llvm-project/lldb/source/Core/ArchSpec.cpp

1546 lines
63 KiB
C++
Raw Normal View History

//===-- ArchSpec.cpp --------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ArchSpec.h"
#include <stdio.h>
#include <errno.h>
#include <string>
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Host.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/StringList.h"
#include "lldb/Host/Endian.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Target/Platform.h"
Handle thumb IT instructions correctly all the time. The issue with Thumb IT (if/then) instructions is the IT instruction preceeds up to four instructions that are made conditional. If a breakpoint is placed on one of the conditional instructions, the instruction either needs to match the thumb opcode size (2 or 4 bytes) or a BKPT instruction needs to be used as these are always unconditional (even in a IT instruction). If BKPT instructions are used, then we might end up stopping on an instruction that won't get executed. So if we do stop at a BKPT instruction, we need to continue if the condition is not true. When using the BKPT isntructions are easy in that you don't need to detect the size of the breakpoint that needs to be used when setting a breakpoint even in a thumb IT instruction. The bad part is you will now always stop at the opcode location and let LLDB determine if it should auto-continue. If the BKPT instruction is used, the BKPT that is used for ARM code should be something that also triggers the BKPT instruction in Thumb in case you set a breakpoint in the middle of code and the code is actually Thumb code. A value of 0xE120BE70 will work since the lower 16 bits being 0xBE70 happens to be a Thumb BKPT instruction. The alternative is to use trap or illegal instructions that the kernel will translate into breakpoint hits. On Mac this was 0xE7FFDEFE for ARM and 0xDEFE for Thumb. The darwin kernel currently doesn't recognize any 32 bit Thumb instruction as a instruction that will get turned into a breakpoint exception (EXC_BREAKPOINT), so we had to use the BKPT instruction on Mac. The linux kernel recognizes a 16 and a 32 bit instruction as valid thumb breakpoint opcodes. The benefit of using 16 or 32 bit instructions is you don't stop on opcodes in a IT block when the condition doesn't match. To further complicate things, single stepping on ARM is often implemented by modifying the BCR/BVR registers and setting the processor to stop when the PC is not equal to the current value. This means single stepping is another way the ARM target can stop on instructions that won't get executed. This patch does the following: 1 - Fix the internal debugserver for Apple to use the BKPT instruction for ARM and Thumb 2 - Fix LLDB to catch when we stop in the middle of a Thumb IT instruction and continue if we stop at an instruction that won't execute 3 - Fixes this in a way that will work for any target on any platform as long as it is ARM/Thumb 4 - Adds a patch for ignoring conditions that don't match when in ARM mode (see below) This patch also provides the code that implements the same thing for ARM instructions, though it is disabled for now. The ARM patch will check the condition of the instruction in ARM mode and continue if the condition isn't true (and therefore the instruction would not be executed). Again, this is not enable, but the code for it has been added. <rdar://problem/19145455> llvm-svn: 223851
2014-12-10 07:31:02 +08:00
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/NameMatches.h"
#include "lldb/Utility/SafeMachO.h"
Handle thumb IT instructions correctly all the time. The issue with Thumb IT (if/then) instructions is the IT instruction preceeds up to four instructions that are made conditional. If a breakpoint is placed on one of the conditional instructions, the instruction either needs to match the thumb opcode size (2 or 4 bytes) or a BKPT instruction needs to be used as these are always unconditional (even in a IT instruction). If BKPT instructions are used, then we might end up stopping on an instruction that won't get executed. So if we do stop at a BKPT instruction, we need to continue if the condition is not true. When using the BKPT isntructions are easy in that you don't need to detect the size of the breakpoint that needs to be used when setting a breakpoint even in a thumb IT instruction. The bad part is you will now always stop at the opcode location and let LLDB determine if it should auto-continue. If the BKPT instruction is used, the BKPT that is used for ARM code should be something that also triggers the BKPT instruction in Thumb in case you set a breakpoint in the middle of code and the code is actually Thumb code. A value of 0xE120BE70 will work since the lower 16 bits being 0xBE70 happens to be a Thumb BKPT instruction. The alternative is to use trap or illegal instructions that the kernel will translate into breakpoint hits. On Mac this was 0xE7FFDEFE for ARM and 0xDEFE for Thumb. The darwin kernel currently doesn't recognize any 32 bit Thumb instruction as a instruction that will get turned into a breakpoint exception (EXC_BREAKPOINT), so we had to use the BKPT instruction on Mac. The linux kernel recognizes a 16 and a 32 bit instruction as valid thumb breakpoint opcodes. The benefit of using 16 or 32 bit instructions is you don't stop on opcodes in a IT block when the condition doesn't match. To further complicate things, single stepping on ARM is often implemented by modifying the BCR/BVR registers and setting the processor to stop when the PC is not equal to the current value. This means single stepping is another way the ARM target can stop on instructions that won't get executed. This patch does the following: 1 - Fix the internal debugserver for Apple to use the BKPT instruction for ARM and Thumb 2 - Fix LLDB to catch when we stop in the middle of a Thumb IT instruction and continue if we stop at an instruction that won't execute 3 - Fixes this in a way that will work for any target on any platform as long as it is ARM/Thumb 4 - Adds a patch for ignoring conditions that don't match when in ARM mode (see below) This patch also provides the code that implements the same thing for ARM instructions, though it is disabled for now. The ARM patch will check the condition of the instruction in ARM mode and continue if the condition isn't true (and therefore the instruction would not be executed). Again, this is not enable, but the code for it has been added. <rdar://problem/19145455> llvm-svn: 223851
2014-12-10 07:31:02 +08:00
#include "Plugins/Process/Utility/ARMDefines.h"
#include "Plugins/Process/Utility/InstructionUtils.h"
using namespace lldb;
using namespace lldb_private;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
#define ARCH_SPEC_SEPARATOR_CHAR '-'
static bool cores_match (const ArchSpec::Core core1, const ArchSpec::Core core2, bool try_inverse, bool enforce_exact_match);
