR:$Vm), NoItinerary,
"vswp", "$Vd, $Vm", "", []>;
// Vector Move Operations.
// VMOV : Vector Move (Register)
def : InstAlias<"vmov${p} $Vd, $Vm",
(VORRd DPR:$Vd, DPR:$Vm, DPR:$Vm, pred:$p)>;
def : InstAlias<"vmov${p} $Vd, $Vm",
(VORRq QPR:$Vd, QPR:$Vm, QPR:$Vm, pred:$p)>;
defm : VFPDTAnyNoF64InstAlias<"vmov${p}", "$Vd, $Vm",
(VORRd DPR:$Vd, DPR:$Vm, DPR:$Vm, pred:$p)>;
defm : VFPDTAnyNoF64InstAlias<"vmov${p}", "$Vd, $Vm",
(VORRq QPR:$Vd, QPR:$Vm, QPR:$Vm, pred:$p)>;
// VMOV : Vector Move (Immediate)
let isReMaterializable = 1 in {
def VMOVv8i8 : N1ModImm<1, 0b000, 0b1110, 0, 0, 0, 1, (outs DPR:$Vd),
(ins nImmSplatI8:$SIMM), IIC_VMOVImm,
"vmov", "i8", "$Vd, $SIMM", "",
[(set DPR:$Vd, (v8i8 (NEONvmovImm timm:$SIMM)))]>;
def VMOVv16i8 : N1ModImm<1, 0b000, 0b1110, 0, 1, 0, 1, (outs QPR:$Vd),
(ins nImmSplatI8:$SIMM), IIC_VMOVImm,
"vmov", "i8", "$Vd, $SIMM", "",
[(set QPR:$Vd, (v16i8 (NEONvmovImm timm:$SIMM)))]>;
def VMOVv4i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 0, 0, 1, (outs DPR:$Vd),
(ins nImmSplatI16:$SIMM), IIC_VMOVImm,
"vmov", "i16", "$Vd, $SIMM", "",
[(set DPR:$Vd, (v4i16 (NEONvmovImm timm:$SIMM)))]> {
let Inst{9} = SIMM{9};
}
def VMOVv8i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 1, 0, 1, (outs QPR:$Vd),
(ins nImmSplatI16:$SIMM), IIC_VMOVImm,
"vmov", "i16", "$Vd, $SIMM", "",
[(set QPR:$Vd, (v8i16 (NEONvmovImm timm:$SIMM)))]> {
let Inst{9} = SIMM{9};
}
def VMOVv2i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 0, 0, 1, (outs DPR:$Vd),
(ins nImmVMOVI32:$SIMM), IIC_VMOVImm,
"vmov", "i32", "$Vd, $SIMM", "",
[(set DPR:$Vd, (v2i32 (NEONvmovImm timm:$SIMM)))]> {
let Inst{11-8} = SIMM{11-8};
}
def VMOVv4i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 1, 0, 1, (outs QPR:$Vd),
(ins nImmVMOVI32:$SIMM), IIC_VMOVImm,
"vmov", "i32", "$Vd, $SIMM", "",
[(set QPR:$Vd, (v4i32 (NEONvmovImm timm:$SIMM)))]> {
let Inst{11-8} = SIMM{11-8};
}
def VMOVv1i64 : N1ModImm<1, 0b000, 0b1110, 0, 0, 1, 1, (outs DPR:$Vd),
(ins nImmSplatI64:$SIMM), IIC_VMOVImm,
"vmov", "i64", "$Vd, $SIMM", "",
[(set DPR:$Vd, (v1i64 (NEONvmovImm timm:$SIMM)))]>;
def VMOVv2i64 : N1ModImm<1, 0b000, 0b1110, 0, 1, 1, 1, (outs QPR:$Vd),
(ins nImmSplatI64:$SIMM), IIC_VMOVImm,
"vmov", "i64", "$Vd, $SIMM", "",
[(set QPR:$Vd, (v2i64 (NEONvmovImm timm:$SIMM)))]>;
def VMOVv2f32 : N1ModImm<1, 0b000, 0b1111, 0, 0, 0, 1, (outs DPR:$Vd),
(ins nImmVMOVF32:$SIMM), IIC_VMOVImm,
"vmov", "f32", "$Vd, $SIMM", "",
[(set DPR:$Vd, (v2f32 (NEONvmovFPImm timm:$SIMM)))]>;
def VMOVv4f32 : N1ModImm<1, 0b000, 0b1111, 0, 1, 0, 1, (outs QPR:$Vd),
(ins nImmVMOVF32:$SIMM), IIC_VMOVImm,
"vmov", "f32", "$Vd, $SIMM", "",
[(set QPR:$Vd, (v4f32 (NEONvmovFPImm timm:$SIMM)))]>;
} // isReMaterializable
// VMOV : Vector Get Lane (move scalar to ARM core register)
def VGETLNs8 : NVGetLane<{1,1,1,0,0,1,?,1}, 0b1011, {?,?},
(outs GPR:$R), (ins DPR:$V, VectorIndex8:$lane),
IIC_VMOVSI, "vmov", "s8", "$R, $V$lane",
[(set GPR:$R, (NEONvgetlanes (v8i8 DPR:$V),
imm:$lane))]> {
let Inst{21} = lane{2};
let Inst{6-5} = lane{1-0};
}
def VGETLNs16 : NVGetLane<{1,1,1,0,0,0,?,1}, 0b1011, {?,1},
(outs GPR:$R), (ins DPR:$V, VectorIndex16:$lane),
IIC_VMOVSI, "vmov", "s16", "$R, $V$lane",
[(set GPR:$R, (NEONvgetlanes (v4i16 DPR:$V),
imm:$lane))]> {
let Inst{21} = lane{1};
let Inst{6} = lane{0};
}
def VGETLNu8 : NVGetLane<{1,1,1,0,1,1,?,1}, 0b1011, {?,?},
(outs GPR:$R), (ins DPR:$V, VectorIndex8:$lane),
IIC_VMOVSI, "vmov", "u8", "$R, $V$lane",
[(set GPR:$R, (NEONvgetlaneu (v8i8 DPR:$V),
imm:$lane))]> {
let Inst{21} = lane{2};
let Inst{6-5} = lane{1-0};
}
def VGETLNu16 : NVGetLane<{1,1,1,0,1,0,?,1}, 0b1011, {?,1},
(outs GPR:$R), (ins DPR:$V, VectorIndex16:$lane),
IIC_VMOVSI, "vmov", "u16", "$R, $V$lane",
[(set GPR:$R, (NEONvgetlaneu (v4i16 DPR:$V),
imm:$lane))]> {
let Inst{21} = lane{1};
let Inst{6} = lane{0};
}
def VGETLNi32 : NVGetLane<{1,1,1,0,0,0,?,1}, 0b1011, 0b00,
(outs GPR:$R), (ins DPR:$V, VectorIndex32:$lane),
IIC_VMOVSI, "vmov", "32", "$R, $V$lane",
[(set GPR:$R, (extractelt (v2i32 DPR:$V),
imm:$lane))]> {
let Inst{21} = lane{0};
}
// def VGETLNf32: see FMRDH and FMRDL in ARMInstrVFP.td
def : Pat<(NEONvgetlanes (v16i8 QPR:$src), imm:$lane),
(VGETLNs8 (v8i8 (EXTRACT_SUBREG QPR:$src,
(DSubReg_i8_reg imm:$lane))),
(SubReg_i8_lane imm:$lane))>;
def : Pat<(NEONvgetlanes (v8i16 QPR:$src), imm:$lane),
(VGETLNs16 (v4i16 (EXTRACT_SUBREG QPR:$src,
