llvm-project/clang/lib/CodeGen/BackendUtil.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1604 lines
64 KiB
C++
Raw Normal View History

//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/CodeGen/BackendUtil.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/StackSafetyAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/BitcodeReader.h"
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/LTO/LTOBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/SubtargetFeature.h"
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/BuryPointer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Coroutines.h"
#include "llvm/Transforms/Coroutines/CoroCleanup.h"
#include "llvm/Transforms/Coroutines/CoroEarly.h"
#include "llvm/Transforms/Coroutines/CoroElide.h"
#include "llvm/Transforms/Coroutines/CoroSplit.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
#include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
#include "llvm/Transforms/Instrumentation/MemProfiler.h"
#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
#include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
#include "llvm/Transforms/ObjCARC.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/CanonicalizeAliases.h"
#include "llvm/Transforms/Utils/EntryExitInstrumenter.h"
#include "llvm/Transforms/Utils/NameAnonGlobals.h"
#include "llvm/Transforms/Utils/SymbolRewriter.h"
#include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h"
#include <memory>
using namespace clang;
using namespace llvm;
#define HANDLE_EXTENSION(Ext) \
llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
#include "llvm/Support/Extension.def"
namespace {
// Default filename used for profile generation.
static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
class EmitAssemblyHelper {
DiagnosticsEngine &Diags;
const HeaderSearchOptions &HSOpts;
const CodeGenOptions &CodeGenOpts;
const clang::TargetOptions &TargetOpts;
const LangOptions &LangOpts;
Module *TheModule;
Timer CodeGenerationTime;
std::unique_ptr<raw_pwrite_stream> OS;
TargetIRAnalysis getTargetIRAnalysis() const {
if (TM)
return TM->getTargetIRAnalysis();
return TargetIRAnalysis();
}
void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
/// Generates the TargetMachine.
/// Leaves TM unchanged if it is unable to create the target machine.
/// Some of our clang tests specify triples which are not built
/// into clang. This is okay because these tests check the generated
/// IR, and they require DataLayout which depends on the triple.
/// In this case, we allow this method to fail and not report an error.
/// When MustCreateTM is used, we print an error if we are unable to load
/// the requested target.
void CreateTargetMachine(bool MustCreateTM);
/// Add passes necessary to emit assembly or LLVM IR.
///
/// \return True on success.
bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
std::error_code EC;
auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC,
llvm::sys::fs::OF_None);
if (EC) {
Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
F.reset();
}
return F;
}
public:
EmitAssemblyHelper(DiagnosticsEngine &_Diags,
const HeaderSearchOptions &HeaderSearchOpts,
const CodeGenOptions &CGOpts,
const clang::TargetOptions &TOpts,
const LangOptions &LOpts, Module *M)
: Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
CodeGenerationTime("codegen", "Code Generation Time") {}
~EmitAssemblyHelper() {
if (CodeGenOpts.DisableFree)
BuryPointer(std::move(TM));
}
std::unique_ptr<TargetMachine> TM;
void EmitAssembly(BackendAction Action,
std::unique_ptr<raw_pwrite_stream> OS);
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
void EmitAssemblyWithNewPassManager(BackendAction Action,
std::unique_ptr<raw_pwrite_stream> OS);
};
// We need this wrapper to access LangOpts and CGOpts from extension functions
// that we add to the PassManagerBuilder.
class PassManagerBuilderWrapper : public PassManagerBuilder {
public:
PassManagerBuilderWrapper(const Triple &TargetTriple,
const CodeGenOptions &CGOpts,
const LangOptions &LangOpts)
: PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
LangOpts(LangOpts) {}
const Triple &getTargetTriple() const { return TargetTriple; }
const CodeGenOptions &getCGOpts() const { return CGOpts; }
const LangOptions &getLangOpts() const { return LangOpts; }
private:
const Triple &TargetTriple;
const CodeGenOptions &CGOpts;
const LangOptions &LangOpts;
};
}
static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createObjCARCAPElimPass());
}
static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createObjCARCExpandPass());
}
static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createObjCARCOptPass());
}
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createAddDiscriminatorsPass());
}
static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createBoundsCheckingLegacyPass());
}
static SanitizerCoverageOptions
getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) {
SanitizerCoverageOptions Opts;
Opts.CoverageType =
static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
return Opts;
}
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper &>(Builder);
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
auto Opts = getSancovOptsFromCGOpts(CGOpts);
Implement `-fsanitize-coverage-whitelist` and `-fsanitize-coverage-blacklist` for clang Summary: This commit adds two command-line options to clang. These options let the user decide which functions will receive SanitizerCoverage instrumentation. This is most useful in the libFuzzer use case, where it enables targeted coverage-guided fuzzing. Patch by Yannis Juglaret of DGA-MI, Rennes, France libFuzzer tests its target against an evolving corpus, and relies on SanitizerCoverage instrumentation to collect the code coverage information that drives corpus evolution. Currently, libFuzzer collects such information for all functions of the target under test, and adds to the corpus every mutated sample that finds a new code coverage path in any function of the target. We propose instead to let the user specify which functions' code coverage information is relevant for building the upcoming fuzzing campaign's corpus. To this end, we add two new command line options for clang, enabling targeted coverage-guided fuzzing with libFuzzer. We see targeted coverage guided fuzzing as a simple way to leverage libFuzzer for big targets with thousands of functions or multiple dependencies. We publish this patch as work from DGA-MI of Rennes, France, with proper authorization from the hierarchy. Targeted coverage-guided fuzzing can accelerate bug finding for two reasons. First, the compiler will avoid costly instrumentation for non-relevant functions, accelerating fuzzer execution for each call to any of these functions. Second, the built fuzzer will produce and use a more accurate corpus, because it will not keep the samples that find new coverage paths in non-relevant functions. The two new command line options are `-fsanitize-coverage-whitelist` and `-fsanitize-coverage-blacklist`. They accept files in the same format as the existing `-fsanitize-blacklist` option <https://clang.llvm.org/docs/SanitizerSpecialCaseList.html#format>. The new options influence SanitizerCoverage so that it will only instrument a subset of the functions in the target. We explain these options in detail in `clang/docs/SanitizerCoverage.rst`. Consider now the woff2 fuzzing example from the libFuzzer tutorial <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md>. We are aware that we cannot conclude much from this example because mutating compressed data is generally a bad idea, but let us use it anyway as an illustration for its simplicity. Let us use an empty blacklist together with one of the three following whitelists: ``` # (a) src:* fun:* # (b) src:SRC/* fun:* # (c) src:SRC/src/woff2_dec.cc fun:* ``` Running the built fuzzers shows how many instrumentation points the compiler adds, the fuzzer will output //XXX PCs//. Whitelist (a) is the instrument-everything whitelist, it produces 11912 instrumentation points. Whitelist (b) focuses coverage to instrument woff2 source code only, ignoring the dependency code for brotli (de)compression; it produces 3984 instrumented instrumentation points. Whitelist (c) focuses coverage to only instrument functions in the main file that deals with WOFF2 to TTF conversion, resulting in 1056 instrumentation points. For experimentation purposes, we ran each fuzzer approximately 100 times, single process, with the initial corpus provided in the tutorial. We let the fuzzer run until it either found the heap buffer overflow or went out of memory. On this simple example, whitelists (b) and (c) found the heap buffer overflow more reliably and 5x faster than whitelist (a). The average execution times when finding the heap buffer overflow were as follows: (a) 904 s, (b) 156 s, and (c) 176 s. We explain these results by the fact that WOFF2 to TTF conversion calls the brotli decompression algorithm's functions, which are mostly irrelevant for finding bugs in WOFF2 font reconstruction but nevertheless instrumented and used by whitelist (a) to guide fuzzing. This results in longer execution time for these functions and a partially irrelevant corpus. Contrary to whitelist (a), whitelists (b) and (c) will execute brotli-related functions without instrumentation overhead, and ignore new code paths found in them. This results in faster bug finding for WOFF2 font reconstruction. The results for whitelist (b) are similar to the ones for whitelist (c). Indeed, WOFF2 to TTF conversion calls functions that are mostly located in SRC/src/woff2_dec.cc. The 2892 extra instrumentation points allowed by whitelist (b) do not tamper with bug finding, even though they are mostly irrelevant, simply because most of these functions do not get called. We get a slightly faster average time for bug finding with whitelist (b), which might indicate that some of the extra instrumentation points are actually relevant, or might just be random noise. Reviewers: kcc, morehouse, vitalybuka Reviewed By: morehouse, vitalybuka Subscribers: pratyai, vitalybuka, eternalsakura, xwlin222, dende, srhines, kubamracek, #sanitizers, lebedev.ri, hiraditya, cfe-commits, llvm-commits Tags: #clang, #sanitizers, #llvm Differential Revision: https://reviews.llvm.org/D63616
2020-04-11 01:42:41 +08:00
PM.add(createModuleSanitizerCoverageLegacyPassPass(
Opts, CGOpts.SanitizeCoverageAllowlistFiles,
CGOpts.SanitizeCoverageBlocklistFiles));
}
// Check if ASan should use GC-friendly instrumentation for globals.