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
namespace lldb_private {
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
struct CoreDefinition
{
ByteOrder default_byte_order;
uint32_t addr_byte_size;
Added the ability to get the min and max instruction byte size for an architecture into ArchSpec: uint32_t ArchSpec::GetMinimumOpcodeByteSize() const; uint32_t ArchSpec::GetMaximumOpcodeByteSize() const; Added an AddressClass to the Instruction class in Disassembler.h. This allows decoded instructions to know know if they are code, code with alternate ISA (thumb), or even data which can be mixed into code. The instruction does have an address, but it is a good idea to cache this value so we don't have to look it up more than once. Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't getting set. Changed: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc); To: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc, bool merge_symbol_into_function); This function was typically being used when looking up functions and symbols. Now if you lookup a function, then find the symbol, they can be merged into the same symbol context and not cause multiple symbol contexts to appear in a symbol context list that describes the same function. Fixed the SymbolContext not equal operator which was causing mixed mode disassembly to not work ("disassembler --mixed --name main"). Modified the disassembler classes to know about the fact we know, for a given architecture, what the min and max opcode byte sizes are. The InstructionList class was modified to return the max opcode byte size for all of the instructions in its list. These two fixes means when disassemble a list of instructions and dump them and show the opcode bytes, we can format the output more intelligently when showing opcode bytes. This affects any architectures that have varying opcode byte sizes (x86_64 and i386). Knowing the max opcode byte size also helps us to be able to disassemble N instructions without having to re-read data if we didn't read enough bytes. Added the ability to set the architecture for the disassemble command. This means you can easily cross disassemble data for any supported architecture. I also added the ability to specify "thumb" as an architecture so that we can force disassembly into thumb mode when needed. In GDB this was done using a hack of specifying an odd address when disassembling. I don't want to repeat this hack in LLDB, so the auto detection between ARM and thumb is failing, just specify thumb when disassembling: (lldb) disassemble --arch thumb --name main You can also have data in say an x86_64 file executable and disassemble data as any other supported architecture: % lldb a.out Current executable set to 'a.out' (x86_64). (lldb) b main (lldb) run (lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes 0x100001080: 0xb580 push {r7, lr} 0x100001082: 0xaf00 add r7, sp, #0 Fixed Target::ReadMemory(...) to be able to deal with Address argument object that isn't section offset. When an address object was supplied that was out on the heap or stack, target read memory would fail. Disassembly uses Target::ReadMemory(...), and the example above where we disassembler thumb opcodes in an x86 binary was failing do to this bug. llvm-svn: 128347
2011-03-27 03:14:58 +08:00
uint32_t min_opcode_byte_size;
uint32_t max_opcode_byte_size;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
llvm::Triple::ArchType machine;
ArchSpec::Core core;
const char * const name;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
};
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
// This core information can be looked using the ArchSpec::Core as the index
static const CoreDefinition g_core_definitions[] =
{
Added the ability to get the min and max instruction byte size for an architecture into ArchSpec: uint32_t ArchSpec::GetMinimumOpcodeByteSize() const; uint32_t ArchSpec::GetMaximumOpcodeByteSize() const; Added an AddressClass to the Instruction class in Disassembler.h. This allows decoded instructions to know know if they are code, code with alternate ISA (thumb), or even data which can be mixed into code. The instruction does have an address, but it is a good idea to cache this value so we don't have to look it up more than once. Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't getting set. Changed: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc); To: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc, bool merge_symbol_into_function); This function was typically being used when looking up functions and symbols. Now if you lookup a function, then find the symbol, they can be merged into the same symbol context and not cause multiple symbol contexts to appear in a symbol context list that describes the same function. Fixed the SymbolContext not equal operator which was causing mixed mode disassembly to not work ("disassembler --mixed --name main"). Modified the disassembler classes to know about the fact we know, for a given architecture, what the min and max opcode byte sizes are. The InstructionList class was modified to return the max opcode byte size for all of the instructions in its list. These two fixes means when disassemble a list of instructions and dump them and show the opcode bytes, we can format the output more intelligently when showing opcode bytes. This affects any architectures that have varying opcode byte sizes (x86_64 and i386). Knowing the max opcode byte size also helps us to be able to disassemble N instructions without having to re-read data if we didn't read enough bytes. Added the ability to set the architecture for the disassemble command. This means you can easily cross disassemble data for any supported architecture. I also added the ability to specify "thumb" as an architecture so that we can force disassembly into thumb mode when needed. In GDB this was done using a hack of specifying an odd address when disassembling. I don't want to repeat this hack in LLDB, so the auto detection between ARM and thumb is failing, just specify thumb when disassembling: (lldb) disassemble --arch thumb --name main You can also have data in say an x86_64 file executable and disassemble data as any other supported architecture: % lldb a.out Current executable set to 'a.out' (x86_64). (lldb) b main (lldb) run (lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes 0x100001080: 0xb580 push {r7, lr} 0x100001082: 0xaf00 add r7, sp, #0 Fixed Target::ReadMemory(...) to be able to deal with Address argument object that isn't section offset. When an address object was supplied that was out on the heap or stack, target read memory would fail. Disassembly uses Target::ReadMemory(...), and the example above where we disassembler thumb opcodes in an x86 binary was failing do to this bug. llvm-svn: 128347
2011-03-27 03:14:58 +08:00
