llvm-project/llvm/test/Transforms/LoopReroll/basic.ll

582 lines
20 KiB
LLVM
Raw Normal View History

Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; RUN: opt < %s -loop-reroll -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
; int foo(int a);
; void bar(int *x) {
; for (int i = 0; i < 500; i += 3) {
; foo(i);
; foo(i+1);
; foo(i+2);
; }
; }
; Function Attrs: nounwind uwtable
define void @bar(i32* nocapture readnone %x) #0 {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%i.08 = phi i32 [ 0, %entry ], [ %add3, %for.body ]
%call = tail call i32 @foo(i32 %i.08) #1
%add = add nsw i32 %i.08, 1
%call1 = tail call i32 @foo(i32 %add) #1
%add2 = add nsw i32 %i.08, 2
%call3 = tail call i32 @foo(i32 %add2) #1
%add3 = add nsw i32 %i.08, 3
%exitcond = icmp sge i32 %add3, 500
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
br i1 %exitcond, label %for.end, label %for.body
; CHECK-LABEL: @bar
; CHECK: for.body:
; CHECK: %indvar = phi i32 [ %indvar.next, %for.body ], [ 0, %entry ]
; CHECK: %call = tail call i32 @foo(i32 %indvar) #1
; CHECK: %indvar.next = add i32 %indvar, 1
; CHECK: %exitcond1 = icmp eq i32 %indvar, 500
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: br i1 %exitcond1, label %for.end, label %for.body
; CHECK: ret
for.end: ; preds = %for.body
ret void
}
declare i32 @foo(i32)
; void hi1(int *x) {
; for (int i = 0; i < 1500; i += 3) {
; x[i] = foo(0);
; x[i+1] = foo(0);
; x[i+2] = foo(0);
; }
; }
; Function Attrs: nounwind uwtable
define void @hi1(i32* nocapture %x) #0 {
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%call = tail call i32 @foo(i32 0) #1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx = getelementptr inbounds i32, i32* %x, i64 %indvars.iv
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
store i32 %call, i32* %arrayidx, align 4
%call1 = tail call i32 @foo(i32 0) #1
%0 = add nsw i64 %indvars.iv, 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx3 = getelementptr inbounds i32, i32* %x, i64 %0
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
store i32 %call1, i32* %arrayidx3, align 4
%call4 = tail call i32 @foo(i32 0) #1
%1 = add nsw i64 %indvars.iv, 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx7 = getelementptr inbounds i32, i32* %x, i64 %1
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
store i32 %call4, i32* %arrayidx7, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 3
%2 = trunc i64 %indvars.iv.next to i32
%cmp = icmp slt i32 %2, 1500
br i1 %cmp, label %for.body, label %for.end
; CHECK-LABEL: @hi1
; CHECK: for.body:
; CHECK: %indvar = phi i64 [ %indvar.next, %for.body ], [ 0, %entry ]
; CHECK: %call = tail call i32 @foo(i32 0) #1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx = getelementptr inbounds i32, i32* %x, i64 %indvar
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: store i32 %call, i32* %arrayidx, align 4
; CHECK: %indvar.next = add i64 %indvar, 1
; CHECK: %exitcond = icmp eq i64 %indvar, 1499
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: br i1 %exitcond, label %for.end, label %for.body
; CHECK: ret
for.end: ; preds = %for.body
ret void
}
; void hi2(int *x) {
; for (int i = 0; i < 500; ++i) {
; x[3*i] = foo(0);
; x[3*i+1] = foo(0);
; x[3*i+2] = foo(0);
; }
; }
; Function Attrs: nounwind uwtable
define void @hi2(i32* nocapture %x) #0 {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%call = tail call i32 @foo(i32 0) #1
%0 = mul nsw i64 %indvars.iv, 3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx = getelementptr inbounds i32, i32* %x, i64 %0
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
store i32 %call, i32* %arrayidx, align 4
%call1 = tail call i32 @foo(i32 0) #1
%1 = add nsw i64 %0, 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx4 = getelementptr inbounds i32, i32* %x, i64 %1
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
store i32 %call1, i32* %arrayidx4, align 4
%call5 = tail call i32 @foo(i32 0) #1
%2 = add nsw i64 %0, 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx9 = getelementptr inbounds i32, i32* %x, i64 %2