// First of all, there is no point if -fdata-sections is off (expect for MachO,
// where this is not a factor). Also, on ELF this feature requires an assembler
// extension that only works with -integrated-as at the moment.
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
return false;
switch (T.getObjectFormat()) {
case Triple::MachO:
case Triple::COFF:
return true;
case Triple::ELF:
return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
case Triple::GOFF:
llvm::report_fatal_error("ASan not implemented for GOFF");
case Triple::XCOFF:
llvm::report_fatal_error("ASan not implemented for XCOFF.");
case Triple::Wasm:
case Triple::UnknownObjectFormat:
break;
}
return false;
}
static void addMemProfilerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createMemProfilerFunctionPass());
PM.add(createModuleMemProfilerLegacyPassPass());
}
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper&>(Builder);
const Triple &T = BuilderWrapper.getTargetTriple();
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator;
bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
UseAfterScope));
PM.add(createModuleAddressSanitizerLegacyPassPass(
/*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator));
}
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createAddressSanitizerFunctionPass(
/*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false));
PM.add(createModuleAddressSanitizerLegacyPassPass(
/*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true,
/*UseOdrIndicator*/ false));
}
static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper &>(Builder);
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
PM.add(
createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover));
}
static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createHWAddressSanitizerLegacyPassPass(
/*CompileKernel*/ true, /*Recover*/ true));
}
static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM,
bool CompileKernel) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper&>(Builder);
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
PM.add(createMemorySanitizerLegacyPassPass(
MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel}));
// MemorySanitizer inserts complex instrumentation that mostly follows
// the logic of the original code, but operates on "shadow" values.
// It can benefit from re-running some general purpose optimization passes.
if (Builder.OptLevel > 0) {
PM.add(createEarlyCSEPass());
PM.add(createReassociatePass());
PM.add(createLICMPass());
PM.add(createGVNPass());
PM.add(createInstructionCombiningPass());
PM.add(createDeadStoreEliminationPass());
}
}
static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false);
}
static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true);
}
static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createThreadSanitizerLegacyPassPass());
}
static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper&>(Builder);
const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
PM.add(
createDataFlowSanitizerLegacyPassPass(LangOpts.SanitizerBlacklistFiles));
}
static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
const CodeGenOptions &CodeGenOpts) {
TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
switch (CodeGenOpts.getVecLib()) {
case CodeGenOptions::Accelerate:
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
break;
case CodeGenOptions::LIBMVEC:
switch(TargetTriple.getArch()) {
default:
break;
case llvm::Triple::x86_64:
TLII->addVectorizableFunctionsFromVecLib
(TargetLibraryInfoImpl::LIBMVEC_X86);
break;
}
break;
case CodeGenOptions::MASSV:
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV);
break;
case CodeGenOptions::SVML:
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
break;
default:
break;
}
return TLII;
}
static void addSymbolRewriterPass(const CodeGenOptions &Opts,
legacy::PassManager *MPM) {
llvm::SymbolRewriter::RewriteDescriptorList DL;
llvm::SymbolRewriter::RewriteMapParser MapParser;
for (const auto &MapFile : Opts.RewriteMapFiles)
MapParser.parse(MapFile, &DL);
MPM->add(createRewriteSymbolsPass(DL));
}
static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
switch (CodeGenOpts.OptimizationLevel) {
default:
llvm_unreachable("Invalid optimization level!");
case 0:
return CodeGenOpt::None;
case 1:
return CodeGenOpt::Less;
case 2:
return CodeGenOpt::Default; // O2/Os/Oz
case 3:
return CodeGenOpt::Aggressive;
}
}
static Optional<llvm::CodeModel::Model>
getCodeModel(const CodeGenOptions &CodeGenOpts) {
unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
.Case("tiny", llvm::CodeModel::Tiny)
.Case("small", llvm::CodeModel::Small)
.Case("kernel", llvm::CodeModel::Kernel)
.Case("medium", llvm::CodeModel::Medium)
.Case("large", llvm::CodeModel::Large)
.Case("default", ~1u)
.Default(~0u);
assert(CodeModel != ~0u && "invalid code model!");
if (CodeModel == ~1u)
return None;
return static_cast<llvm::CodeModel::Model>(CodeModel);
}
static CodeGenFileType getCodeGenFileType(BackendAction Action) {
if (Action == Backend_EmitObj)
return CGFT_ObjectFile;
else if (Action == Backend_EmitMCNull)
return CGFT_Null;
else {
assert(Action == Backend_EmitAssembly && "Invalid action!");
return CGFT_AssemblyFile;
}
}
static bool initTargetOptions(DiagnosticsEngine &Diags,
llvm::TargetOptions &Options,
const CodeGenOptions &CodeGenOpts,
const clang::TargetOptions &TargetOpts,
const LangOptions &LangOpts,
const HeaderSearchOptions &HSOpts) {
switch (LangOpts.getThreadModel()) {
case LangOptions::ThreadModelKind::POSIX:
Options.ThreadModel = llvm::ThreadModel::POSIX;
break;
case LangOptions::ThreadModelKind::Single:
Options.ThreadModel = llvm::ThreadModel::Single;
break;
}
// Set float ABI type.
assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
"Invalid Floating Point ABI!");
Options.FloatABIType =
llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
.Case("soft", llvm::FloatABI::Soft)
.Case("softfp", llvm::FloatABI::Soft)
.Case("hard", llvm::FloatABI::Hard)
.Default(llvm::FloatABI::Default);
// Set FP fusion mode.
switch (LangOpts.getDefaultFPContractMode()) {
case LangOptions::FPM_Off:
// Preserve any contraction performed by the front-end. (Strict performs
// splitting of the muladd intrinsic in the backend.)
Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
break;
case LangOptions::FPM_On:
[HIP] Fix regressions due to fp contract change Recently HIP toolchain made a change to use clang instead of opt/llc to do compilation (https://reviews.llvm.org/D81861). The intention is to make HIP toolchain canonical like other toolchains. However, this change introduced an unintentional change regarding backend fp fuse option, which caused regressions in some HIP applications. Basically before the change, HIP toolchain used clang to generate bitcode, then use opt/llc to optimize bitcode and generate ISA. As such, the amdgpu backend takes the default fp fuse mode which is 'Standard'. This mode respect contract flag of fmul/fadd instructions and do not fuse fmul/fadd instructions without contract flag. However, after the change, HIP toolchain now use clang to generate IR, do optimization, and generate ISA as one process. Now amdgpu backend fp fuse option is determined by -ffp-contract option, which is 'fast' by default. And this -ffp-contract=fast language option is translated to 'Fast' fp fuse option in backend. Suddenly backend starts to fuse fmul/fadd instructions without contract flag. This causes wrong result for some device library functions, e.g. tan(-1e20), which should return 0.8446, now returns -0.933. What is worse is that since backend with 'Fast' fp fuse option does not respect contract flag, there is no way to use #pragma clang fp contract directive to enforce fp contract requirements. This patch fixes the regression by introducing a new value 'fast-honor-pragmas' for -ffp-contract and use it for HIP by default. 'fast-honor-pragmas' is equivalent to 'fast' in frontend but let the backend to use 'Standard' fp fuse option. 'fast-honor-pragmas' is useful since 'Fast' fp fuse option in backend does not honor contract flag, it is of little use to HIP applications since all code with #pragma STDC FP_CONTRACT or any IR from a source compiled with -ffp-contract=on is broken. Differential Revision: https://reviews.llvm.org/D90174
2020-10-24 04:24:48 +08:00
case LangOptions::FPM_FastHonorPragmas:
Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
break;
case LangOptions::FPM_Fast:
Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
break;
}
Options.UseInitArray = CodeGenOpts.UseInitArray;
Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
// Set EABI version.
Options.EABIVersion = TargetOpts.EABIVersion;
if (LangOpts.SjLjExceptions)
Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
if (LangOpts.SEHExceptions)
Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
if (LangOpts.DWARFExceptions)
Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
if (LangOpts.WasmExceptions)
Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
Options.NoInfsFPMath = LangOpts.NoHonorInfs;
Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
Options.UnsafeFPMath = LangOpts.UnsafeFPMath;
Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
Options.BBSections =
llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
.Case("all", llvm::BasicBlockSection::All)
.Case("labels", llvm::BasicBlockSection::Labels)
.StartsWith("list=", llvm::BasicBlockSection::List)
.Case("none", llvm::BasicBlockSection::None)
.Default(llvm::BasicBlockSection::None);
if (Options.BBSections == llvm::BasicBlockSection::List) {
ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5));
if (!MBOrErr) {
Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file)
<< MBOrErr.getError().message();
return false;
}
Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
}
Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions;
Options.FunctionSections = CodeGenOpts.FunctionSections;
Options.DataSections = CodeGenOpts.DataSections;
Options.IgnoreXCOFFVisibility = CodeGenOpts.IgnoreXCOFFVisibility;
Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
Options.UniqueBasicBlockSectionNames =
CodeGenOpts.UniqueBasicBlockSectionNames;
Options.StackProtectorGuard =
llvm::StringSwitch<llvm::StackProtectorGuards>(CodeGenOpts
.StackProtectorGuard)
.Case("tls", llvm::StackProtectorGuards::TLS)
.Case("global", llvm::StackProtectorGuards::Global)
.Default(llvm::StackProtectorGuards::None);
Options.StackProtectorGuardOffset = CodeGenOpts.StackProtectorGuardOffset;
Options.StackProtectorGuardReg = CodeGenOpts.StackProtectorGuardReg;
Options.TLSSize = CodeGenOpts.TLSSize;
Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
Options.EmitAddrsig = CodeGenOpts.Addrsig;
Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI;
[CSSPGO] Pseudo probes for function calls. An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be represented by a stack of callsite probes. Unlike pseudo probes for basic blocks that are in form of standalone intrinsic call instructions, pseudo probes for callsites have to be attached to the call instruction, thus a separate instruction would not work. One possible way of attaching a probe to a call instruction is to use a special metadata that carries information about the probe. The special metadata will have to make its way through the optimization pipeline down to object emission. This requires additional efforts to maintain the metadata in various places. Given that the `!dbg` metadata is a first-class metadata and has all essential support in place , leveraging the `!dbg` metadata as a channel to encode pseudo probe information is probably the easiest solution. With the requirement of not inflating `!dbg` metadata that is allocated for almost every instruction, we found that the 32-bit DWARF discriminator field which mainly serves AutoFDO can be reused for pseudo probes. DWARF discriminators distinguish identical source locations between instructions and with pseudo probes such support is not required. In this change we are using the discriminator field to encode the ID and type of a callsite probe and the encoded value will be unpacked and consumed right before object emission. When a callsite is inlined, the callsite discriminator field will go with the inlined instructions. The `!dbg` metadata of an inlined instruction is in form of a scope stack. The top of the stack is the instruction's original `!dbg` metadata and the bottom of the stack is for the original callsite of the top-level inliner. Except for the top of the stack, all other elements of the stack actually refer to the nested inlined callsites whose discriminator field (which actually represents a calliste probe) can be used together to represent the inline context of an inlined PseudoProbeInst or CallInst. To avoid collision with the baseline AutoFDO in various places that handles dwarf discriminators where a check against the `-pseudo-probe-for-profiling` switch is not available, a special encoding scheme is used to tell apart a pseudo probe discriminator from a regular discriminator. For the regular discriminator, if all lowest 3 bits are non-zero, it means the discriminator is basically empty and all higher 29 bits can be reversed for pseudo probe use. Callsite pseudo probes are inserted in `SampleProfileProbePass` and a target-independent MIR pass `PseudoProbeInserter` is added to unpack the probe ID/type from `!dbg`. Note that with this work the switch -debug-info-for-profiling will not work with -pseudo-probe-for-profiling anymore. They cannot be used at the same time. Reviewed By: wmi Differential Revision: https://reviews.llvm.org/D91756
2020-12-02 13:44:06 +08:00
Options.PseudoProbeForProfiling = CodeGenOpts.PseudoProbeForProfiling;
Options.ValueTrackingVariableLocations =
CodeGenOpts.ValueTrackingVariableLocations;
Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex;
Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
Options.MCOptions.MCIncrementalLinkerCompatible =
CodeGenOpts.IncrementalLinkerCompatible;
Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
Options.MCOptions.ABIName = TargetOpts.ABI;
for (const auto &Entry : HSOpts.UserEntries)
if (!Entry.IsFramework &&
(Entry.Group == frontend::IncludeDirGroup::Quoted ||
Entry.Group == frontend::IncludeDirGroup::Angled ||
Entry.Group == frontend::IncludeDirGroup::System))
Options.MCOptions.IASSearchPaths.push_back(
Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
Options.MCOptions.Argv0 = CodeGenOpts.Argv0;
Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs;
return true;
}
static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts,
const LangOptions &LangOpts) {
if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
return None;
// Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
// LLVM's -default-gcov-version flag is set to something invalid.
GCOVOptions Options;
Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
Options.EmitData = CodeGenOpts.EmitGcovArcs;
llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
Options.NoRedZone = CodeGenOpts.DisableRedZone;
Options.Filter = CodeGenOpts.ProfileFilterFiles;
Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
return Options;
}
static Optional<InstrProfOptions>
getInstrProfOptions(const CodeGenOptions &CodeGenOpts,
const LangOptions &LangOpts) {
if (!CodeGenOpts.hasProfileClangInstr())
return None;
InstrProfOptions Options;
Options.NoRedZone = CodeGenOpts.DisableRedZone;
Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
return Options;
}
void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
legacy::FunctionPassManager &FPM) {
// Handle disabling of all LLVM passes, where we want to preserve the
// internal module before any optimization.
if (CodeGenOpts.DisableLLVMPasses)
return;
// Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
// manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
// are inserted before PMBuilder ones - they'd get the default-constructed
// TLI with an unknown target otherwise.