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_generic , "arm" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv4 , "armv4" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv4t , "armv4t" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5 , "armv5" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5e , "armv5e" },
Added the ability to get the min and max instruction byte size for an architecture into ArchSpec: uint32_t ArchSpec::GetMinimumOpcodeByteSize() const; uint32_t ArchSpec::GetMaximumOpcodeByteSize() const; Added an AddressClass to the Instruction class in Disassembler.h. This allows decoded instructions to know know if they are code, code with alternate ISA (thumb), or even data which can be mixed into code. The instruction does have an address, but it is a good idea to cache this value so we don't have to look it up more than once. Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't getting set. Changed: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc); To: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc, bool merge_symbol_into_function); This function was typically being used when looking up functions and symbols. Now if you lookup a function, then find the symbol, they can be merged into the same symbol context and not cause multiple symbol contexts to appear in a symbol context list that describes the same function. Fixed the SymbolContext not equal operator which was causing mixed mode disassembly to not work ("disassembler --mixed --name main"). Modified the disassembler classes to know about the fact we know, for a given architecture, what the min and max opcode byte sizes are. The InstructionList class was modified to return the max opcode byte size for all of the instructions in its list. These two fixes means when disassemble a list of instructions and dump them and show the opcode bytes, we can format the output more intelligently when showing opcode bytes. This affects any architectures that have varying opcode byte sizes (x86_64 and i386). Knowing the max opcode byte size also helps us to be able to disassemble N instructions without having to re-read data if we didn't read enough bytes. Added the ability to set the architecture for the disassemble command. This means you can easily cross disassemble data for any supported architecture. I also added the ability to specify "thumb" as an architecture so that we can force disassembly into thumb mode when needed. In GDB this was done using a hack of specifying an odd address when disassembling. I don't want to repeat this hack in LLDB, so the auto detection between ARM and thumb is failing, just specify thumb when disassembling: (lldb) disassemble --arch thumb --name main You can also have data in say an x86_64 file executable and disassemble data as any other supported architecture: % lldb a.out Current executable set to 'a.out' (x86_64). (lldb) b main (lldb) run (lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes 0x100001080: 0xb580 push {r7, lr} 0x100001082: 0xaf00 add r7, sp, #0 Fixed Target::ReadMemory(...) to be able to deal with Address argument object that isn't section offset. When an address object was supplied that was out on the heap or stack, target read memory would fail. Disassembly uses Target::ReadMemory(...), and the example above where we disassembler thumb opcodes in an x86 binary was failing do to this bug. llvm-svn: 128347
2011-03-27 03:14:58 +08:00
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5t , "armv5t" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv6 , "armv6" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv6m , "armv6m" },
Added the ability to get the min and max instruction byte size for an architecture into ArchSpec: uint32_t ArchSpec::GetMinimumOpcodeByteSize() const; uint32_t ArchSpec::GetMaximumOpcodeByteSize() const; Added an AddressClass to the Instruction class in Disassembler.h. This allows decoded instructions to know know if they are code, code with alternate ISA (thumb), or even data which can be mixed into code. The instruction does have an address, but it is a good idea to cache this value so we don't have to look it up more than once. Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't getting set. Changed: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc); To: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc, bool merge_symbol_into_function); This function was typically being used when looking up functions and symbols. Now if you lookup a function, then find the symbol, they can be merged into the same symbol context and not cause multiple symbol contexts to appear in a symbol context list that describes the same function. Fixed the SymbolContext not equal operator which was causing mixed mode disassembly to not work ("disassembler --mixed --name main"). Modified the disassembler classes to know about the fact we know, for a given architecture, what the min and max opcode byte sizes are. The InstructionList class was modified to return the max opcode byte size for all of the instructions in its list. These two fixes means when disassemble a list of instructions and dump them and show the opcode bytes, we can format the output more intelligently when showing opcode bytes. This affects any architectures that have varying opcode byte sizes (x86_64 and i386). Knowing the max opcode byte size also helps us to be able to disassemble N instructions without having to re-read data if we didn't read enough bytes. Added the ability to set the architecture for the disassemble command. This means you can easily cross disassemble data for any supported architecture. I also added the ability to specify "thumb" as an architecture so that we can force disassembly into thumb mode when needed. In GDB this was done using a hack of specifying an odd address when disassembling. I don't want to repeat this hack in LLDB, so the auto detection between ARM and thumb is failing, just specify thumb when disassembling: (lldb) disassemble --arch thumb --name main You can also have data in say an x86_64 file executable and disassemble data as any other supported architecture: % lldb a.out Current executable set to 'a.out' (x86_64). (lldb) b main (lldb) run (lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes 0x100001080: 0xb580 push {r7, lr} 0x100001082: 0xaf00 add r7, sp, #0 Fixed Target::ReadMemory(...) to be able to deal with Address argument object that isn't section offset. When an address object was supplied that was out on the heap or stack, target read memory would fail. Disassembly uses Target::ReadMemory(...), and the example above where we disassembler thumb opcodes in an x86 binary was failing do to this bug. llvm-svn: 128347
2011-03-27 03:14:58 +08:00
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7 , "armv7" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7f , "armv7f" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7s , "armv7s" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7k , "armv7k" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7m , "armv7m" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7em , "armv7em" },