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
store i32 %call5, i32* %arrayidx9, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 500
br i1 %exitcond, label %for.end, label %for.body
; CHECK-LABEL: @hi2
; CHECK: for.body:
; CHECK: %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
; CHECK: %call = tail call i32 @foo(i32 0) #1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx = getelementptr inbounds i32, i32* %x, i64 %indvars.iv
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: store i32 %call, i32* %arrayidx, align 4
; CHECK: %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
; CHECK: %exitcond1 = icmp eq i64 %indvars.iv, 1499
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: br i1 %exitcond1, label %for.end, label %for.body
; CHECK: ret
for.end: ; preds = %for.body
ret void
}
; void goo(float alpha, float *a, float *b) {
; for (int i = 0; i < 3200; i += 5) {
; a[i] += alpha * b[i];
; a[i + 1] += alpha * b[i + 1];
; a[i + 2] += alpha * b[i + 2];
; a[i + 3] += alpha * b[i + 3];
; a[i + 4] += alpha * b[i + 4];
; }
; }
; Function Attrs: nounwind uwtable
define void @goo(float %alpha, float* nocapture %a, float* nocapture readonly %b) #0 {
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx = getelementptr inbounds float, float* %b, i64 %indvars.iv
%0 = load float, float* %arrayidx, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%mul = fmul float %0, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx2 = getelementptr inbounds float, float* %a, i64 %indvars.iv
%1 = load float, float* %arrayidx2, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%add = fadd float %1, %mul
store float %add, float* %arrayidx2, align 4
%2 = add nsw i64 %indvars.iv, 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx5 = getelementptr inbounds float, float* %b, i64 %2
%3 = load float, float* %arrayidx5, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%mul6 = fmul float %3, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx9 = getelementptr inbounds float, float* %a, i64 %2
%4 = load float, float* %arrayidx9, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%add10 = fadd float %4, %mul6
store float %add10, float* %arrayidx9, align 4
%5 = add nsw i64 %indvars.iv, 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx13 = getelementptr inbounds float, float* %b, i64 %5
%6 = load float, float* %arrayidx13, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%mul14 = fmul float %6, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx17 = getelementptr inbounds float, float* %a, i64 %5
%7 = load float, float* %arrayidx17, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%add18 = fadd float %7, %mul14
store float %add18, float* %arrayidx17, align 4
%8 = add nsw i64 %indvars.iv, 3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx21 = getelementptr inbounds float, float* %b, i64 %8
%9 = load float, float* %arrayidx21, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%mul22 = fmul float %9, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx25 = getelementptr inbounds float, float* %a, i64 %8
%10 = load float, float* %arrayidx25, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%add26 = fadd float %10, %mul22
store float %add26, float* %arrayidx25, align 4
%11 = add nsw i64 %indvars.iv, 4
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx29 = getelementptr inbounds float, float* %b, i64 %11
%12 = load float, float* %arrayidx29, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%mul30 = fmul float %12, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx33 = getelementptr inbounds float, float* %a, i64 %11
%13 = load float, float* %arrayidx33, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%add34 = fadd float %13, %mul30
store float %add34, float* %arrayidx33, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 5
%14 = trunc i64 %indvars.iv.next to i32
%cmp = icmp slt i32 %14, 3200
br i1 %cmp, label %for.body, label %for.end
; CHECK-LABEL: @goo
; CHECK: for.body:
; CHECK: %indvar = phi i64 [ %indvar.next, %for.body ], [ 0, %entry ]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx = getelementptr inbounds float, float* %b, i64 %indvar
; CHECK: %0 = load float, float* %arrayidx, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: %mul = fmul float %0, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx2 = getelementptr inbounds float, float* %a, i64 %indvar
; CHECK: %1 = load float, float* %arrayidx2, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: %add = fadd float %1, %mul
; CHECK: store float %add, float* %arrayidx2, align 4
; CHECK: %indvar.next = add i64 %indvar, 1
; CHECK: %exitcond = icmp eq i64 %indvar, 3199
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: br i1 %exitcond, label %for.end, label %for.body
; CHECK: ret
for.end: ; preds = %for.body
ret void
}
; void hoo(float alpha, float *a, float *b, int *ip) {
; for (int i = 0; i < 3200; i += 5) {
; a[i] += alpha * b[ip[i]];
; a[i + 1] += alpha * b[ip[i + 1]];
; a[i + 2] += alpha * b[ip[i + 2]];
; a[i + 3] += alpha * b[ip[i + 3]];
; a[i + 4] += alpha * b[ip[i + 4]];
; }
; }
; Function Attrs: nounwind uwtable
define void @hoo(float %alpha, float* nocapture %a, float* nocapture readonly %b, i32* nocapture readonly %ip) #0 {
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx = getelementptr inbounds i32, i32* %ip, i64 %indvars.iv
%0 = load i32, i32* %arrayidx, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%idxprom1 = sext i32 %0 to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx2 = getelementptr inbounds float, float* %b, i64 %idxprom1
%1 = load float, float* %arrayidx2, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%mul = fmul float %1, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx4 = getelementptr inbounds float, float* %a, i64 %indvars.iv
%2 = load float, float* %arrayidx4, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%add = fadd float %2, %mul
store float %add, float* %arrayidx4, align 4
%3 = add nsw i64 %indvars.iv, 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx7 = getelementptr inbounds i32, i32* %ip, i64 %3
%4 = load i32, i32* %arrayidx7, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%idxprom8 = sext i32 %4 to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx9 = getelementptr inbounds float, float* %b, i64 %idxprom8
%5 = load float, float* %arrayidx9, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%mul10 = fmul float %5, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx13 = getelementptr inbounds float, float* %a, i64 %3
%6 = load float, float* %arrayidx13, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%add14 = fadd float %6, %mul10
store float %add14, float* %arrayidx13, align 4
%7 = add nsw i64 %indvars.iv, 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx17 = getelementptr inbounds i32, i32* %ip, i64 %7
%8 = load i32, i32* %arrayidx17, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%idxprom18 = sext i32 %8 to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx19 = getelementptr inbounds float, float* %b, i64 %idxprom18
%9 = load float, float* %arrayidx19, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%mul20 = fmul float %9, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx23 = getelementptr inbounds float, float* %a, i64 %7
%10 = load float, float* %arrayidx23, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%add24 = fadd float %10, %mul20
store float %add24, float* %arrayidx23, align 4
%11 = add nsw i64 %indvars.iv, 3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx27 = getelementptr inbounds i32, i32* %ip, i64 %11
%12 = load i32, i32* %arrayidx27, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%idxprom28 = sext i32 %12 to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx29 = getelementptr inbounds float, float* %b, i64 %idxprom28
%13 = load float, float* %arrayidx29, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%mul30 = fmul float %13, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx33 = getelementptr inbounds float, float* %a, i64 %11