Triple TargetTriple(TheModule->getTargetTriple());
std::unique_ptr<TargetLibraryInfoImpl> TLII(
createTLII(TargetTriple, CodeGenOpts));
// If we reached here with a non-empty index file name, then the index file
// was empty and we are not performing ThinLTO backend compilation (used in
// testing in a distributed build environment). Drop any the type test
// assume sequences inserted for whole program vtables so that codegen doesn't
// complain.
if (!CodeGenOpts.ThinLTOIndexFile.empty())
MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr,
/*ImportSummary=*/nullptr,
/*DropTypeTests=*/true));
PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
Cleanup the handling of noinline function attributes, -fno-inline, -fno-inline-functions, -O0, and optnone. These were really, really tangled together: - We used the noinline LLVM attribute for -fno-inline - But not for -fno-inline-functions (breaking LTO) - But we did use it for -finline-hint-functions (yay, LTO is happy!) - But we didn't for -O0 (LTO is sad yet again...) - We had weird structuring of CodeGenOpts with both an inlining enumeration and a boolean. They interacted in weird ways and needlessly. - A *lot* of set smashing went on with setting these, and then got worse when we considered optnone and other inlining-effecting attributes. - A bunch of inline affecting attributes were managed in a completely different place from -fno-inline. - Even with -fno-inline we failed to put the LLVM noinline attribute onto many generated function definitions because they didn't show up as AST-level functions. - If you passed -O0 but -finline-functions we would run the normal inliner pass in LLVM despite it being in the O0 pipeline, which really doesn't make much sense. - Lastly, we used things like '-fno-inline' to manipulate the pass pipeline which forced the pass pipeline to be much more parameterizable than it really needs to be. Instead we can *just* use the optimization level to select a pipeline and control the rest via attributes. Sadly, this causes a bunch of churn in tests because we don't run the optimizer in the tests and check the contents of attribute sets. It would be awesome if attribute sets were a bit more FileCheck friendly, but oh well. I think this is a significant improvement and should remove the semantic need to change what inliner pass we run in order to comply with the requested inlining semantics by relying completely on attributes. It also cleans up tho optnone and related handling a bit. One unfortunate aspect of this is that for generating alwaysinline routines like those in OpenMP we end up removing noinline and then adding alwaysinline. I tried a bunch of other approaches, but because we recompute function attributes from scratch and don't have a declaration here I couldn't find anything substantially cleaner than this. Differential Revision: https://reviews.llvm.org/D28053 llvm-svn: 290398
2016-12-23 09:24:49 +08:00
// At O0 and O1 we only run the always inliner which is more efficient. At
// higher optimization levels we run the normal inliner.
if (CodeGenOpts.OptimizationLevel <= 1) {
bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 &&
!CodeGenOpts.DisableLifetimeMarkers) ||
LangOpts.Coroutines);
Cleanup the handling of noinline function attributes, -fno-inline, -fno-inline-functions, -O0, and optnone. These were really, really tangled together: - We used the noinline LLVM attribute for -fno-inline - But not for -fno-inline-functions (breaking LTO) - But we did use it for -finline-hint-functions (yay, LTO is happy!) - But we didn't for -O0 (LTO is sad yet again...) - We had weird structuring of CodeGenOpts with both an inlining enumeration and a boolean. They interacted in weird ways and needlessly. - A *lot* of set smashing went on with setting these, and then got worse when we considered optnone and other inlining-effecting attributes. - A bunch of inline affecting attributes were managed in a completely different place from -fno-inline. - Even with -fno-inline we failed to put the LLVM noinline attribute onto many generated function definitions because they didn't show up as AST-level functions. - If you passed -O0 but -finline-functions we would run the normal inliner pass in LLVM despite it being in the O0 pipeline, which really doesn't make much sense. - Lastly, we used things like '-fno-inline' to manipulate the pass pipeline which forced the pass pipeline to be much more parameterizable than it really needs to be. Instead we can *just* use the optimization level to select a pipeline and control the rest via attributes. Sadly, this causes a bunch of churn in tests because we don't run the optimizer in the tests and check the contents of attribute sets. It would be awesome if attribute sets were a bit more FileCheck friendly, but oh well. I think this is a significant improvement and should remove the semantic need to change what inliner pass we run in order to comply with the requested inlining semantics by relying completely on attributes. It also cleans up tho optnone and related handling a bit. One unfortunate aspect of this is that for generating alwaysinline routines like those in OpenMP we end up removing noinline and then adding alwaysinline. I tried a bunch of other approaches, but because we recompute function attributes from scratch and don't have a declaration here I couldn't find anything substantially cleaner than this. Differential Revision: https://reviews.llvm.org/D28053 llvm-svn: 290398
2016-12-23 09:24:49 +08:00
PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
} else {
// We do not want to inline hot callsites for SamplePGO module-summary build
// because profile annotation will happen again in ThinLTO backend, and we
// want the IR of the hot path to match the profile.
Cleanup the handling of noinline function attributes, -fno-inline, -fno-inline-functions, -O0, and optnone. These were really, really tangled together: - We used the noinline LLVM attribute for -fno-inline - But not for -fno-inline-functions (breaking LTO) - But we did use it for -finline-hint-functions (yay, LTO is happy!) - But we didn't for -O0 (LTO is sad yet again...) - We had weird structuring of CodeGenOpts with both an inlining enumeration and a boolean. They interacted in weird ways and needlessly. - A *lot* of set smashing went on with setting these, and then got worse when we considered optnone and other inlining-effecting attributes. - A bunch of inline affecting attributes were managed in a completely different place from -fno-inline. - Even with -fno-inline we failed to put the LLVM noinline attribute onto many generated function definitions because they didn't show up as AST-level functions. - If you passed -O0 but -finline-functions we would run the normal inliner pass in LLVM despite it being in the O0 pipeline, which really doesn't make much sense. - Lastly, we used things like '-fno-inline' to manipulate the pass pipeline which forced the pass pipeline to be much more parameterizable than it really needs to be. Instead we can *just* use the optimization level to select a pipeline and control the rest via attributes. Sadly, this causes a bunch of churn in tests because we don't run the optimizer in the tests and check the contents of attribute sets. It would be awesome if attribute sets were a bit more FileCheck friendly, but oh well. I think this is a significant improvement and should remove the semantic need to change what inliner pass we run in order to comply with the requested inlining semantics by relying completely on attributes. It also cleans up tho optnone and related handling a bit. One unfortunate aspect of this is that for generating alwaysinline routines like those in OpenMP we end up removing noinline and then adding alwaysinline. I tried a bunch of other approaches, but because we recompute function attributes from scratch and don't have a declaration here I couldn't find anything substantially cleaner than this. Differential Revision: https://reviews.llvm.org/D28053 llvm-svn: 290398
2016-12-23 09:24:49 +08:00
PMBuilder.Inliner = createFunctionInliningPass(
CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
(!CodeGenOpts.SampleProfileFile.empty() &&
CodeGenOpts.PrepareForThinLTO));
}
Cleanup the handling of noinline function attributes, -fno-inline, -fno-inline-functions, -O0, and optnone. These were really, really tangled together: - We used the noinline LLVM attribute for -fno-inline - But not for -fno-inline-functions (breaking LTO) - But we did use it for -finline-hint-functions (yay, LTO is happy!) - But we didn't for -O0 (LTO is sad yet again...) - We had weird structuring of CodeGenOpts with both an inlining enumeration and a boolean. They interacted in weird ways and needlessly. - A *lot* of set smashing went on with setting these, and then got worse when we considered optnone and other inlining-effecting attributes. - A bunch of inline affecting attributes were managed in a completely different place from -fno-inline. - Even with -fno-inline we failed to put the LLVM noinline attribute onto many generated function definitions because they didn't show up as AST-level functions. - If you passed -O0 but -finline-functions we would run the normal inliner pass in LLVM despite it being in the O0 pipeline, which really doesn't make much sense. - Lastly, we used things like '-fno-inline' to manipulate the pass pipeline which forced the pass pipeline to be much more parameterizable than it really needs to be. Instead we can *just* use the optimization level to select a pipeline and control the rest via attributes. Sadly, this causes a bunch of churn in tests because we don't run the optimizer in the tests and check the contents of attribute sets. It would be awesome if attribute sets were a bit more FileCheck friendly, but oh well. I think this is a significant improvement and should remove the semantic need to change what inliner pass we run in order to comply with the requested inlining semantics by relying completely on attributes. It also cleans up tho optnone and related handling a bit. One unfortunate aspect of this is that for generating alwaysinline routines like those in OpenMP we end up removing noinline and then adding alwaysinline. I tried a bunch of other approaches, but because we recompute function attributes from scratch and don't have a declaration here I couldn't find anything substantially cleaner than this. Differential Revision: https://reviews.llvm.org/D28053 llvm-svn: 290398
2016-12-23 09:24:49 +08:00
PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
// Only enable CGProfilePass when using integrated assembler, since
// non-integrated assemblers don't recognize .cgprofile section.
PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
// Loop interleaving in the loop vectorizer has historically been set to be
// enabled when loop unrolling is enabled.
PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops;
PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
if (TM)
TM->adjustPassManager(PMBuilder);
if (CodeGenOpts.DebugInfoForProfiling ||
!CodeGenOpts.SampleProfileFile.empty())
PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
addAddDiscriminatorsPass);
// In ObjC ARC mode, add the main ARC optimization passes.
if (LangOpts.ObjCAutoRefCount) {
PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
addObjCARCExpandPass);
PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
addObjCARCAPElimPass);
PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
addObjCARCOptPass);
}
if (LangOpts.Coroutines)
addCoroutinePassesToExtensionPoints(PMBuilder);
if (!CodeGenOpts.MemoryProfileOutput.empty()) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addMemProfilerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addMemProfilerPasses);
}
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
addBoundsCheckingPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addBoundsCheckingPass);
}
[SanitizerCoverage] Implement user-friendly -fsanitize-coverage= flags. Summary: Possible coverage levels are: * -fsanitize-coverage=func - function-level coverage * -fsanitize-coverage=bb - basic-block-level coverage * -fsanitize-coverage=edge - edge-level coverage Extra features are: * -fsanitize-coverage=indirect-calls - coverage for indirect calls * -fsanitize-coverage=trace-bb - tracing for basic blocks * -fsanitize-coverage=trace-cmp - tracing for cmp instructions * -fsanitize-coverage=8bit-counters - frequency counters Levels and features can be combined in comma-separated list, and can be disabled by subsequent -fno-sanitize-coverage= flags, e.g.: -fsanitize-coverage=bb,trace-bb,8bit-counters -fno-sanitize-coverage=trace-bb is equivalient to: -fsanitize-coverage=bb,8bit-counters Original semantics of -fsanitize-coverage flag is preserved: * -fsanitize-coverage=0 disables the coverage * -fsanitize-coverage=1 is a synonym for -fsanitize-coverage=func * -fsanitize-coverage=2 is a synonym for -fsanitize-coverage=bb * -fsanitize-coverage=3 is a synonym for -fsanitize-coverage=edge * -fsanitize-coverage=4 is a synonym for -fsanitize-coverage=edge,indirect-calls Driver tries to diagnose invalid flag usage, in particular: * At most one level (func,bb,edge) must be specified. * "trace-bb" and "8bit-counters" features require some level to be specified. See test case for more examples. Test Plan: regression test suite Reviewers: kcc Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D9577 llvm-svn: 236790
2015-05-08 06:34:06 +08:00
if (CodeGenOpts.SanitizeCoverageType ||
CodeGenOpts.SanitizeCoverageIndirectCalls ||
CodeGenOpts.SanitizeCoverageTraceCmp) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addSanitizerCoveragePass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addSanitizerCoveragePass);
}
if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addAddressSanitizerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addAddressSanitizerPasses);
}
if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addKernelAddressSanitizerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addKernelAddressSanitizerPasses);
}
if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addHWAddressSanitizerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addHWAddressSanitizerPasses);
}
if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addKernelHWAddressSanitizerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addKernelHWAddressSanitizerPasses);
}
if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addMemorySanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addMemorySanitizerPass);
}
if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addKernelMemorySanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addKernelMemorySanitizerPass);
}
if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addThreadSanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addThreadSanitizerPass);
}
if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addDataFlowSanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addDataFlowSanitizerPass);
}
// Set up the per-function pass manager.
FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
if (CodeGenOpts.VerifyModule)
FPM.add(createVerifierPass());
2011-04-06 02:49:32 +08:00
// Set up the per-module pass manager.
if (!CodeGenOpts.RewriteMapFiles.empty())
addSymbolRewriterPass(CodeGenOpts, &MPM);
// Add UniqueInternalLinkageNames Pass which renames internal linkage symbols
// with unique names.
if (CodeGenOpts.UniqueInternalLinkageNames) {
MPM.add(createUniqueInternalLinkageNamesPass());
}
if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) {
MPM.add(createGCOVProfilerPass(*Options));
if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
MPM.add(createStripSymbolsPass(true));
}
if (Optional<InstrProfOptions> Options =
getInstrProfOptions(CodeGenOpts, LangOpts))
MPM.add(createInstrProfilingLegacyPass(*Options, false));
bool hasIRInstr = false;
if (CodeGenOpts.hasProfileIRInstr()) {
PMBuilder.EnablePGOInstrGen = true;
hasIRInstr = true;
}
if (CodeGenOpts.hasProfileCSIRInstr()) {
assert(!CodeGenOpts.hasProfileCSIRUse() &&
"Cannot have both CSProfileUse pass and CSProfileGen pass at the "
"same time");
assert(!hasIRInstr &&
"Cannot have both ProfileGen pass and CSProfileGen pass at the "
"same time");
PMBuilder.EnablePGOCSInstrGen = true;
hasIRInstr = true;
}
if (hasIRInstr) {
if (!CodeGenOpts.InstrProfileOutput.empty())
PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
else
PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName);
}
if (CodeGenOpts.hasProfileIRUse()) {
PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse();
}
if (!CodeGenOpts.SampleProfileFile.empty())
PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
PMBuilder.populateFunctionPassManager(FPM);
PMBuilder.populateModulePassManager(MPM);
}
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
SmallVector<const char *, 16> BackendArgs;
BackendArgs.push_back("clang"); // Fake program name.
if (!CodeGenOpts.DebugPass.empty()) {
BackendArgs.push_back("-debug-pass");
BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
}
if (!CodeGenOpts.LimitFloatPrecision.empty()) {
BackendArgs.push_back("-limit-float-precision");
BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
}
BackendArgs.push_back(nullptr);
llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
BackendArgs.data());
}
void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
// Create the TargetMachine for generating code.
std::string Error;
std::string Triple = TheModule->getTargetTriple();
const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
if (!TheTarget) {
if (MustCreateTM)
Diags.Report(diag::err_fe_unable_to_create_target) << Error;
return;
}
Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
std::string FeaturesStr =
llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
llvm::TargetOptions Options;
if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts,
HSOpts))
return;
TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
Options, RM, CM, OptLevel));
}
bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
BackendAction Action,
raw_pwrite_stream &OS,
raw_pwrite_stream *DwoOS) {
// Add LibraryInfo.
llvm::Triple TargetTriple(TheModule->getTargetTriple());
std::unique_ptr<TargetLibraryInfoImpl> TLII(
createTLII(TargetTriple, CodeGenOpts));
CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
// Normal mode, emit a .s or .o file by running the code generator. Note,
// this also adds codegenerator level optimization passes.