Added the ability to get the min and max instruction byte size for an architecture into ArchSpec: uint32_t ArchSpec::GetMinimumOpcodeByteSize() const; uint32_t ArchSpec::GetMaximumOpcodeByteSize() const; Added an AddressClass to the Instruction class in Disassembler.h. This allows decoded instructions to know know if they are code, code with alternate ISA (thumb), or even data which can be mixed into code. The instruction does have an address, but it is a good idea to cache this value so we don't have to look it up more than once. Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't getting set. Changed: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc); To: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc, bool merge_symbol_into_function); This function was typically being used when looking up functions and symbols. Now if you lookup a function, then find the symbol, they can be merged into the same symbol context and not cause multiple symbol contexts to appear in a symbol context list that describes the same function. Fixed the SymbolContext not equal operator which was causing mixed mode disassembly to not work ("disassembler --mixed --name main"). Modified the disassembler classes to know about the fact we know, for a given architecture, what the min and max opcode byte sizes are. The InstructionList class was modified to return the max opcode byte size for all of the instructions in its list. These two fixes means when disassemble a list of instructions and dump them and show the opcode bytes, we can format the output more intelligently when showing opcode bytes. This affects any architectures that have varying opcode byte sizes (x86_64 and i386). Knowing the max opcode byte size also helps us to be able to disassemble N instructions without having to re-read data if we didn't read enough bytes. Added the ability to set the architecture for the disassemble command. This means you can easily cross disassemble data for any supported architecture. I also added the ability to specify "thumb" as an architecture so that we can force disassembly into thumb mode when needed. In GDB this was done using a hack of specifying an odd address when disassembling. I don't want to repeat this hack in LLDB, so the auto detection between ARM and thumb is failing, just specify thumb when disassembling: (lldb) disassemble --arch thumb --name main You can also have data in say an x86_64 file executable and disassemble data as any other supported architecture: % lldb a.out Current executable set to 'a.out' (x86_64). (lldb) b main (lldb) run (lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes 0x100001080: 0xb580 push {r7, lr} 0x100001082: 0xaf00 add r7, sp, #0 Fixed Target::ReadMemory(...) to be able to deal with Address argument object that isn't section offset. When an address object was supplied that was out on the heap or stack, target read memory would fail. Disassembly uses Target::ReadMemory(...), and the example above where we disassembler thumb opcodes in an x86 binary was failing do to this bug. llvm-svn: 128347
2011-03-27 03:14:58 +08:00
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_xscale , "xscale" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumb , "thumb" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv4t , "thumbv4t" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv5 , "thumbv5" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv5e , "thumbv5e" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv6 , "thumbv6" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv6m , "thumbv6m" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7 , "thumbv7" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7f , "thumbv7f" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7s , "thumbv7s" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7k , "thumbv7k" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7m , "thumbv7m" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7em , "thumbv7em" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64, ArchSpec::eCore_arm_arm64 , "arm64" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64, ArchSpec::eCore_arm_armv8 , "armv8" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64, ArchSpec::eCore_arm_aarch64 , "aarch64" },
// mips32, mips32r2, mips32r3, mips32r5, mips32r6
{ eByteOrderBig , 4, 2, 4, llvm::Triple::mips , ArchSpec::eCore_mips32 , "mips" },
{ eByteOrderBig , 4, 2, 4, llvm::Triple::mips , ArchSpec::eCore_mips32r2 , "mipsr2" },
{ eByteOrderBig , 4, 2, 4, llvm::Triple::mips , ArchSpec::eCore_mips32r3 , "mipsr3" },
{ eByteOrderBig , 4, 2, 4, llvm::Triple::mips , ArchSpec::eCore_mips32r5 , "mipsr5" },
{ eByteOrderBig , 4, 2, 4, llvm::Triple::mips , ArchSpec::eCore_mips32r6 , "mipsr6" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32el , "mipsel" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32r2el , "mipsr2el" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32r3el , "mipsr3el" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32r5el , "mipsr5el" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32r6el , "mipsr6el" },
// mips64, mips64r2, mips64r3, mips64r5, mips64r6
{ eByteOrderBig , 8, 2, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64 , "mips64" },
{ eByteOrderBig , 8, 2, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64r2 , "mips64r2" },
{ eByteOrderBig , 8, 2, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64r3 , "mips64r3" },
{ eByteOrderBig , 8, 2, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64r5 , "mips64r5" },
{ eByteOrderBig , 8, 2, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64r6 , "mips64r6" },
{ eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el, ArchSpec::eCore_mips64el , "mips64el" },
{ eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el, ArchSpec::eCore_mips64r2el , "mips64r2el" },
{ eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el, ArchSpec::eCore_mips64r3el , "mips64r3el" },
{ eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el, ArchSpec::eCore_mips64r5el , "mips64r5el" },
{ eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el, ArchSpec::eCore_mips64r6el , "mips64r6el" },
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_generic , "powerpc" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc601 , "ppc601" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc602 , "ppc602" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603 , "ppc603" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603e , "ppc603e" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603ev , "ppc603ev" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc604 , "ppc604" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc604e , "ppc604e" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc620 , "ppc620" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc750 , "ppc750" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc7400 , "ppc7400" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc7450 , "ppc7450" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc970 , "ppc970" },