(DSubReg_i16_reg imm:$lane))),
(SubReg_i16_lane imm:$lane))>;
def : Pat<(NEONvgetlaneu (v16i8 QPR:$src), imm:$lane),
(VGETLNu8 (v8i8 (EXTRACT_SUBREG QPR:$src,
(DSubReg_i8_reg imm:$lane))),
(SubReg_i8_lane imm:$lane))>;
def : Pat<(NEONvgetlaneu (v8i16 QPR:$src), imm:$lane),
(VGETLNu16 (v4i16 (EXTRACT_SUBREG QPR:$src,
(DSubReg_i16_reg imm:$lane))),
(SubReg_i16_lane imm:$lane))>;
def : Pat<(extractelt (v4i32 QPR:$src), imm:$lane),
(VGETLNi32 (v2i32 (EXTRACT_SUBREG QPR:$src,
(DSubReg_i32_reg imm:$lane))),
(SubReg_i32_lane imm:$lane))>;
def : Pat<(extractelt (v2f32 DPR:$src1), imm:$src2),
(EXTRACT_SUBREG (v2f32 (COPY_TO_REGCLASS (v2f32 DPR:$src1),DPR_VFP2)),
(SSubReg_f32_reg imm:$src2))>;
def : Pat<(extractelt (v4f32 QPR:$src1), imm:$src2),
(EXTRACT_SUBREG (v4f32 (COPY_TO_REGCLASS (v4f32 QPR:$src1),QPR_VFP2)),
(SSubReg_f32_reg imm:$src2))>;
//def : Pat<(extractelt (v2i64 QPR:$src1), imm:$src2),
// (EXTRACT_SUBREG QPR:$src1, (DSubReg_f64_reg imm:$src2))>;
def : Pat<(extractelt (v2f64 QPR:$src1), imm:$src2),
(EXTRACT_SUBREG QPR:$src1, (DSubReg_f64_reg imm:$src2))>;
// VMOV : Vector Set Lane (move ARM core register to scalar)
let Constraints = "$src1 = $V" in {
def VSETLNi8 : NVSetLane<{1,1,1,0,0,1,?,0}, 0b1011, {?,?}, (outs DPR:$V),
(ins DPR:$src1, GPR:$R, VectorIndex8:$lane),
IIC_VMOVISL, "vmov", "8", "$V$lane, $R",
[(set DPR:$V, (vector_insert (v8i8 DPR:$src1),
GPR:$R, imm:$lane))]> {
let Inst{21} = lane{2};
let Inst{6-5} = lane{1-0};
}
def VSETLNi16 : NVSetLane<{1,1,1,0,0,0,?,0}, 0b1011, {?,1}, (outs DPR:$V),
(ins DPR:$src1, GPR:$R, VectorIndex16:$lane),
IIC_VMOVISL, "vmov", "16", "$V$lane, $R",
[(set DPR:$V, (vector_insert (v4i16 DPR:$src1),
GPR:$R, imm:$lane))]> {
let Inst{21} = lane{1};
let Inst{6} = lane{0};
}
def VSETLNi32 : NVSetLane<{1,1,1,0,0,0,?,0}, 0b1011, 0b00, (outs DPR:$V),
(ins DPR:$src1, GPR:$R, VectorIndex32:$lane),
IIC_VMOVISL, "vmov", "32", "$V$lane, $R",
[(set DPR:$V, (insertelt (v2i32 DPR:$src1),
GPR:$R, imm:$lane))]> {
let Inst{21} = lane{0};
}
}
def : Pat<(vector_insert (v16i8 QPR:$src1), GPR:$src2, imm:$lane),
(v16i8 (INSERT_SUBREG QPR:$src1,
(v8i8 (VSETLNi8 (v8i8 (EXTRACT_SUBREG QPR:$src1,
(DSubReg_i8_reg imm:$lane))),
GPR:$src2, (SubReg_i8_lane imm:$lane))),
(DSubReg_i8_reg imm:$lane)))>;
def : Pat<(vector_insert (v8i16 QPR:$src1), GPR:$src2, imm:$lane),
(v8i16 (INSERT_SUBREG QPR:$src1,
(v4i16 (VSETLNi16 (v4i16 (EXTRACT_SUBREG QPR:$src1,
(DSubReg_i16_reg imm:$lane))),
GPR:$src2, (SubReg_i16_lane imm:$lane))),
(DSubReg_i16_reg imm:$lane)))>;
def : Pat<(insertelt (v4i32 QPR:$src1), GPR:$src2, imm:$lane),
(v4i32 (INSERT_SUBREG QPR:$src1,
(v2i32 (VSETLNi32 (v2i32 (EXTRACT_SUBREG QPR:$src1,
(DSubReg_i32_reg imm:$lane))),
GPR:$src2, (SubReg_i32_lane imm:$lane))),
(DSubReg_i32_reg imm:$lane)))>;
2009-08-31 03:06:39 +08:00
def : Pat<(v2f32 (insertelt DPR:$src1, SPR:$src2, imm:$src3)),
(INSERT_SUBREG (v2f32 (COPY_TO_REGCLASS DPR:$src1, DPR_VFP2)),
SPR:$src2, (SSubReg_f32_reg imm:$src3))>;
def : Pat<(v4f32 (insertelt QPR:$src1, SPR:$src2, imm:$src3)),
(INSERT_SUBREG (v4f32 (COPY_TO_REGCLASS QPR:$src1, QPR_VFP2)),
SPR:$src2, (SSubReg_f32_reg imm:$src3))>;
//def : Pat<(v2i64 (insertelt QPR:$src1, DPR:$src2, imm:$src3)),
// (INSERT_SUBREG QPR:$src1, DPR:$src2, (DSubReg_f64_reg imm:$src3))>;
def : Pat<(v2f64 (insertelt QPR:$src1, DPR:$src2, imm:$src3)),
(INSERT_SUBREG QPR:$src1, DPR:$src2, (DSubReg_f64_reg imm:$src3))>;
def : Pat<(v2f32 (scalar_to_vector SPR:$src)),
(INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$src, ssub_0)>;
def : Pat<(v2f64 (scalar_to_vector (f64 DPR:$src))),
(INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), DPR:$src, dsub_0)>;
def : Pat<(v4f32 (scalar_to_vector SPR:$src)),
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), SPR:$src, ssub_0)>;
def : Pat<(v8i8 (scalar_to_vector GPR:$src)),
(VSETLNi8 (v8i8 (IMPLICIT_DEF)), GPR:$src, (i32 0))>;
def : Pat<(v4i16 (scalar_to_vector GPR:$src)),
(VSETLNi16 (v4i16 (IMPLICIT_DEF)), GPR:$src, (i32 0))>;
def : Pat<(v2i32 (scalar_to_vector GPR:$src)),
(VSETLNi32 (v2i32 (IMPLICIT_DEF)), GPR:$src, (i32 0))>;
def : Pat<(v16i8 (scalar_to_vector GPR:$src)),
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(VSETLNi8 (v8i8 (IMPLICIT_DEF)), GPR:$src, (i32 0)),
dsub_0)>;
def : Pat<(v8i16 (scalar_to_vector GPR:$src)),
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
(VSETLNi16 (v4i16 (IMPLICIT_DEF)), GPR:$src, (i32 0)),