CodeGenFileType CGFT = getCodeGenFileType(Action);
// Add ObjC ARC final-cleanup optimizations. This is done as part of the
// "codegen" passes so that it isn't run multiple times when there is
// inlining happening.
if (CodeGenOpts.OptimizationLevel > 0)
CodeGenPasses.add(createObjCARCContractPass());
if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
/*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
Diags.Report(diag::err_fe_unable_to_interface_with_target);
return false;
}
return true;
}
void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
std::unique_ptr<raw_pwrite_stream> OS) {
TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
setCommandLineOpts(CodeGenOpts);
bool UsesCodeGen = (Action != Backend_EmitNothing &&
Action != Backend_EmitBC &&
Action != Backend_EmitLL);
CreateTargetMachine(UsesCodeGen);
if (UsesCodeGen && !TM)
return;
if (TM)
TheModule->setDataLayout(TM->createDataLayout());
legacy::PassManager PerModulePasses;
PerModulePasses.add(
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
legacy::FunctionPassManager PerFunctionPasses(TheModule);
PerFunctionPasses.add(
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
CreatePasses(PerModulePasses, PerFunctionPasses);
legacy::PassManager CodeGenPasses;
CodeGenPasses.add(
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
switch (Action) {
case Backend_EmitNothing:
break;
case Backend_EmitBC:
if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
if (!ThinLinkOS)
return;
}
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
CodeGenOpts.EnableSplitLTOUnit);
PerModulePasses.add(createWriteThinLTOBitcodePass(
*OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
} else {
// Emit a module summary by default for Regular LTO except for ld64
// targets
bool EmitLTOSummary =
(CodeGenOpts.PrepareForLTO &&
!CodeGenOpts.DisableLLVMPasses &&
llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
llvm::Triple::Apple);
if (EmitLTOSummary) {
if (!TheModule->getModuleFlag("ThinLTO"))
TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
uint32_t(1));
}
PerModulePasses.add(createBitcodeWriterPass(
*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
}
break;
case Backend_EmitLL:
PerModulePasses.add(
createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
break;
default:
if (!CodeGenOpts.SplitDwarfOutput.empty()) {
DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
if (!DwoOS)
return;
}
if (!AddEmitPasses(CodeGenPasses, Action, *OS,
DwoOS ? &DwoOS->os() : nullptr))
return;
}
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
// Run passes. For now we do all passes at once, but eventually we
// would like to have the option of streaming code generation.
{
PrettyStackTraceString CrashInfo("Per-function optimization");
llvm::TimeTraceScope TimeScope("PerFunctionPasses");
PerFunctionPasses.doInitialization();
for (Function &F : *TheModule)
if (!F.isDeclaration())
PerFunctionPasses.run(F);
PerFunctionPasses.doFinalization();
}
{
PrettyStackTraceString CrashInfo("Per-module optimization passes");
llvm::TimeTraceScope TimeScope("PerModulePasses");
PerModulePasses.run(*TheModule);
}
{
PrettyStackTraceString CrashInfo("Code generation");
llvm::TimeTraceScope TimeScope("CodeGenPasses");
CodeGenPasses.run(*TheModule);
}
if (ThinLinkOS)
ThinLinkOS->keep();
if (DwoOS)
DwoOS->keep();
}
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
switch (Opts.OptimizationLevel) {
default:
llvm_unreachable("Invalid optimization level!");
case 0:
return PassBuilder::OptimizationLevel::O0;
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
case 1:
return PassBuilder::OptimizationLevel::O1;
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
case 2:
switch (Opts.OptimizeSize) {
default:
llvm_unreachable("Invalid optimization level for size!");
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
case 0:
return PassBuilder::OptimizationLevel::O2;
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
case 1:
return PassBuilder::OptimizationLevel::Os;
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
case 2:
return PassBuilder::OptimizationLevel::Oz;
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
}
case 3:
return PassBuilder::OptimizationLevel::O3;
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
}
}
/// A clean version of `EmitAssembly` that uses the new pass manager.
///
/// Not all features are currently supported in this system, but where
/// necessary it falls back to the legacy pass manager to at least provide
/// basic functionality.
///
/// This API is planned to have its functionality finished and then to replace
/// `EmitAssembly` at some point in the future when the default switches.
void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
setCommandLineOpts(CodeGenOpts);
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
bool RequiresCodeGen = (Action != Backend_EmitNothing &&
Action != Backend_EmitBC &&
Action != Backend_EmitLL);
CreateTargetMachine(RequiresCodeGen);
if (RequiresCodeGen && !TM)
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
return;
if (TM)
TheModule->setDataLayout(TM->createDataLayout());
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
Optional<PGOOptions> PGOOpt;
if (CodeGenOpts.hasProfileIRInstr())
// -fprofile-generate.
PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
? std::string(DefaultProfileGenName)
: CodeGenOpts.InstrProfileOutput,
"", "", PGOOptions::IRInstr, PGOOptions::NoCSAction,
CodeGenOpts.DebugInfoForProfiling);
else if (CodeGenOpts.hasProfileIRUse()) {
// -fprofile-use.
auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
: PGOOptions::NoCSAction;
PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse,
CSAction, CodeGenOpts.DebugInfoForProfiling);
} else if (!CodeGenOpts.SampleProfileFile.empty())
// -fprofile-sample-use
PGOOpt = PGOOptions(
CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile,
PGOOptions::SampleUse, PGOOptions::NoCSAction,
CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling);
else if (CodeGenOpts.PseudoProbeForProfiling)
// -fpseudo-probe-for-profiling
PGOOpt =
PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction,
CodeGenOpts.DebugInfoForProfiling, true);
else if (CodeGenOpts.DebugInfoForProfiling)
// -fdebug-info-for-profiling
PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction,
PGOOptions::NoCSAction, true);
// Check to see if we want to generate a CS profile.
if (CodeGenOpts.hasProfileCSIRInstr()) {
assert(!CodeGenOpts.hasProfileCSIRUse() &&
"Cannot have both CSProfileUse pass and CSProfileGen pass at "
"the same time");
if (PGOOpt.hasValue()) {
assert(PGOOpt->Action != PGOOptions::IRInstr &&
PGOOpt->Action != PGOOptions::SampleUse &&
"Cannot run CSProfileGen pass with ProfileGen or SampleUse "
" pass");
PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
? std::string(DefaultProfileGenName)
: CodeGenOpts.InstrProfileOutput;
PGOOpt->CSAction = PGOOptions::CSIRInstr;
} else
PGOOpt = PGOOptions("",
CodeGenOpts.InstrProfileOutput.empty()
? std::string(DefaultProfileGenName)
: CodeGenOpts.InstrProfileOutput,
"", PGOOptions::NoAction, PGOOptions::CSIRInstr,
CodeGenOpts.DebugInfoForProfiling);
}
PipelineTuningOptions PTO;
PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
// For historical reasons, loop interleaving is set to mirror setting for loop
// unrolling.
PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
// Only enable CGProfilePass when using integrated assembler, since
// non-integrated assemblers don't recognize .cgprofile section.
PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
PTO.Coroutines = LangOpts.Coroutines;
PassInstrumentationCallbacks PIC;
StandardInstrumentations SI(CodeGenOpts.DebugPassManager);
SI.registerCallbacks(PIC);
PassBuilder PB(CodeGenOpts.DebugPassManager, TM.get(), PTO, PGOOpt, &PIC);
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
// Attempt to load pass plugins and register their callbacks with PB.
for (auto &PluginFN : CodeGenOpts.PassPlugins) {
auto PassPlugin = PassPlugin::Load(PluginFN);
if (PassPlugin) {
PassPlugin->registerPassBuilderCallbacks(PB);
} else {
Diags.Report(diag::err_fe_unable_to_load_plugin)
<< PluginFN << toString(PassPlugin.takeError());
}
}
#define HANDLE_EXTENSION(Ext) \
get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
#include "llvm/Support/Extension.def"
LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager);
FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager);
CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager);
ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager);
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
// Register the AA manager first so that our version is the one used.
FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
// Register the target library analysis directly and give it a customized
// preset TLI.
Triple TargetTriple(TheModule->getTargetTriple());
std::unique_ptr<TargetLibraryInfoImpl> TLII(
createTLII(TargetTriple, CodeGenOpts));
FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
// Register all the basic analyses with the managers.
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
ModulePassManager MPM(CodeGenOpts.DebugPassManager);
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
if (!CodeGenOpts.DisableLLVMPasses) {
// Map our optimization levels into one of the distinct levels used to
// configure the pipeline.
PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
bool IsLTO = CodeGenOpts.PrepareForLTO;
// If we reached here with a non-empty index file name, then the index
// file was empty and we are not performing ThinLTO backend compilation
// (used in testing in a distributed build environment). Drop any the type
// test assume sequences inserted for whole program vtables so that
// codegen doesn't complain.
if (!CodeGenOpts.ThinLTOIndexFile.empty())
PB.registerPipelineStartEPCallback(
[](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr,
/*ImportSummary=*/nullptr,
/*DropTypeTests=*/true));
});
if (Level != PassBuilder::OptimizationLevel::O0) {
PB.registerPipelineStartEPCallback(
[](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
MPM.addPass(createModuleToFunctionPassAdaptor(
EntryExitInstrumenterPass(/*PostInlining=*/false)));
});
}
// Register callbacks to schedule sanitizer passes at the appropriate part
// of the pipeline.
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
PB.registerScalarOptimizerLateEPCallback(
[](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
FPM.addPass(BoundsCheckingPass());
});
if (CodeGenOpts.SanitizeCoverageType ||
CodeGenOpts.SanitizeCoverageIndirectCalls ||
CodeGenOpts.SanitizeCoverageTraceCmp) {
PB.registerOptimizerLastEPCallback(
[this](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
MPM.addPass(ModuleSanitizerCoveragePass(
SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
CodeGenOpts.SanitizeCoverageBlocklistFiles));
});
}
if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory);
PB.registerOptimizerLastEPCallback(
[TrackOrigins, Recover](ModulePassManager &MPM,
PassBuilder::OptimizationLevel Level) {
MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false}));
MPM.addPass(createModuleToFunctionPassAdaptor(
MemorySanitizerPass({TrackOrigins, Recover, false})));
});
}
if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
PB.registerOptimizerLastEPCallback(
[](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
MPM.addPass(ThreadSanitizerPass());
MPM.addPass(
createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
});
}
auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
if (LangOpts.Sanitize.has(Mask)) {
bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
2019-02-14 09:07:47 +08:00
bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
2019-02-14 09:07:47 +08:00
bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
PB.registerOptimizerLastEPCallback(
[CompileKernel, Recover, UseAfterScope, ModuleUseAfterScope,
UseOdrIndicator](ModulePassManager &MPM,
PassBuilder::OptimizationLevel Level) {
MPM.addPass(
RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
MPM.addPass(ModuleAddressSanitizerPass(CompileKernel, Recover,
ModuleUseAfterScope,
UseOdrIndicator));
MPM.addPass(createModuleToFunctionPassAdaptor(
AddressSanitizerPass(CompileKernel, Recover, UseAfterScope)));
2019-02-14 09:07:47 +08:00
});
}
};
ASanPass(SanitizerKind::Address, false);
ASanPass(SanitizerKind::KernelAddress, true);
auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
if (LangOpts.Sanitize.has(Mask)) {
bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
PB.registerOptimizerLastEPCallback(
[CompileKernel, Recover](ModulePassManager &MPM,
PassBuilder::OptimizationLevel Level) {
MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover));
});
}
};
HWASanPass(SanitizerKind::HWAddress, false);
HWASanPass(SanitizerKind::KernelHWAddress, true);
if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
PB.registerOptimizerLastEPCallback(
[this](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
MPM.addPass(
DataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
});
}
if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts))
PB.registerPipelineStartEPCallback(
[Options](ModulePassManager &MPM,
PassBuilder::OptimizationLevel Level) {
MPM.addPass(GCOVProfilerPass(*Options));
});
if (Optional<InstrProfOptions> Options =
getInstrProfOptions(CodeGenOpts, LangOpts))
PB.registerPipelineStartEPCallback(
[Options](ModulePassManager &MPM,
PassBuilder::OptimizationLevel Level) {
MPM.addPass(InstrProfiling(*Options, false));
});
if (CodeGenOpts.OptimizationLevel == 0) {
MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO);
} else if (IsThinLTO) {
MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level);
} else if (IsLTO) {
MPM = PB.buildLTOPreLinkDefaultPipeline(Level);
} else {
MPM = PB.buildPerModuleDefaultPipeline(Level);
}
// Add UniqueInternalLinkageNames Pass which renames internal linkage
// symbols with unique names.
if (CodeGenOpts.UniqueInternalLinkageNames)
MPM.addPass(UniqueInternalLinkageNamesPass());
if (!CodeGenOpts.MemoryProfileOutput.empty()) {
MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
MPM.addPass(ModuleMemProfilerPass());
}
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
}
// FIXME: We still use the legacy pass manager to do code generation. We
// create that pass manager here and use it as needed below.
legacy::PassManager CodeGenPasses;
bool NeedCodeGen = false;
std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
// Append any output we need to the pass manager.
switch (Action) {
case Backend_EmitNothing:
break;
case Backend_EmitBC:
if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
if (!ThinLinkOS)
return;
}
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
CodeGenOpts.EnableSplitLTOUnit);
MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
: nullptr));
} else {
// Emit a module summary by default for Regular LTO except for ld64
// targets
bool EmitLTOSummary =
(CodeGenOpts.PrepareForLTO &&
!CodeGenOpts.DisableLLVMPasses &&
llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
llvm::Triple::Apple);
if (EmitLTOSummary) {
if (!TheModule->getModuleFlag("ThinLTO"))
TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
uint32_t(1));
}
MPM.addPass(
BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
}
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
break;
case Backend_EmitLL:
MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
break;
case Backend_EmitAssembly:
case Backend_EmitMCNull:
case Backend_EmitObj:
NeedCodeGen = true;
CodeGenPasses.add(
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
if (!CodeGenOpts.SplitDwarfOutput.empty()) {
DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
if (!DwoOS)
return;
}
if (!AddEmitPasses(CodeGenPasses, Action, *OS,
DwoOS ? &DwoOS->os() : nullptr))
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
// FIXME: Should we handle this error differently?
return;
break;
}
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
// Now that we have all of the passes ready, run them.