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
{ eByteOrderBig , 8, 4, 4, llvm::Triple::ppc64 , ArchSpec::eCore_ppc64_generic , "powerpc64" },
{ eByteOrderBig , 8, 4, 4, llvm::Triple::ppc64 , ArchSpec::eCore_ppc64_ppc970_64 , "ppc970-64" },
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
Added the ability to get the min and max instruction byte size for an architecture into ArchSpec: uint32_t ArchSpec::GetMinimumOpcodeByteSize() const; uint32_t ArchSpec::GetMaximumOpcodeByteSize() const; Added an AddressClass to the Instruction class in Disassembler.h. This allows decoded instructions to know know if they are code, code with alternate ISA (thumb), or even data which can be mixed into code. The instruction does have an address, but it is a good idea to cache this value so we don't have to look it up more than once. Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't getting set. Changed: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc); To: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc, bool merge_symbol_into_function); This function was typically being used when looking up functions and symbols. Now if you lookup a function, then find the symbol, they can be merged into the same symbol context and not cause multiple symbol contexts to appear in a symbol context list that describes the same function. Fixed the SymbolContext not equal operator which was causing mixed mode disassembly to not work ("disassembler --mixed --name main"). Modified the disassembler classes to know about the fact we know, for a given architecture, what the min and max opcode byte sizes are. The InstructionList class was modified to return the max opcode byte size for all of the instructions in its list. These two fixes means when disassemble a list of instructions and dump them and show the opcode bytes, we can format the output more intelligently when showing opcode bytes. This affects any architectures that have varying opcode byte sizes (x86_64 and i386). Knowing the max opcode byte size also helps us to be able to disassemble N instructions without having to re-read data if we didn't read enough bytes. Added the ability to set the architecture for the disassemble command. This means you can easily cross disassemble data for any supported architecture. I also added the ability to specify "thumb" as an architecture so that we can force disassembly into thumb mode when needed. In GDB this was done using a hack of specifying an odd address when disassembling. I don't want to repeat this hack in LLDB, so the auto detection between ARM and thumb is failing, just specify thumb when disassembling: (lldb) disassemble --arch thumb --name main You can also have data in say an x86_64 file executable and disassemble data as any other supported architecture: % lldb a.out Current executable set to 'a.out' (x86_64). (lldb) b main (lldb) run (lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes 0x100001080: 0xb580 push {r7, lr} 0x100001082: 0xaf00 add r7, sp, #0 Fixed Target::ReadMemory(...) to be able to deal with Address argument object that isn't section offset. When an address object was supplied that was out on the heap or stack, target read memory would fail. Disassembly uses Target::ReadMemory(...), and the example above where we disassembler thumb opcodes in an x86 binary was failing do to this bug. llvm-svn: 128347
2011-03-27 03:14:58 +08:00
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::sparc , ArchSpec::eCore_sparc_generic , "sparc" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::sparcv9, ArchSpec::eCore_sparc9_generic , "sparcv9" },
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i386 , "i386" },
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i486 , "i486" },
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i486sx , "i486sx" },
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i686 , "i686" },
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
{ eByteOrderLittle, 8, 1, 15, llvm::Triple::x86_64 , ArchSpec::eCore_x86_64_x86_64 , "x86_64" },
{ eByteOrderLittle, 8, 1, 15, llvm::Triple::x86_64 , ArchSpec::eCore_x86_64_x86_64h , "x86_64h" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_generic, "hexagon" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_hexagonv4, "hexagonv4" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_hexagonv5, "hexagonv5" },
{ eByteOrderLittle, 4, 4, 4 , llvm::Triple::UnknownArch , ArchSpec::eCore_uknownMach32 , "unknown-mach-32" },
{ eByteOrderLittle, 8, 4, 4 , llvm::Triple::UnknownArch , ArchSpec::eCore_uknownMach64 , "unknown-mach-64" },
{ eByteOrderBig , 4, 1, 1 , llvm::Triple::kalimba , ArchSpec::eCore_kalimba3 , "kalimba3" },
{ eByteOrderLittle, 4, 1, 1 , llvm::Triple::kalimba , ArchSpec::eCore_kalimba4 , "kalimba4" },
{ eByteOrderLittle, 4, 1, 1 , llvm::Triple::kalimba , ArchSpec::eCore_kalimba5 , "kalimba5" }
};
// Ensure that we have an entry in the g_core_definitions for each core. If you comment out an entry above,
// you will need to comment out the corresponding ArchSpec::Core enumeration.
static_assert(sizeof(g_core_definitions) / sizeof(CoreDefinition) == ArchSpec::kNumCores, "make sure we have one core definition for each core");
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
struct ArchDefinitionEntry
{
ArchSpec::Core core;
uint32_t cpu;
uint32_t sub;
uint32_t cpu_mask;
uint32_t sub_mask;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
};
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
struct ArchDefinition
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
ArchitectureType type;
size_t num_entries;
const ArchDefinitionEntry *entries;
const char *name;
};
size_t
ArchSpec::AutoComplete (const char *name, StringList &matches)
{
uint32_t i;
if (name && name[0])
{
for (i = 0; i < llvm::array_lengthof(g_core_definitions); ++i)
{
if (NameMatches(g_core_definitions[i].name, eNameMatchStartsWith, name))
matches.AppendString (g_core_definitions[i].name);
}
}
else
{
for (i = 0; i < llvm::array_lengthof(g_core_definitions); ++i)
matches.AppendString (g_core_definitions[i].name);
}
return matches.GetSize();
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
#define CPU_ANY (UINT32_MAX)
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
//===----------------------------------------------------------------------===//
// A table that gets searched linearly for matches. This table is used to
// convert cpu type and subtypes to architecture names, and to convert
// architecture names to cpu types and subtypes. The ordering is important and
// allows the precedence to be set when the table is built.