dsub_0)>;
def : Pat<(v4i32 (scalar_to_vector GPR:$src)),
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(VSETLNi32 (v2i32 (IMPLICIT_DEF)), GPR:$src, (i32 0)),
dsub_0)>;
// VDUP : Vector Duplicate (from ARM core register to all elements)
class VDUPD<bits<8> opcod1, bits<2> opcod3, string Dt, ValueType Ty>
: NVDup<opcod1, 0b1011, opcod3, (outs DPR:$V), (ins GPR:$R),
IIC_VMOVIS, "vdup", Dt, "$V, $R",
[(set DPR:$V, (Ty (NEONvdup (i32 GPR:$R))))]>;
class VDUPQ<bits<8> opcod1, bits<2> opcod3, string Dt, ValueType Ty>
: NVDup<opcod1, 0b1011, opcod3, (outs QPR:$V), (ins GPR:$R),
IIC_VMOVIS, "vdup", Dt, "$V, $R",
[(set QPR:$V, (Ty (NEONvdup (i32 GPR:$R))))]>;
def VDUP8d : VDUPD<0b11101100, 0b00, "8", v8i8>;
def VDUP16d : VDUPD<0b11101000, 0b01, "16", v4i16>;
def VDUP32d : VDUPD<0b11101000, 0b00, "32", v2i32>;
def VDUP8q : VDUPQ<0b11101110, 0b00, "8", v16i8>;
def VDUP16q : VDUPQ<0b11101010, 0b01, "16", v8i16>;
def VDUP32q : VDUPQ<0b11101010, 0b00, "32", v4i32>;
def : Pat<(v2f32 (NEONvdup (f32 (bitconvert GPR:$R)))), (VDUP32d GPR:$R)>;
def : Pat<(v4f32 (NEONvdup (f32 (bitconvert GPR:$R)))), (VDUP32q GPR:$R)>;
// VDUP : Vector Duplicate Lane (from scalar to all elements)
class VDUPLND<bits<4> op19_16, string OpcodeStr, string Dt,
ValueType Ty, Operand IdxTy>
: NVDupLane<op19_16, 0, (outs DPR:$Vd), (ins DPR:$Vm, IdxTy:$lane),
IIC_VMOVD, OpcodeStr, Dt, "$Vd, $Vm$lane",
[(set DPR:$Vd, (Ty (NEONvduplane (Ty DPR:$Vm), imm:$lane)))]>;
class VDUPLNQ<bits<4> op19_16, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Operand IdxTy>
: NVDupLane<op19_16, 1, (outs QPR:$Vd), (ins DPR:$Vm, IdxTy:$lane),
IIC_VMOVQ, OpcodeStr, Dt, "$Vd, $Vm$lane",
[(set QPR:$Vd, (ResTy (NEONvduplane (OpTy DPR:$Vm),
VectorIndex32:$lane)))]>;
// Inst{19-16} is partially specified depending on the element size.
def VDUPLN8d : VDUPLND<{?,?,?,1}, "vdup", "8", v8i8, VectorIndex8> {
bits<3> lane;
let Inst{19-17} = lane{2-0};
}
def VDUPLN16d : VDUPLND<{?,?,1,0}, "vdup", "16", v4i16, VectorIndex16> {
bits<2> lane;
let Inst{19-18} = lane{1-0};
}
def VDUPLN32d : VDUPLND<{?,1,0,0}, "vdup", "32", v2i32, VectorIndex32> {
bits<1> lane;
let Inst{19} = lane{0};
}
def VDUPLN8q : VDUPLNQ<{?,?,?,1}, "vdup", "8", v16i8, v8i8, VectorIndex8> {
bits<3> lane;
let Inst{19-17} = lane{2-0};
}
def VDUPLN16q : VDUPLNQ<{?,?,1,0}, "vdup", "16", v8i16, v4i16, VectorIndex16> {
bits<2> lane;
let Inst{19-18} = lane{1-0};
}
def VDUPLN32q : VDUPLNQ<{?,1,0,0}, "vdup", "32", v4i32, v2i32, VectorIndex32> {
bits<1> lane;
let Inst{19} = lane{0};
}
def : Pat<(v2f32 (NEONvduplane (v2f32 DPR:$Vm), imm:$lane)),
(VDUPLN32d DPR:$Vm, imm:$lane)>;
def : Pat<(v4f32 (NEONvduplane (v2f32 DPR:$Vm), imm:$lane)),
(VDUPLN32q DPR:$Vm, imm:$lane)>;
def : Pat<(v16i8 (NEONvduplane (v16i8 QPR:$src), imm:$lane)),
(v16i8 (VDUPLN8q (v8i8 (EXTRACT_SUBREG QPR:$src,
(DSubReg_i8_reg imm:$lane))),
(SubReg_i8_lane imm:$lane)))>;
def : Pat<(v8i16 (NEONvduplane (v8i16 QPR:$src), imm:$lane)),
(v8i16 (VDUPLN16q (v4i16 (EXTRACT_SUBREG QPR:$src,
(DSubReg_i16_reg imm:$lane))),
(SubReg_i16_lane imm:$lane)))>;
def : Pat<(v4i32 (NEONvduplane (v4i32 QPR:$src), imm:$lane)),
(v4i32 (VDUPLN32q (v2i32 (EXTRACT_SUBREG QPR:$src,
(DSubReg_i32_reg imm:$lane))),
(SubReg_i32_lane imm:$lane)))>;
def : Pat<(v4f32 (NEONvduplane (v4f32 QPR:$src), imm:$lane)),
(v4f32 (VDUPLN32q (v2f32 (EXTRACT_SUBREG QPR:$src,
(DSubReg_i32_reg imm:$lane))),
(SubReg_i32_lane imm:$lane)))>;
def VDUPfdf : PseudoNeonI<(outs DPR:$dst), (ins SPR:$src), IIC_VMOVD, "",
[(set DPR:$dst, (v2f32 (NEONvdup (f32 SPR:$src))))]>;
def VDUPfqf : PseudoNeonI<(outs QPR:$dst), (ins SPR:$src), IIC_VMOVD, "",
[(set QPR:$dst, (v4f32 (NEONvdup (f32 SPR:$src))))]>;
2009-08-08 06:36:50 +08:00
// VMOVN : Vector Narrowing Move
defm VMOVN : N2VN_HSD<0b11,0b11,0b10,0b00100,0,0, IIC_VMOVN,
"vmovn", "i", trunc>;
// VQMOVN : Vector Saturating Narrowing Move
defm VQMOVNs : N2VNInt_HSD<0b11,0b11,0b10,0b00101,0,0, IIC_VQUNAiD,
"vqmovn", "s", int_arm_neon_vqmovns>;
defm VQMOVNu : N2VNInt_HSD<0b11,0b11,0b10,0b00101,1,0, IIC_VQUNAiD,
"vqmovn", "u", int_arm_neon_vqmovnu>;
defm VQMOVNsu : N2VNInt_HSD<0b11,0b11,0b10,0b00100,1,0, IIC_VQUNAiD,
"vqmovun", "s", int_arm_neon_vqmovnsu>;
// VMOVL : Vector Lengthening Move
defm VMOVLs : N2VL_QHS<0b01,0b10100,0,1, "vmovl", "s", sext>;
defm VMOVLu : N2VL_QHS<0b11,0b10100,0,1, "vmovl", "u", zext>;
// Vector Conversions.