{
PrettyStackTraceString CrashInfo("Optimizer");
MPM.run(*TheModule, MAM);
}
// Now if needed, run the legacy PM for codegen.
if (NeedCodeGen) {
PrettyStackTraceString CrashInfo("Code generation");
CodeGenPasses.run(*TheModule);
}
if (ThinLinkOS)
ThinLinkOS->keep();
if (DwoOS)
DwoOS->keep();
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
}
static void runThinLTOBackend(
DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M,
const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts,
const clang::TargetOptions &TOpts, const LangOptions &LOpts,
std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile,
std::string ProfileRemapping, BackendAction Action) {
StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
ModuleToDefinedGVSummaries;
CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
setCommandLineOpts(CGOpts);
// We can simply import the values mentioned in the combined index, since
// we should only invoke this using the individual indexes written out
// via a WriteIndexesThinBackend.
FunctionImporter::ImportMapTy ImportList;
std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports;
MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap;
if (!lto::loadReferencedModules(*M, *CombinedIndex, ImportList, ModuleMap,
OwnedImports))
return;
auto AddStream = [&](size_t Task) {
return std::make_unique<lto::NativeObjectStream>(std::move(OS));
};
lto::Config Conf;
if (CGOpts.SaveTempsFilePrefix != "") {
if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
/* UseInputModulePath */ false)) {
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
<< '\n';
});
}
}
Conf.CPU = TOpts.CPU;
Conf.CodeModel = getCodeModel(CGOpts);
Conf.MAttrs = TOpts.Features;
Conf.RelocModel = CGOpts.RelocationModel;
Conf.CGOptLevel = getCGOptLevel(CGOpts);
Conf.OptLevel = CGOpts.OptimizationLevel;
initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
Conf.SampleProfile = std::move(SampleProfile);
Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
// For historical reasons, loop interleaving is set to mirror setting for loop
// unrolling.
Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
// Only enable CGProfilePass when using integrated assembler, since
// non-integrated assemblers don't recognize .cgprofile section.
Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
// Context sensitive profile.
if (CGOpts.hasProfileCSIRInstr()) {
Conf.RunCSIRInstr = true;
Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
} else if (CGOpts.hasProfileCSIRUse()) {
Conf.RunCSIRInstr = false;
Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
}
Conf.ProfileRemapping = std::move(ProfileRemapping);
Conf.UseNewPM = CGOpts.ExperimentalNewPassManager;
Conf.DebugPassManager = CGOpts.DebugPassManager;
Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
Conf.RemarksFilename = CGOpts.OptRecordFile;
Conf.RemarksPasses = CGOpts.OptRecordPasses;
Conf.RemarksFormat = CGOpts.OptRecordFormat;
Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
switch (Action) {
case Backend_EmitNothing:
Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
return false;
};
break;
case Backend_EmitLL:
Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
return false;
};
break;
case Backend_EmitBC:
Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
return false;
};
break;
default:
Conf.CGFileType = getCodeGenFileType(Action);
break;
}
if (Error E =
thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
ModuleToDefinedGVSummaries[M->getModuleIdentifier()],
ModuleMap, CGOpts.CmdArgs)) {
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
});
}
}
void clang::EmitBackendOutput(DiagnosticsEngine &Diags,
const HeaderSearchOptions &HeaderOpts,
const CodeGenOptions &CGOpts,
const clang::TargetOptions &TOpts,
const LangOptions &LOpts,
const llvm::DataLayout &TDesc, Module *M,
BackendAction Action,
std::unique_ptr<raw_pwrite_stream> OS) {
llvm::TimeTraceScope TimeScope("Backend");
std::unique_ptr<llvm::Module> EmptyModule;
if (!CGOpts.ThinLTOIndexFile.empty()) {
// If we are performing a ThinLTO importing compile, load the function index
// into memory and pass it into runThinLTOBackend, which will run the
// function importer and invoke LTO passes.
Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr =
llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
/*IgnoreEmptyThinLTOIndexFile*/true);
if (!IndexOrErr) {
logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
"Error loading index file '" +
CGOpts.ThinLTOIndexFile + "': ");
return;
}
std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
// A null CombinedIndex means we should skip ThinLTO compilation
// (LLVM will optionally ignore empty index files, returning null instead
// of an error).
if (CombinedIndex) {
if (!CombinedIndex->skipModuleByDistributedBackend()) {
runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts,
TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile,
CGOpts.ProfileRemappingFile, Action);
return;
}
// Distributed indexing detected that nothing from the module is needed
// for the final linking. So we can skip the compilation. We sill need to
// output an empty object file to make sure that a linker does not fail
// trying to read it. Also for some features, like CFI, we must skip
// the compilation as CombinedIndex does not contain all required
// information.
EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext());
EmptyModule->setTargetTriple(M->getTargetTriple());
M = EmptyModule.get();
}
}
EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
[PM] Introduce options to enable the (still experimental) new pass manager, and a code path to use it. The option is actually a top-level option but does contain 'experimental' in the name. This is the compromise suggested by Richard in discussions. We expect this option will be around long enough and have enough users towards the end that it merits not being relegated to CC1, but it still needs to be clear that this option will go away at some point. The backend code is a fresh codepath dedicated to handling the flow with the new pass manager. This was also Richard's suggested code structuring to essentially leave a clean path for development rather than carrying complexity or idiosyncracies of how we do things just to share code with the parts of this in common with the legacy pass manager. And it turns out, not much is really in common even though we use the legacy pass manager for codegen at this point. I've switched a couple of tests to run with the new pass manager, and they appear to work. There are still plenty of bugs that need squashing (just with basic experiments I've found two already!) but they aren't in this code, and the whole point is to expose the necessary hooks to start experimenting with the pass manager in more realistic scenarios. That said, I want to *strongly caution* anyone itching to play with this: it is still *very shaky*. Several large components have not yet been shaken down. For example I have bugs in both the always inliner and inliner that I have already spotted and will be fixing independently. Still, this is a fun milestone. =D One thing not in this patch (but that might be very reasonable to add) is some level of support for raw textual pass pipelines such as what Sean had a patch for some time ago. I'm mostly interested in the more traditional flow of getting the IR out of Clang and then running it through opt, but I can see other use cases so someone may want to add it. And of course, *many* features are not yet supported! - O1 is currently more like O2 - None of the sanitizers are wired up - ObjC ARC optimizer isn't wired up - ... So plenty of stuff still lef to do! Differential Revision: https://reviews.llvm.org/D28077 llvm-svn: 290450
2016-12-24 04:44:01 +08:00
if (CGOpts.ExperimentalNewPassManager)
AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
else
AsmHelper.EmitAssembly(Action, std::move(OS));
// Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
// DataLayout.
if (AsmHelper.TM) {
std::string DLDesc = M->getDataLayout().getStringRepresentation();
if (DLDesc != TDesc.getStringRepresentation()) {
unsigned DiagID = Diags.getCustomDiagID(
DiagnosticsEngine::Error, "backend data layout '%0' does not match "
"expected target description '%1'");
Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation();
}
}
}
// With -fembed-bitcode, save a copy of the llvm IR as data in the
// __LLVM,__bitcode section.
void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
llvm::MemoryBufferRef Buf) {
if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
return;
llvm::EmbedBitcodeInModule(
*M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
CGOpts.CmdArgs);
}