%14 = load float, float* %arrayidx33, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%add34 = fadd float %14, %mul30
store float %add34, float* %arrayidx33, align 4
%15 = add nsw i64 %indvars.iv, 4
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx37 = getelementptr inbounds i32, i32* %ip, i64 %15
%16 = load i32, i32* %arrayidx37, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%idxprom38 = sext i32 %16 to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx39 = getelementptr inbounds float, float* %b, i64 %idxprom38
%17 = load float, float* %arrayidx39, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%mul40 = fmul float %17, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx43 = getelementptr inbounds float, float* %a, i64 %15
%18 = load float, float* %arrayidx43, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
%add44 = fadd float %18, %mul40
store float %add44, float* %arrayidx43, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 5
%19 = trunc i64 %indvars.iv.next to i32
%cmp = icmp slt i32 %19, 3200
br i1 %cmp, label %for.body, label %for.end
; CHECK-LABEL: @hoo
; CHECK: for.body:
; CHECK: %indvar = phi i64 [ %indvar.next, %for.body ], [ 0, %entry ]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx = getelementptr inbounds i32, i32* %ip, i64 %indvar
; CHECK: %0 = load i32, i32* %arrayidx, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: %idxprom1 = sext i32 %0 to i64
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx2 = getelementptr inbounds float, float* %b, i64 %idxprom1
; CHECK: %1 = load float, float* %arrayidx2, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: %mul = fmul float %1, %alpha
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx4 = getelementptr inbounds float, float* %a, i64 %indvar
; CHECK: %2 = load float, float* %arrayidx4, align 4
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: %add = fadd float %2, %mul
; CHECK: store float %add, float* %arrayidx4, align 4
; CHECK: %indvar.next = add i64 %indvar, 1
; CHECK: %exitcond = icmp eq i64 %indvar, 3199
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
; CHECK: br i1 %exitcond, label %for.end, label %for.body
; CHECK: ret
for.end: ; preds = %for.body
ret void
}
; void multi1(int *x) {
; y = foo(0)
; for (int i = 0; i < 500; ++i) {
; x[3*i] = y;
; x[3*i+1] = y;
; x[3*i+2] = y;
; x[3*i+6] = y;
; x[3*i+7] = y;
; x[3*i+8] = y;
; }
; }
; Function Attrs: nounwind uwtable
define void @multi1(i32* nocapture %x) #0 {
entry:
%call = tail call i32 @foo(i32 0) #1
br label %for.body
for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%0 = mul nsw i64 %indvars.iv, 3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx = getelementptr inbounds i32, i32* %x, i64 %0
store i32 %call, i32* %arrayidx, align 4
%1 = add nsw i64 %0, 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx4 = getelementptr inbounds i32, i32* %x, i64 %1
store i32 %call, i32* %arrayidx4, align 4
%2 = add nsw i64 %0, 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx9 = getelementptr inbounds i32, i32* %x, i64 %2
store i32 %call, i32* %arrayidx9, align 4
%3 = add nsw i64 %0, 6
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx6 = getelementptr inbounds i32, i32* %x, i64 %3
store i32 %call, i32* %arrayidx6, align 4
%4 = add nsw i64 %0, 7
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx7 = getelementptr inbounds i32, i32* %x, i64 %4
store i32 %call, i32* %arrayidx7, align 4
%5 = add nsw i64 %0, 8
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx8 = getelementptr inbounds i32, i32* %x, i64 %5
store i32 %call, i32* %arrayidx8, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 500
br i1 %exitcond, label %for.end, label %for.body
; CHECK-LABEL: @multi1
; CHECK:for.body:
; CHECK: %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
; CHECK: %0 = add i64 %indvars.iv, 6
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx = getelementptr inbounds i32, i32* %x, i64 %indvars.iv
; CHECK: store i32 %call, i32* %arrayidx, align 4
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx6 = getelementptr inbounds i32, i32* %x, i64 %0