// VCVT : Vector Convert Between Floating-Point and Integers
def VCVTf2sd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
v2i32, v2f32, fp_to_sint>;
def VCVTf2ud : N2VD<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
v2i32, v2f32, fp_to_uint>;
def VCVTs2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
v2f32, v2i32, sint_to_fp>;
def VCVTu2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
v2f32, v2i32, uint_to_fp>;
def VCVTf2sq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
v4i32, v4f32, fp_to_sint>;
def VCVTf2uq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
v4i32, v4f32, fp_to_uint>;
def VCVTs2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
v4f32, v4i32, sint_to_fp>;
def VCVTu2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
v4f32, v4i32, uint_to_fp>;
// VCVT : Vector Convert Between Floating-Point and Fixed-Point.
let DecoderMethod = "DecodeVCVTD" in {
def VCVTf2xsd : N2VCvtD<0, 1, 0b1111, 0, 1, "vcvt", "s32.f32",
v2i32, v2f32, int_arm_neon_vcvtfp2fxs>;
def VCVTf2xud : N2VCvtD<1, 1, 0b1111, 0, 1, "vcvt", "u32.f32",
v2i32, v2f32, int_arm_neon_vcvtfp2fxu>;
def VCVTxs2fd : N2VCvtD<0, 1, 0b1110, 0, 1, "vcvt", "f32.s32",
v2f32, v2i32, int_arm_neon_vcvtfxs2fp>;
def VCVTxu2fd : N2VCvtD<1, 1, 0b1110, 0, 1, "vcvt", "f32.u32",
v2f32, v2i32, int_arm_neon_vcvtfxu2fp>;
}
let DecoderMethod = "DecodeVCVTQ" in {
def VCVTf2xsq : N2VCvtQ<0, 1, 0b1111, 0, 1, "vcvt", "s32.f32",
v4i32, v4f32, int_arm_neon_vcvtfp2fxs>;
def VCVTf2xuq : N2VCvtQ<1, 1, 0b1111, 0, 1, "vcvt", "u32.f32",
v4i32, v4f32, int_arm_neon_vcvtfp2fxu>;
def VCVTxs2fq : N2VCvtQ<0, 1, 0b1110, 0, 1, "vcvt", "f32.s32",
v4f32, v4i32, int_arm_neon_vcvtfxs2fp>;
def VCVTxu2fq : N2VCvtQ<1, 1, 0b1110, 0, 1, "vcvt", "f32.u32",
v4f32, v4i32, int_arm_neon_vcvtfxu2fp>;
}
// VCVT : Vector Convert Between Half-Precision and Single-Precision.
def VCVTf2h : N2VNInt<0b11, 0b11, 0b01, 0b10, 0b01100, 0, 0,
IIC_VUNAQ, "vcvt", "f16.f32",
v4i16, v4f32, int_arm_neon_vcvtfp2hf>,
Requires<[HasNEON, HasFP16]>;
def VCVTh2f : N2VLInt<0b11, 0b11, 0b01, 0b10, 0b01110, 0, 0,
IIC_VUNAQ, "vcvt", "f32.f16",
v4f32, v4i16, int_arm_neon_vcvthf2fp>,
Requires<[HasNEON, HasFP16]>;
// Vector Reverse.
// VREV64 : Vector Reverse elements within 64-bit doublewords
class VREV64D<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
: N2V<0b11, 0b11, op19_18, 0b00, 0b00000, 0, 0, (outs DPR:$Vd),
(ins DPR:$Vm), IIC_VMOVD,
OpcodeStr, Dt, "$Vd, $Vm", "",
[(set DPR:$Vd, (Ty (NEONvrev64 (Ty DPR:$Vm))))]>;
class VREV64Q<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
: N2V<0b11, 0b11, op19_18, 0b00, 0b00000, 1, 0, (outs QPR:$Vd),
(ins QPR:$Vm), IIC_VMOVQ,
OpcodeStr, Dt, "$Vd, $Vm", "",
[(set QPR:$Vd, (Ty (NEONvrev64 (Ty QPR:$Vm))))]>;
def VREV64d8 : VREV64D<0b00, "vrev64", "8", v8i8>;
def VREV64d16 : VREV64D<0b01, "vrev64", "16", v4i16>;
def VREV64d32 : VREV64D<0b10, "vrev64", "32", v2i32>;
def : Pat<(v2f32 (NEONvrev64 (v2f32 DPR:$Vm))), (VREV64d32 DPR:$Vm)>;
def VREV64q8 : VREV64Q<0b00, "vrev64", "8", v16i8>;
def VREV64q16 : VREV64Q<0b01, "vrev64", "16", v8i16>;
def VREV64q32 : VREV64Q<0b10, "vrev64", "32", v4i32>;
def : Pat<(v4f32 (NEONvrev64 (v4f32 QPR:$Vm))), (VREV64q32 QPR:$Vm)>;
// VREV32 : Vector Reverse elements within 32-bit words
class VREV32D<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
: N2V<0b11, 0b11, op19_18, 0b00, 0b00001, 0, 0, (outs DPR:$Vd),
(ins DPR:$Vm), IIC_VMOVD,
OpcodeStr, Dt, "$Vd, $Vm", "",
[(set DPR:$Vd, (Ty (NEONvrev32 (Ty DPR:$Vm))))]>;
class VREV32Q<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
: N2V<0b11, 0b11, op19_18, 0b00, 0b00001, 1, 0, (outs QPR:$Vd),
(ins QPR:$Vm), IIC_VMOVQ,
OpcodeStr, Dt, "$Vd, $Vm", "",
[(set QPR:$Vd, (Ty (NEONvrev32 (Ty QPR:$Vm))))]>;
def VREV32d8 : VREV32D<0b00, "vrev32", "8", v8i8>;
def VREV32d16 : VREV32D<0b01, "vrev32", "16", v4i16>;
def VREV32q8 : VREV32Q<0b00, "vrev32", "8", v16i8>;
def VREV32q16 : VREV32Q<0b01, "vrev32", "16", v8i16>;
// VREV16 : Vector Reverse elements within 16-bit halfwords
class VREV16D<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
: N2V<0b11, 0b11, op19_18, 0b00, 0b00010, 0, 0, (outs DPR:$Vd),
(ins DPR:$Vm), IIC_VMOVD,
OpcodeStr, Dt, "$Vd, $Vm", "",
[(set DPR:$Vd, (Ty (NEONvrev16 (Ty DPR:$Vm))))]>;
class VREV16Q<bits<2> op19_18, string OpcodeStr, string Dt, ValueType Ty>
: N2V<0b11, 0b11, op19_18, 0b00, 0b00010, 1, 0, (outs QPR:$Vd),
(ins QPR:$Vm), IIC_VMOVQ,
OpcodeStr, Dt, "$Vd, $Vm", "",
[(set QPR:$Vd, (Ty (NEONvrev16 (Ty QPR:$Vm))))]>;
def VREV16d8 : VREV16D<0b00, "vrev16", "8", v8i8>;
def VREV16q8 : VREV16Q<0b00, "vrev16", "8", v16i8>;
// Other Vector Shuffles.