#define SUBTYPE_MASK 0x00FFFFFFu
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
static const ArchDefinitionEntry g_macho_arch_entries[] =
{
{ ArchSpec::eCore_arm_generic , llvm::MachO::CPU_TYPE_ARM , CPU_ANY, UINT32_MAX , UINT32_MAX },
{ ArchSpec::eCore_arm_generic , llvm::MachO::CPU_TYPE_ARM , 0 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv4 , llvm::MachO::CPU_TYPE_ARM , 5 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv4t , llvm::MachO::CPU_TYPE_ARM , 5 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv6 , llvm::MachO::CPU_TYPE_ARM , 6 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv6m , llvm::MachO::CPU_TYPE_ARM , 14 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv5 , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv5e , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv5t , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_xscale , llvm::MachO::CPU_TYPE_ARM , 8 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7 , llvm::MachO::CPU_TYPE_ARM , 9 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7f , llvm::MachO::CPU_TYPE_ARM , 10 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7s , llvm::MachO::CPU_TYPE_ARM , 11 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7k , llvm::MachO::CPU_TYPE_ARM , 12 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7m , llvm::MachO::CPU_TYPE_ARM , 15 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7em , llvm::MachO::CPU_TYPE_ARM , 16 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , 1 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , 0 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , 13 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , CPU_ANY, UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumb , llvm::MachO::CPU_TYPE_ARM , 0 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv4t , llvm::MachO::CPU_TYPE_ARM , 5 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv5 , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv5e , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv6 , llvm::MachO::CPU_TYPE_ARM , 6 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv6m , llvm::MachO::CPU_TYPE_ARM , 14 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7 , llvm::MachO::CPU_TYPE_ARM , 9 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7f , llvm::MachO::CPU_TYPE_ARM , 10 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7s , llvm::MachO::CPU_TYPE_ARM , 11 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7k , llvm::MachO::CPU_TYPE_ARM , 12 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7m , llvm::MachO::CPU_TYPE_ARM , 15 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7em , llvm::MachO::CPU_TYPE_ARM , 16 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_generic , llvm::MachO::CPU_TYPE_POWERPC , CPU_ANY, UINT32_MAX , UINT32_MAX },
{ ArchSpec::eCore_ppc_generic , llvm::MachO::CPU_TYPE_POWERPC , 0 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc601 , llvm::MachO::CPU_TYPE_POWERPC , 1 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc602 , llvm::MachO::CPU_TYPE_POWERPC , 2 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc603 , llvm::MachO::CPU_TYPE_POWERPC , 3 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc603e , llvm::MachO::CPU_TYPE_POWERPC , 4 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc603ev , llvm::MachO::CPU_TYPE_POWERPC , 5 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc604 , llvm::MachO::CPU_TYPE_POWERPC , 6 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc604e , llvm::MachO::CPU_TYPE_POWERPC , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc620 , llvm::MachO::CPU_TYPE_POWERPC , 8 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc750 , llvm::MachO::CPU_TYPE_POWERPC , 9 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc7400 , llvm::MachO::CPU_TYPE_POWERPC , 10 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc7450 , llvm::MachO::CPU_TYPE_POWERPC , 11 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc970 , llvm::MachO::CPU_TYPE_POWERPC , 100 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc64_generic , llvm::MachO::CPU_TYPE_POWERPC64 , 0 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc64_ppc970_64 , llvm::MachO::CPU_TYPE_POWERPC64 , 100 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_32_i386 , llvm::MachO::CPU_TYPE_I386 , 3 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_32_i486 , llvm::MachO::CPU_TYPE_I386 , 4 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_32_i486sx , llvm::MachO::CPU_TYPE_I386 , 0x84 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_32_i386 , llvm::MachO::CPU_TYPE_I386 , CPU_ANY, UINT32_MAX , UINT32_MAX },
{ ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPU_TYPE_X86_64 , 3 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPU_TYPE_X86_64 , 4 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_64_x86_64h , llvm::MachO::CPU_TYPE_X86_64 , 8 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPU_TYPE_X86_64 , CPU_ANY, UINT32_MAX , UINT32_MAX },
// Catch any unknown mach architectures so we can always use the object and symbol mach-o files
{ ArchSpec::eCore_uknownMach32 , 0 , 0 , 0xFF000000u, 0x00000000u },
{ ArchSpec::eCore_uknownMach64 , llvm::MachO::CPU_ARCH_ABI64 , 0 , 0xFF000000u, 0x00000000u }
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
};
static const ArchDefinition g_macho_arch_def = {
eArchTypeMachO,
llvm::array_lengthof(g_macho_arch_entries),
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
g_macho_arch_entries,
"mach-o"
};
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
//===----------------------------------------------------------------------===//
// A table that gets searched linearly for matches. This table is used to
// convert cpu type and subtypes to architecture names, and to convert
// architecture names to cpu types and subtypes. The ordering is important and
// allows the precedence to be set when the table is built.
static const ArchDefinitionEntry g_elf_arch_entries[] =
{
{ ArchSpec::eCore_sparc_generic , llvm::ELF::EM_SPARC , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Sparc
{ ArchSpec::eCore_x86_32_i386 , llvm::ELF::EM_386 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Intel 80386
{ ArchSpec::eCore_x86_32_i486 , llvm::ELF::EM_IAMCU , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Intel MCU // FIXME: is this correct?