; CHECK: store i32 %call, i32* %arrayidx6, align 4
; CHECK: %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
; CHECK: %exitcond2 = icmp eq i64 %0, 1505
; CHECK: br i1 %exitcond2, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; void multi2(int *x) {
; y = foo(0)
; for (int i = 0; i < 500; ++i) {
; x[3*i] = y;
; x[3*i+1] = y;
; x[3*i+2] = y;
; x[3*(i+1)] = y;
; x[3*(i+1)+1] = y;
; x[3*(i+1)+2] = y;
; }
; }
; Function Attrs: nounwind uwtable
define void @multi2(i32* nocapture %x) #0 {
entry:
%call = tail call i32 @foo(i32 0) #1
br label %for.body
for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%0 = mul nsw i64 %indvars.iv, 3
%add = add nsw i64 %indvars.iv, 1
%newmul = mul nsw i64 %add, 3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx = getelementptr inbounds i32, i32* %x, i64 %0
store i32 %call, i32* %arrayidx, align 4
%1 = add nsw i64 %0, 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx4 = getelementptr inbounds i32, i32* %x, i64 %1
store i32 %call, i32* %arrayidx4, align 4
%2 = add nsw i64 %0, 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx9 = getelementptr inbounds i32, i32* %x, i64 %2
store i32 %call, i32* %arrayidx9, align 4
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx6 = getelementptr inbounds i32, i32* %x, i64 %newmul
store i32 %call, i32* %arrayidx6, align 4
%3 = add nsw i64 %newmul, 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx7 = getelementptr inbounds i32, i32* %x, i64 %3
store i32 %call, i32* %arrayidx7, align 4
%4 = add nsw i64 %newmul, 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx8 = getelementptr inbounds i32, i32* %x, i64 %4
store i32 %call, i32* %arrayidx8, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 500
br i1 %exitcond, label %for.end, label %for.body
; CHECK-LABEL: @multi2
; CHECK:for.body:
; CHECK: %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
; CHECK: %0 = add i64 %indvars.iv, 3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx = getelementptr inbounds i32, i32* %x, i64 %indvars.iv
; CHECK: store i32 %call, i32* %arrayidx, align 4
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx6 = getelementptr inbounds i32, i32* %x, i64 %0
; CHECK: store i32 %call, i32* %arrayidx6, align 4
; CHECK: %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
; CHECK: %exitcond2 = icmp eq i64 %indvars.iv, 1499
; CHECK: br i1 %exitcond2, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; void multi3(int *x) {
; y = foo(0)
; for (int i = 0; i < 500; ++i) {
; // Note: No zero index
; x[3*i+3] = y;
; x[3*i+4] = y;
; x[3*i+5] = y;
; }
; }
; Function Attrs: nounwind uwtable
define void @multi3(i32* nocapture %x) #0 {
entry:
%call = tail call i32 @foo(i32 0) #1
br label %for.body
for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%0 = mul nsw i64 %indvars.iv, 3
%x0 = add nsw i64 %0, 3
%add = add nsw i64 %indvars.iv, 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx = getelementptr inbounds i32, i32* %x, i64 %x0
store i32 %call, i32* %arrayidx, align 4
%1 = add nsw i64 %0, 4
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx4 = getelementptr inbounds i32, i32* %x, i64 %1
store i32 %call, i32* %arrayidx4, align 4
%2 = add nsw i64 %0, 5
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx9 = getelementptr inbounds i32, i32* %x, i64 %2
store i32 %call, i32* %arrayidx9, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 500
br i1 %exitcond, label %for.end, label %for.body
; CHECK-LABEL: @multi3
; CHECK: for.body:
; CHECK: %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
; CHECK: %0 = add i64 %indvars.iv, 3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %arrayidx = getelementptr inbounds i32, i32* %x, i64 %0
; CHECK: store i32 %call, i32* %arrayidx, align 4
; CHECK: %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
; CHECK: %exitcond1 = icmp eq i64 %0, 1502
; CHECK: br i1 %exitcond1, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; int foo(int a);
; void bar2(int *x, int y, int z) {
; for (int i = 0; i < 500; i += 3) {