// Aligned extractions: really just dropping registers
class AlignedVEXTq<ValueType DestTy, ValueType SrcTy, SDNodeXForm LaneCVT>
: Pat<(DestTy (vector_extract_subvec (SrcTy QPR:$src), (i32 imm:$start))),
(EXTRACT_SUBREG (SrcTy QPR:$src), (LaneCVT imm:$start))>;
def : AlignedVEXTq<v8i8, v16i8, DSubReg_i8_reg>;
def : AlignedVEXTq<v4i16, v8i16, DSubReg_i16_reg>;
def : AlignedVEXTq<v2i32, v4i32, DSubReg_i32_reg>;
def : AlignedVEXTq<v1i64, v2i64, DSubReg_f64_reg>;
def : AlignedVEXTq<v2f32, v4f32, DSubReg_i32_reg>;
// VEXT : Vector Extract
class VEXTd<string OpcodeStr, string Dt, ValueType Ty>
: N3V<0,1,0b11,{?,?,?,?},0,0, (outs DPR:$Vd),
(ins DPR:$Vn, DPR:$Vm, i32imm:$index), NVExtFrm,
IIC_VEXTD, OpcodeStr, Dt, "$Vd, $Vn, $Vm, $index", "",
[(set DPR:$Vd, (Ty (NEONvext (Ty DPR:$Vn),
(Ty DPR:$Vm), imm:$index)))]> {
bits<4> index;
let Inst{11-8} = index{3-0};
}
2009-08-21 20:40:21 +08:00
class VEXTq<string OpcodeStr, string Dt, ValueType Ty>
: N3V<0,1,0b11,{?,?,?,?},1,0, (outs QPR:$Vd),
(ins QPR:$Vn, QPR:$Vm, i32imm:$index), NVExtFrm,
IIC_VEXTQ, OpcodeStr, Dt, "$Vd, $Vn, $Vm, $index", "",
[(set QPR:$Vd, (Ty (NEONvext (Ty QPR:$Vn),
(Ty QPR:$Vm), imm:$index)))]> {
bits<4> index;
let Inst{11-8} = index{3-0};
}
2009-08-21 20:40:21 +08:00
def VEXTd8 : VEXTd<"vext", "8", v8i8> {
let Inst{11-8} = index{3-0};
}
def VEXTd16 : VEXTd<"vext", "16", v4i16> {
let Inst{11-9} = index{2-0};
let Inst{8} = 0b0;
}
def VEXTd32 : VEXTd<"vext", "32", v2i32> {
let Inst{11-10} = index{1-0};
let Inst{9-8} = 0b00;
}
def : Pat<(v2f32 (NEONvext (v2f32 DPR:$Vn),
(v2f32 DPR:$Vm),
(i32 imm:$index))),
(VEXTd32 DPR:$Vn, DPR:$Vm, imm:$index)>;
def VEXTq8 : VEXTq<"vext", "8", v16i8> {
let Inst{11-8} = index{3-0};
}
def VEXTq16 : VEXTq<"vext", "16", v8i16> {
let Inst{11-9} = index{2-0};
let Inst{8} = 0b0;
}
def VEXTq32 : VEXTq<"vext", "32", v4i32> {
let Inst{11-10} = index{1-0};
let Inst{9-8} = 0b00;
}
def : Pat<(v4f32 (NEONvext (v4f32 QPR:$Vn),
(v4f32 QPR:$Vm),
(i32 imm:$index))),
(VEXTq32 QPR:$Vn, QPR:$Vm, imm:$index)>;
// VTRN : Vector Transpose
def VTRNd8 : N2VDShuffle<0b00, 0b00001, "vtrn", "8">;
def VTRNd16 : N2VDShuffle<0b01, 0b00001, "vtrn", "16">;
def VTRNd32 : N2VDShuffle<0b10, 0b00001, "vtrn", "32">;
def VTRNq8 : N2VQShuffle<0b00, 0b00001, IIC_VPERMQ, "vtrn", "8">;
def VTRNq16 : N2VQShuffle<0b01, 0b00001, IIC_VPERMQ, "vtrn", "16">;
def VTRNq32 : N2VQShuffle<0b10, 0b00001, IIC_VPERMQ, "vtrn", "32">;
// VUZP : Vector Unzip (Deinterleave)
def VUZPd8 : N2VDShuffle<0b00, 0b00010, "vuzp", "8">;
def VUZPd16 : N2VDShuffle<0b01, 0b00010, "vuzp", "16">;
def VUZPd32 : N2VDShuffle<0b10, 0b00010, "vuzp", "32">;
def VUZPq8 : N2VQShuffle<0b00, 0b00010, IIC_VPERMQ3, "vuzp", "8">;
def VUZPq16 : N2VQShuffle<0b01, 0b00010, IIC_VPERMQ3, "vuzp", "16">;
def VUZPq32 : N2VQShuffle<0b10, 0b00010, IIC_VPERMQ3, "vuzp", "32">;
// VZIP : Vector Zip (Interleave)
def VZIPd8 : N2VDShuffle<0b00, 0b00011, "vzip", "8">;
def VZIPd16 : N2VDShuffle<0b01, 0b00011, "vzip", "16">;
def VZIPd32 : N2VDShuffle<0b10, 0b00011, "vzip", "32">;
def VZIPq8 : N2VQShuffle<0b00, 0b00011, IIC_VPERMQ3, "vzip", "8">;
def VZIPq16 : N2VQShuffle<0b01, 0b00011, IIC_VPERMQ3, "vzip", "16">;
def VZIPq32 : N2VQShuffle<0b10, 0b00011, IIC_VPERMQ3, "vzip", "32">;
// Vector Table Lookup and Table Extension.