{ ArchSpec::eCore_ppc_generic , llvm::ELF::EM_PPC , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC
{ ArchSpec::eCore_ppc64_generic , llvm::ELF::EM_PPC64 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC64
{ ArchSpec::eCore_arm_generic , llvm::ELF::EM_ARM , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARM
{ ArchSpec::eCore_arm_aarch64 , llvm::ELF::EM_AARCH64, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARM64
{ ArchSpec::eCore_sparc9_generic , llvm::ELF::EM_SPARCV9, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // SPARC V9
{ ArchSpec::eCore_x86_64_x86_64 , llvm::ELF::EM_X86_64 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // AMD64
{ ArchSpec::eCore_mips32 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32
{ ArchSpec::eCore_mips32r2 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32r2, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32r2
{ ArchSpec::eCore_mips32r6 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32r6, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32r6
{ ArchSpec::eCore_mips32el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32el
{ ArchSpec::eCore_mips32r2el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32r2el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32r2el
{ ArchSpec::eCore_mips32r6el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32r6el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32r6el
{ ArchSpec::eCore_mips64 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64
{ ArchSpec::eCore_mips64r2 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64r2, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64r2
{ ArchSpec::eCore_mips64r6 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64r6, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64r6
{ ArchSpec::eCore_mips64el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64el
{ ArchSpec::eCore_mips64r2el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64r2el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64r2el
{ ArchSpec::eCore_mips64r6el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64r6el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64r6el
{ ArchSpec::eCore_hexagon_generic , llvm::ELF::EM_HEXAGON, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // HEXAGON
{ ArchSpec::eCore_kalimba3 , llvm::ELF::EM_CSR_KALIMBA, llvm::Triple::KalimbaSubArch_v3, 0xFFFFFFFFu, 0xFFFFFFFFu }, // KALIMBA
{ ArchSpec::eCore_kalimba4 , llvm::ELF::EM_CSR_KALIMBA, llvm::Triple::KalimbaSubArch_v4, 0xFFFFFFFFu, 0xFFFFFFFFu }, // KALIMBA
{ ArchSpec::eCore_kalimba5 , llvm::ELF::EM_CSR_KALIMBA, llvm::Triple::KalimbaSubArch_v5, 0xFFFFFFFFu, 0xFFFFFFFFu } // KALIMBA
};
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
static const ArchDefinition g_elf_arch_def = {
eArchTypeELF,
llvm::array_lengthof(g_elf_arch_entries),
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
g_elf_arch_entries,
"elf",
};
static const ArchDefinitionEntry g_coff_arch_entries[] =
{
{ ArchSpec::eCore_x86_32_i386 , llvm::COFF::IMAGE_FILE_MACHINE_I386 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Intel 80x86
{ ArchSpec::eCore_ppc_generic , llvm::COFF::IMAGE_FILE_MACHINE_POWERPC , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC
{ ArchSpec::eCore_ppc_generic , llvm::COFF::IMAGE_FILE_MACHINE_POWERPCFP, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC (with FPU)
{ ArchSpec::eCore_arm_generic , llvm::COFF::IMAGE_FILE_MACHINE_ARM , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARM
{ ArchSpec::eCore_arm_armv7 , llvm::COFF::IMAGE_FILE_MACHINE_ARMNT , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARMv7
{ ArchSpec::eCore_thumb , llvm::COFF::IMAGE_FILE_MACHINE_THUMB , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARMv7
{ ArchSpec::eCore_x86_64_x86_64, llvm::COFF::IMAGE_FILE_MACHINE_AMD64 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu } // AMD64
};
static const ArchDefinition g_coff_arch_def = {
eArchTypeCOFF,
llvm::array_lengthof(g_coff_arch_entries),
g_coff_arch_entries,
"pe-coff",
};
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
//===----------------------------------------------------------------------===//
// Table of all ArchDefinitions
static const ArchDefinition *g_arch_definitions[] = {
&g_macho_arch_def,
&g_elf_arch_def,
&g_coff_arch_def
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
};
static const size_t k_num_arch_definitions = llvm::array_lengthof(g_arch_definitions);
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
//===----------------------------------------------------------------------===//
// Static helper functions.
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
// Get the architecture definition for a given object type.
static const ArchDefinition *
FindArchDefinition (ArchitectureType arch_type)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
for (unsigned int i = 0; i < k_num_arch_definitions; ++i)
{
const ArchDefinition *def = g_arch_definitions[i];
if (def->type == arch_type)
return def;
}
return NULL;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
// Get an architecture definition by name.
static const CoreDefinition *
FindCoreDefinition (llvm::StringRef name)
{
for (unsigned int i = 0; i < llvm::array_lengthof(g_core_definitions); ++i)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
if (name.equals_lower(g_core_definitions[i].name))
return &g_core_definitions[i];
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
return NULL;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
static inline const CoreDefinition *
FindCoreDefinition (ArchSpec::Core core)
{
if (core >= 0 && core < llvm::array_lengthof(g_core_definitions))
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
return &g_core_definitions[core];
return NULL;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
// Get a definition entry by cpu type and subtype.
static const ArchDefinitionEntry *
FindArchDefinitionEntry (const ArchDefinition *def, uint32_t cpu, uint32_t sub)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
if (def == NULL)
return NULL;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const ArchDefinitionEntry *entries = def->entries;
for (size_t i = 0; i < def->num_entries; ++i)
{
if (entries[i].cpu == (cpu & entries[i].cpu_mask))
if (entries[i].sub == (sub & entries[i].sub_mask))
return &entries[i];
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
return NULL;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
static const ArchDefinitionEntry *
FindArchDefinitionEntry (const ArchDefinition *def, ArchSpec::Core core)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
if (def == NULL)
return NULL;
const ArchDefinitionEntry *entries = def->entries;
for (size_t i = 0; i < def->num_entries; ++i)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
if (entries[i].core == core)
return &entries[i];
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
return NULL;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
//===----------------------------------------------------------------------===//
// Constructors and destructors.
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
ArchSpec::ArchSpec() :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid),
m_flags (0),
m_distribution_id ()
{
}
ArchSpec::ArchSpec (const char *triple_cstr, Platform *platform) :
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid),
m_flags (0),
m_distribution_id ()
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
if (triple_cstr)
SetTriple(triple_cstr, platform);
}
ArchSpec::ArchSpec (const char *triple_cstr) :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid),
m_flags (0),
m_distribution_id ()
{
if (triple_cstr)
SetTriple(triple_cstr);
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
ArchSpec::ArchSpec(const llvm::Triple &triple) :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid),
m_flags (0),
m_distribution_id ()
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
SetTriple(triple);
}
ArchSpec::ArchSpec (ArchitectureType arch_type, uint32_t cpu, uint32_t subtype) :
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid),
m_flags (0),
m_distribution_id ()
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
SetArchitecture (arch_type, cpu, subtype);
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
ArchSpec::~ArchSpec()
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
//===----------------------------------------------------------------------===//
// Assignment and initialization.