; foo(i+y+i*z); // Slightly reordered instruction order
; foo(i+1+y+(i+1)*z);
; foo(i+2+y+(i+2)*z);
; }
; }
; Function Attrs: nounwind uwtable
define void @bar2(i32* nocapture readnone %x, i32 %y, i32 %z) #0 {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%i.08 = phi i32 [ 0, %entry ], [ %add3, %for.body ]
%tmp1 = add i32 %i.08, %y
%tmp2 = mul i32 %i.08, %z
%tmp3 = add i32 %tmp2, %tmp1
%call = tail call i32 @foo(i32 %tmp3) #1
%add = add nsw i32 %i.08, 1
%tmp2a = mul i32 %add, %z
%tmp1a = add i32 %add, %y
%tmp3a = add i32 %tmp2a, %tmp1a
%calla = tail call i32 @foo(i32 %tmp3a) #1
%add2 = add nsw i32 %i.08, 2
%tmp2b = mul i32 %add2, %z
%tmp1b = add i32 %add2, %y
%tmp3b = add i32 %tmp2b, %tmp1b
%callb = tail call i32 @foo(i32 %tmp3b) #1
%add3 = add nsw i32 %i.08, 3
%exitcond = icmp sge i32 %add3, 500
br i1 %exitcond, label %for.end, label %for.body
; CHECK-LABEL: @bar2
; CHECK: for.body:
; CHECK: %indvar = phi i32 [ %indvar.next, %for.body ], [ 0, %entry ]
; CHECK: %tmp1 = add i32 %indvar, %y
; CHECK: %tmp2 = mul i32 %indvar, %z
; CHECK: %tmp3 = add i32 %tmp2, %tmp1
; CHECK: %call = tail call i32 @foo(i32 %tmp3) #1
; CHECK: %indvar.next = add i32 %indvar, 1
; CHECK: %exitcond1 = icmp eq i32 %indvar, 500
; CHECK: br i1 %exitcond1, label %for.end, label %for.body
; CHECK: ret
for.end: ; preds = %for.body
ret void
}
%struct.s = type { i32, i32 }
; Function Attrs: nounwind uwtable
define void @gep1(%struct.s* nocapture %x) #0 {
entry:
%call = tail call i32 @foo(i32 0) #1
br label %for.body
for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%0 = mul nsw i64 %indvars.iv, 3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx = getelementptr inbounds %struct.s, %struct.s* %x, i64 %0, i32 0
store i32 %call, i32* %arrayidx, align 4
%1 = add nsw i64 %0, 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx4 = getelementptr inbounds %struct.s, %struct.s* %x, i64 %1, i32 0
store i32 %call, i32* %arrayidx4, align 4
%2 = add nsw i64 %0, 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%arrayidx9 = getelementptr inbounds %struct.s, %struct.s* %x, i64 %2, i32 0
store i32 %call, i32* %arrayidx9, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 500
br i1 %exitcond, label %for.end, label %for.body
; CHECK-LABEL: @gep1
; This test is a crash test only.
; CHECK: ret
for.end: ; preds = %for.body
ret void
}
Add a loop rerolling pass This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The transformation aims to take loops like this: for (int i = 0; i < 3200; i += 5) { a[i] += alpha * b[i]; a[i + 1] += alpha * b[i + 1]; a[i + 2] += alpha * b[i + 2]; a[i + 3] += alpha * b[i + 3]; a[i + 4] += alpha * b[i + 4]; } and turn them into this: for (int i = 0; i < 3200; ++i) { a[i] += alpha * b[i]; } and loops like this: for (int i = 0; i < 500; ++i) { x[3*i] = foo(0); x[3*i+1] = foo(0); x[3*i+2] = foo(0); } and turn them into this: for (int i = 0; i < 1500; ++i) { x[i] = foo(0); } There are two motivations for this transformation: 1. Code-size reduction (especially relevant, obviously, when compiling for code size). 2. Providing greater choice to the loop vectorizer (and generic unroller) to choose the unrolling factor (and a better ability to vectorize). The loop vectorizer can take vector lengths and register pressure into account when choosing an unrolling factor, for example, and a pre-unrolled loop limits that choice. This is especially problematic if the manual unrolling was optimized for a machine different from the current target. The current implementation is limited to single basic-block loops only. The rerolling recognition should work regardless of how the loop iterations are intermixed within the loop body (subject to dependency and side-effect constraints), but the significant restriction is that the order of the instructions in each iteration must be identical. This seems sufficient to capture all current use cases. This pass is not currently enabled by default at any optimization level. llvm-svn: 194939
2013-11-17 07:59:05 +08:00
attributes #0 = { nounwind uwtable }
attributes #1 = { nounwind }