// VTBL : Vector Table Lookup
let DecoderMethod = "DecodeTBLInstruction" in {
def VTBL1
: N3V<1,1,0b11,0b1000,0,0, (outs DPR:$Vd),
(ins VecListOneD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTB1,
"vtbl", "8", "$Vd, $Vn, $Vm", "",
[(set DPR:$Vd, (v8i8 (int_arm_neon_vtbl1 VecListOneD:$Vn, DPR:$Vm)))]>;
let hasExtraSrcRegAllocReq = 1 in {
def VTBL2
: N3V<1,1,0b11,0b1001,0,0, (outs DPR:$Vd),
(ins DPR:$Vn, DPR:$tbl2, DPR:$Vm), NVTBLFrm, IIC_VTB2,
"vtbl", "8", "$Vd, \\{$Vn, $tbl2\\}, $Vm", "", []>;
def VTBL3
: N3V<1,1,0b11,0b1010,0,0, (outs DPR:$Vd),
(ins DPR:$Vn, DPR:$tbl2, DPR:$tbl3, DPR:$Vm), NVTBLFrm, IIC_VTB3,
"vtbl", "8", "$Vd, \\{$Vn, $tbl2, $tbl3\\}, $Vm", "", []>;
def VTBL4
: N3V<1,1,0b11,0b1011,0,0, (outs DPR:$Vd),
(ins DPR:$Vn, DPR:$tbl2, DPR:$tbl3, DPR:$tbl4, DPR:$Vm),
NVTBLFrm, IIC_VTB4,
"vtbl", "8", "$Vd, \\{$Vn, $tbl2, $tbl3, $tbl4\\}, $Vm", "", []>;
} // hasExtraSrcRegAllocReq = 1
def VTBL2Pseudo
: PseudoNeonI<(outs DPR:$dst), (ins QPR:$tbl, DPR:$src), IIC_VTB2, "", []>;
def VTBL3Pseudo
: PseudoNeonI<(outs DPR:$dst), (ins QQPR:$tbl, DPR:$src), IIC_VTB3, "", []>;
def VTBL4Pseudo
: PseudoNeonI<(outs DPR:$dst), (ins QQPR:$tbl, DPR:$src), IIC_VTB4, "", []>;
// VTBX : Vector Table Extension
def VTBX1
: N3V<1,1,0b11,0b1000,1,0, (outs DPR:$Vd),
(ins DPR:$orig, VecListOneD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTBX1,
"vtbx", "8", "$Vd, $Vn, $Vm", "$orig = $Vd",
[(set DPR:$Vd, (v8i8 (int_arm_neon_vtbx1
DPR:$orig, VecListOneD:$Vn, DPR:$Vm)))]>;
let hasExtraSrcRegAllocReq = 1 in {
def VTBX2
: N3V<1,1,0b11,0b1001,1,0, (outs DPR:$Vd),
(ins DPR:$orig, DPR:$Vn, DPR:$tbl2, DPR:$Vm), NVTBLFrm, IIC_VTBX2,
"vtbx", "8", "$Vd, \\{$Vn, $tbl2\\}, $Vm", "$orig = $Vd", []>;
def VTBX3
: N3V<1,1,0b11,0b1010,1,0, (outs DPR:$Vd),
(ins DPR:$orig, DPR:$Vn, DPR:$tbl2, DPR:$tbl3, DPR:$Vm),
NVTBLFrm, IIC_VTBX3,
"vtbx", "8", "$Vd, \\{$Vn, $tbl2, $tbl3\\}, $Vm",
"$orig = $Vd", []>;
def VTBX4
: N3V<1,1,0b11,0b1011,1,0, (outs DPR:$Vd), (ins DPR:$orig, DPR:$Vn,
DPR:$tbl2, DPR:$tbl3, DPR:$tbl4, DPR:$Vm), NVTBLFrm, IIC_VTBX4,
"vtbx", "8", "$Vd, \\{$Vn, $tbl2, $tbl3, $tbl4\\}, $Vm",
"$orig = $Vd", []>;
} // hasExtraSrcRegAllocReq = 1
def VTBX2Pseudo
: PseudoNeonI<(outs DPR:$dst), (ins DPR:$orig, QPR:$tbl, DPR:$src),
IIC_VTBX2, "$orig = $dst", []>;
def VTBX3Pseudo
: PseudoNeonI<(outs DPR:$dst), (ins DPR:$orig, QQPR:$tbl, DPR:$src),
IIC_VTBX3, "$orig = $dst", []>;
def VTBX4Pseudo
: PseudoNeonI<(outs DPR:$dst), (ins DPR:$orig, QQPR:$tbl, DPR:$src),
IIC_VTBX4, "$orig = $dst", []>;
} // DecoderMethod = "DecodeTBLInstruction"
//===----------------------------------------------------------------------===//
// NEON instructions for single-precision FP math
//===----------------------------------------------------------------------===//
class N2VSPat<SDNode OpNode, NeonI Inst>
: NEONFPPat<(f32 (OpNode SPR:$a)),
(EXTRACT_SUBREG
(v2f32 (COPY_TO_REGCLASS (Inst
(INSERT_SUBREG
(v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
SPR:$a, ssub_0)), DPR_VFP2)), ssub_0)>;
class N3VSPat<SDNode OpNode, NeonI Inst>
: NEONFPPat<(f32 (OpNode SPR:$a, SPR:$b)),
(EXTRACT_SUBREG
(v2f32 (COPY_TO_REGCLASS (Inst
(INSERT_SUBREG
(v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
SPR:$a, ssub_0),
(INSERT_SUBREG
(v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
SPR:$b, ssub_0)), DPR_VFP2)), ssub_0)>;
class N3VSMulOpPat<SDNode MulNode, SDNode OpNode, NeonI Inst>
: NEONFPPat<(f32 (OpNode SPR:$acc, (f32 (MulNode SPR:$a, SPR:$b)))),
(EXTRACT_SUBREG
(v2f32 (COPY_TO_REGCLASS (Inst
(INSERT_SUBREG
(v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
SPR:$acc, ssub_0),
(INSERT_SUBREG
(v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
SPR:$a, ssub_0),
(INSERT_SUBREG
(v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)),
SPR:$b, ssub_0)), DPR_VFP2)), ssub_0)>;
def : N3VSPat<fadd, VADDfd>;
def : N3VSPat<fsub, VSUBfd>;
def : N3VSPat<fmul, VMULfd>;
def : N3VSMulOpPat<fmul, fadd, VMLAfd>,
Requires<[HasNEON, UseNEONForFP, UseFPVMLx]>;
def : N3VSMulOpPat<fmul, fsub, VMLSfd>,
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
Requires<[HasNEON, UseNEONForFP, UseFPVMLx]>;
def : N2VSPat<fabs, VABSfd>;
def : N2VSPat<fneg, VNEGfd>;
def : N3VSPat<NEONfmax, VMAXfd>;
def : N3VSPat<NEONfmin, VMINfd>;
def : N2VSPat<arm_ftosi, VCVTf2sd>;
def : N2VSPat<arm_ftoui, VCVTf2ud>;
def : N2VSPat<arm_sitof, VCVTs2fd>;
def : N2VSPat<arm_uitof, VCVTu2fd>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// bit_convert
def : Pat<(v1i64 (bitconvert (v2i32 DPR:$src))), (v1i64 DPR:$src)>;
def : Pat<(v1i64 (bitconvert (v4i16 DPR:$src))), (v1i64 DPR:$src)>;
def : Pat<(v1i64 (bitconvert (v8i8 DPR:$src))), (v1i64 DPR:$src)>;
def : Pat<(v1i64 (bitconvert (f64 DPR:$src))), (v1i64 DPR:$src)>;
def : Pat<(v1i64 (bitconvert (v2f32 DPR:$src))), (v1i64 DPR:$src)>;
def : Pat<(v2i32 (bitconvert (v1i64 DPR:$src))), (v2i32 DPR:$src)>;
def : Pat<(v2i32 (bitconvert (v4i16 DPR:$src))), (v2i32 DPR:$src)>;
def : Pat<(v2i32 (bitconvert (v8i8 DPR:$src))), (v2i32 DPR:$src)>;
def : Pat<(v2i32 (bitconvert (f64 DPR:$src))), (v2i32 DPR:$src)>;
def : Pat<(v2i32 (bitconvert (v2f32 DPR:$src))), (v2i32 DPR:$src)>;
def : Pat<(v4i16 (bitconvert (v1i64 DPR:$src))), (v4i16 DPR:$src)>;
def : Pat<(v4i16 (bitconvert (v2i32 DPR:$src))), (v4i16 DPR:$src)>;
def : Pat<(v4i16 (bitconvert (v8i8 DPR:$src))), (v4i16 DPR:$src)>;
def : Pat<(v4i16 (bitconvert (f64 DPR:$src))), (v4i16 DPR:$src)>;
def : Pat<(v4i16 (bitconvert (v2f32 DPR:$src))), (v4i16 DPR:$src)>;
def : Pat<(v8i8 (bitconvert (v1i64 DPR:$src))), (v8i8 DPR:$src)>;
def : Pat<(v8i8 (bitconvert (v2i32 DPR:$src))), (v8i8 DPR:$src)>;
def : Pat<(v8i8 (bitconvert (v4i16 DPR:$src))), (v8i8 DPR:$src)>;
def : Pat<(v8i8 (bitconvert (f64 DPR:$src))), (v8i8 DPR:$src)>;
def : Pat<(v8i8 (bitconvert (v2f32 DPR:$src))), (v8i8 DPR:$src)>;
def : Pat<(f64 (bitconvert (v1i64 DPR:$src))), (f64 DPR:$src)>;
def : Pat<(f64 (bitconvert (v2i32 DPR:$src))), (f64 DPR:$src)>;
def : Pat<(f64 (bitconvert (v4i16 DPR:$src))), (f64 DPR:$src)>;
def : Pat<(f64 (bitconvert (v8i8 DPR:$src))), (f64 DPR:$src)>;
def : Pat<(f64 (bitconvert (v2f32 DPR:$src))), (f64 DPR:$src)>;
def : Pat<(v2f32 (bitconvert (f64 DPR:$src))), (v2f32 DPR:$src)>;
def : Pat<(v2f32 (bitconvert (v1i64 DPR:$src))), (v2f32 DPR:$src)>;
def : Pat<(v2f32 (bitconvert (v2i32 DPR:$src))), (v2f32 DPR:$src)>;
def : Pat<(v2f32 (bitconvert (v4i16 DPR:$src))), (v2f32 DPR:$src)>;
def : Pat<(v2f32 (bitconvert (v8i8 DPR:$src))), (v2f32 DPR:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 QPR:$src))), (v2i64 QPR:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 QPR:$src))), (v2i64 QPR:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 QPR:$src))), (v2i64 QPR:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 QPR:$src))), (v2i64 QPR:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 QPR:$src))), (v2i64 QPR:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 QPR:$src))), (v4i32 QPR:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 QPR:$src))), (v4i32 QPR:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 QPR:$src))), (v4i32 QPR:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 QPR:$src))), (v4i32 QPR:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 QPR:$src))), (v4i32 QPR:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 QPR:$src))), (v8i16 QPR:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 QPR:$src))), (v8i16 QPR:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 QPR:$src))), (v8i16 QPR:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 QPR:$src))), (v8i16 QPR:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 QPR:$src))), (v8i16 QPR:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 QPR:$src))), (v16i8 QPR:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 QPR:$src))), (v16i8 QPR:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 QPR:$src))), (v16i8 QPR:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 QPR:$src))), (v16i8 QPR:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 QPR:$src))), (v16i8 QPR:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 QPR:$src))), (v4f32 QPR:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 QPR:$src))), (v4f32 QPR:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 QPR:$src))), (v4f32 QPR:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 QPR:$src))), (v4f32 QPR:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 QPR:$src))), (v4f32 QPR:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 QPR:$src))), (v2f64 QPR:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 QPR:$src))), (v2f64 QPR:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 QPR:$src))), (v2f64 QPR:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 QPR:$src))), (v2f64 QPR:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 QPR:$src))), (v2f64 QPR:$src)>;
//===----------------------------------------------------------------------===//
// Assembler aliases
//
// VAND/VEOR/VORR accept but do not require a type suffix.
defm : VFPDTAnyInstAlias<"vand${p}", "$Vd, $Vn, $Vm",
(VANDd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>;
defm : VFPDTAnyInstAlias<"vand${p}", "$Vd, $Vn, $Vm",
(VANDq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>;
defm : VFPDTAnyInstAlias<"veor${p}", "$Vd, $Vn, $Vm",
(VEORd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>;
defm : VFPDTAnyInstAlias<"veor${p}", "$Vd, $Vn, $Vm",
(VEORq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>;
defm : VFPDTAnyInstAlias<"vorr${p}", "$Vd, $Vn, $Vm",
(VORRd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>;
defm : VFPDTAnyInstAlias<"vorr${p}", "$Vd, $Vn, $Vm",
(VORRq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>;
// VLD1 requires a size suffix, but also accepts type specific variants.
// Load one D register.
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d8 VecListOneD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d16 VecListOneD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d32 VecListOneD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d64 VecListOneD:$Vd, addrmode6:$Rn, pred:$p)>;
// with writeback, fixed stride
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d8wb_fixed VecListOneD:$Vd, zero_reg, addrmode6:$Rn, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d16wb_fixed VecListOneD:$Vd, zero_reg, addrmode6:$Rn, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d32wb_fixed VecListOneD:$Vd, zero_reg, addrmode6:$Rn, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d64wb_fixed VecListOneD:$Vd, zero_reg, addrmode6:$Rn, pred:$p)>;
// with writeback, register stride
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d8wb_register VecListOneD:$Vd, zero_reg, addrmode6:$Rn,
rGPR:$Rm, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d16wb_register VecListOneD:$Vd, zero_reg, addrmode6:$Rn,
rGPR:$Rm, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d32wb_register VecListOneD:$Vd, zero_reg, addrmode6:$Rn,
rGPR:$Rm, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d64wb_register VecListOneD:$Vd, zero_reg, addrmode6:$Rn,
rGPR:$Rm, pred:$p)>;
// Load two D registers.
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1q8 VecListTwoD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1q16 VecListTwoD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1q32 VecListTwoD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1q64 VecListTwoD:$Vd, addrmode6:$Rn, pred:$p)>;
// with writeback, fixed stride
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1q8wb_fixed VecListTwoD:$Vd, zero_reg, addrmode6:$Rn, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1q16wb_fixed VecListTwoD:$Vd, zero_reg, addrmode6:$Rn, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1q32wb_fixed VecListTwoD:$Vd, zero_reg, addrmode6:$Rn, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1q64wb_fixed VecListTwoD:$Vd, zero_reg, addrmode6:$Rn, pred:$p)>;
// with writeback, register stride
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1q8wb_register VecListTwoD:$Vd, zero_reg, addrmode6:$Rn,
rGPR:$Rm, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1q16wb_register VecListTwoD:$Vd, zero_reg, addrmode6:$Rn,
rGPR:$Rm, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1q32wb_register VecListTwoD:$Vd, zero_reg, addrmode6:$Rn,
rGPR:$Rm, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1q64wb_register VecListTwoD:$Vd, zero_reg, addrmode6:$Rn,
rGPR:$Rm, pred:$p)>;
// Load three D registers.
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d8T VecListThreeD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d16T VecListThreeD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d32T VecListThreeD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d64T VecListThreeD:$Vd, addrmode6:$Rn, pred:$p)>;
// with writeback, fixed stride
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d8Twb_fixed VecListThreeD:$Vd, zero_reg,
addrmode6:$Rn, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d16Twb_fixed VecListThreeD:$Vd, zero_reg,
addrmode6:$Rn, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d32Twb_fixed VecListThreeD:$Vd, zero_reg,
addrmode6:$Rn, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d64Twb_fixed VecListThreeD:$Vd, zero_reg,
addrmode6:$Rn, pred:$p)>;
// with writeback, register stride
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d8Twb_register VecListThreeD:$Vd, zero_reg,
addrmode6:$Rn, rGPR:$Rm, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d16Twb_register VecListThreeD:$Vd, zero_reg,
addrmode6:$Rn, rGPR:$Rm, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d32Twb_register VecListThreeD:$Vd, zero_reg,
addrmode6:$Rn, rGPR:$Rm, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d64Twb_register VecListThreeD:$Vd, zero_reg,
addrmode6:$Rn, rGPR:$Rm, pred:$p)>;
// Load four D registers.
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d8Q VecListFourD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d16Q VecListFourD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d32Q VecListFourD:$Vd, addrmode6:$Rn, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn",
(VLD1d64Q VecListFourD:$Vd, addrmode6:$Rn, pred:$p)>;
// with writeback, fixed stride
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d8Qwb_fixed VecListFourD:$Vd, zero_reg,
addrmode6:$Rn, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d16Qwb_fixed VecListFourD:$Vd, zero_reg,
addrmode6:$Rn, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d32Qwb_fixed VecListFourD:$Vd, zero_reg,
addrmode6:$Rn, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn!",
(VLD1d64Qwb_fixed VecListFourD:$Vd, zero_reg,
addrmode6:$Rn, pred:$p)>;
// with writeback, register stride
defm : VFPDT8ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d8Qwb_register VecListFourD:$Vd, zero_reg,
addrmode6:$Rn, rGPR:$Rm, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d16Qwb_register VecListFourD:$Vd, zero_reg,
addrmode6:$Rn, rGPR:$Rm, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d32Qwb_register VecListFourD:$Vd, zero_reg,
addrmode6:$Rn, rGPR:$Rm, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vld1${p}", "$Vd, $Rn, $Rm",
(VLD1d64Qwb_register VecListFourD:$Vd, zero_reg,
addrmode6:$Rn, rGPR:$Rm, pred:$p)>;
// VST1 requires a size suffix, but also accepts type specific variants.
// Store one D register.
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d8 addrmode6:$Rn, VecListOneD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d16 addrmode6:$Rn, VecListOneD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d32 addrmode6:$Rn, VecListOneD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d64 addrmode6:$Rn, VecListOneD:$Vd, pred:$p)>;
// with writeback, fixed stride
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d8wb_fixed zero_reg, addrmode6:$Rn, VecListOneD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d16wb_fixed zero_reg, addrmode6:$Rn, VecListOneD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d32wb_fixed zero_reg, addrmode6:$Rn, VecListOneD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d64wb_fixed zero_reg, addrmode6:$Rn, VecListOneD:$Vd, pred:$p)>;
// with writeback, register stride
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d8wb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListOneD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d16wb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListOneD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d32wb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListOneD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d64wb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListOneD:$Vd, pred:$p)>;
// Store two D registers.
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1q8 addrmode6:$Rn, VecListTwoD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1q16 addrmode6:$Rn, VecListTwoD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1q32 addrmode6:$Rn, VecListTwoD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1q64 addrmode6:$Rn, VecListTwoD:$Vd, pred:$p)>;
// with writeback, fixed stride
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1q8wb_fixed zero_reg, addrmode6:$Rn, VecListTwoD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1q16wb_fixed zero_reg, addrmode6:$Rn, VecListTwoD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1q32wb_fixed zero_reg, addrmode6:$Rn, VecListTwoD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1q64wb_fixed zero_reg, addrmode6:$Rn, VecListTwoD:$Vd, pred:$p)>;
// with writeback, register stride
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1q8wb_register zero_reg, addrmode6:$Rn,
rGPR:$Rm, VecListTwoD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1q16wb_register zero_reg, addrmode6:$Rn,
rGPR:$Rm, VecListTwoD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1q32wb_register zero_reg, addrmode6:$Rn,
rGPR:$Rm, VecListTwoD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1q64wb_register zero_reg, addrmode6:$Rn,
rGPR:$Rm, VecListTwoD:$Vd, pred:$p)>;
// Load three D registers.
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d8T addrmode6:$Rn, VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d16T addrmode6:$Rn, VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d32T addrmode6:$Rn, VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d64T addrmode6:$Rn, VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d8Twb_fixed zero_reg, addrmode6:$Rn, VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d16Twb_fixed zero_reg, addrmode6:$Rn, VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d32Twb_fixed zero_reg, addrmode6:$Rn, VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d64Twb_fixed zero_reg, addrmode6:$Rn, VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d8Twb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d16Twb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d32Twb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListThreeD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d64Twb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListThreeD:$Vd, pred:$p)>;
// Load four D registers.
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d8Q addrmode6:$Rn, VecListFourD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d16Q addrmode6:$Rn, VecListFourD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d32Q addrmode6:$Rn, VecListFourD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn",
(VST1d64Q addrmode6:$Rn, VecListFourD:$Vd, pred:$p)>;
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d8Qwb_fixed zero_reg, addrmode6:$Rn, VecListFourD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d16Qwb_fixed zero_reg, addrmode6:$Rn, VecListFourD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d32Qwb_fixed zero_reg, addrmode6:$Rn, VecListFourD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn!",
(VST1d64Qwb_fixed zero_reg, addrmode6:$Rn, VecListFourD:$Vd, pred:$p)>;
defm : VFPDT8ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d8Qwb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListFourD:$Vd, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d16Qwb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListFourD:$Vd, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d32Qwb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListFourD:$Vd, pred:$p)>;
defm : VFPDT64ReqInstAlias<"vst1${p}", "$Vd, $Rn, $Rm",
(VST1d64Qwb_register zero_reg, addrmode6:$Rn, rGPR:$Rm,
VecListFourD:$Vd, pred:$p)>;
// VTRN instructions data type suffix aliases for more-specific types.
defm : VFPDT8ReqInstAlias <"vtrn${p}", "$Dd, $Dm",
(VTRNd8 DPR:$Dd, DPR:$Dm, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vtrn${p}", "$Dd, $Dm",
(VTRNd16 DPR:$Dd, DPR:$Dm, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vtrn${p}", "$Dd, $Dm",
(VTRNd32 DPR:$Dd, DPR:$Dm, pred:$p)>;
defm : VFPDT8ReqInstAlias <"vtrn${p}", "$Qd, $Qm",
(VTRNq8 QPR:$Qd, QPR:$Qm, pred:$p)>;
defm : VFPDT16ReqInstAlias<"vtrn${p}", "$Qd, $Qm",
(VTRNq16 QPR:$Qd, QPR:$Qm, pred:$p)>;
defm : VFPDT32ReqInstAlias<"vtrn${p}", "$Qd, $Qm",
(VTRNq32 QPR:$Qd, QPR:$Qm, pred:$p)>;