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const ArchSpec&
ArchSpec::operator= (const ArchSpec& rhs)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
if (this != &rhs)
{
m_triple = rhs.m_triple;
m_core = rhs.m_core;
m_byte_order = rhs.m_byte_order;
m_distribution_id = rhs.m_distribution_id;
m_flags = rhs.m_flags;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
}
return *this;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
void
ArchSpec::Clear()
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
m_triple = llvm::Triple();
m_core = kCore_invalid;
m_byte_order = eByteOrderInvalid;
m_distribution_id.Clear ();
m_flags = 0;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
//===----------------------------------------------------------------------===//
// Predicates.
const char *
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
ArchSpec::GetArchitectureName () const
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->name;
return "unknown";
}
std::string
ArchSpec::GetClangTargetCPU ()
{
std::string cpu;
const llvm::Triple::ArchType machine = GetMachine();
if (machine == llvm::Triple::mips ||
machine == llvm::Triple::mipsel ||
machine == llvm::Triple::mips64 ||
machine == llvm::Triple::mips64el)
{
switch (m_core)
{
case ArchSpec::eCore_mips32:
case ArchSpec::eCore_mips32el:
cpu = "mips32"; break;
case ArchSpec::eCore_mips32r2:
case ArchSpec::eCore_mips32r2el:
cpu = "mips32r2"; break;
case ArchSpec::eCore_mips32r3:
case ArchSpec::eCore_mips32r3el:
cpu = "mips32r3"; break;
case ArchSpec::eCore_mips32r5:
case ArchSpec::eCore_mips32r5el:
cpu = "mips32r5"; break;
case ArchSpec::eCore_mips32r6:
case ArchSpec::eCore_mips32r6el:
cpu = "mips32r6"; break;
case ArchSpec::eCore_mips64:
case ArchSpec::eCore_mips64el:
cpu = "mips64"; break;
case ArchSpec::eCore_mips64r2:
case ArchSpec::eCore_mips64r2el:
cpu = "mips64r2"; break;
case ArchSpec::eCore_mips64r3:
case ArchSpec::eCore_mips64r3el:
cpu = "mips64r3"; break;
case ArchSpec::eCore_mips64r5:
case ArchSpec::eCore_mips64r5el:
cpu = "mips64r5"; break;
case ArchSpec::eCore_mips64r6:
case ArchSpec::eCore_mips64r6el:
cpu = "mips64r6"; break;
default:
break;
}
}
return cpu;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
uint32_t
ArchSpec::GetMachOCPUType () const
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const ArchDefinitionEntry *arch_def = FindArchDefinitionEntry (&g_macho_arch_def, core_def->core);
if (arch_def)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
return arch_def->cpu;
}
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
return LLDB_INVALID_CPUTYPE;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
uint32_t
ArchSpec::GetMachOCPUSubType () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const ArchDefinitionEntry *arch_def = FindArchDefinitionEntry (&g_macho_arch_def, core_def->core);
if (arch_def)
{
return arch_def->sub;
}
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
return LLDB_INVALID_CPUTYPE;
}
uint32_t
ArchSpec::GetDataByteSize () const
{
switch (m_core)
{
case eCore_kalimba3:
return 4;
case eCore_kalimba4:
return 1;
case eCore_kalimba5:
return 4;
default:
return 1;
}
return 1;
}
uint32_t
ArchSpec::GetCodeByteSize () const
{
switch (m_core)
{
case eCore_kalimba3:
return 4;
case eCore_kalimba4:
return 1;
case eCore_kalimba5:
return 1;
default:
return 1;
}
return 1;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
llvm::Triple::ArchType
ArchSpec::GetMachine () const
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->machine;
return llvm::Triple::UnknownArch;
}
const ConstString&
ArchSpec::GetDistributionId () const
{
return m_distribution_id;
}
void
ArchSpec::SetDistributionId (const char* distribution_id)
{
m_distribution_id.SetCString (distribution_id);
}
uint32_t
ArchSpec::GetAddressByteSize() const
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
if (core_def->machine == llvm::Triple::mips64 || core_def->machine == llvm::Triple::mips64el)
{
// For N32/O32 applications Address size is 4 bytes.
if (m_flags & (eMIPSABI_N32 | eMIPSABI_O32))
return 4;
}
return core_def->addr_byte_size;
}
return 0;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
ByteOrder
ArchSpec::GetDefaultEndian () const
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->default_byte_order;
return eByteOrderInvalid;
}
bool
ArchSpec::CharIsSignedByDefault () const
{
switch (m_triple.getArch()) {
default:
return true;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
return m_triple.isOSDarwin() || m_triple.isOSWindows();
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
return m_triple.isOSDarwin();
case llvm::Triple::ppc64le:
case llvm::Triple::systemz:
case llvm::Triple::xcore:
return false;
}
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
lldb::ByteOrder
ArchSpec::GetByteOrder () const
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
if (m_byte_order == eByteOrderInvalid)
return GetDefaultEndian();
return m_byte_order;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
//===----------------------------------------------------------------------===//
// Mutators.
bool
ArchSpec::SetTriple (const llvm::Triple &triple)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
m_triple = triple;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
llvm::StringRef arch_name (m_triple.getArchName());
const CoreDefinition *core_def = FindCoreDefinition (arch_name);
if (core_def)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
m_core = core_def->core;
// Set the byte order to the default byte order for an architecture.
// This can be modified if needed for cases when cores handle both
// big and little endian
m_byte_order = core_def->default_byte_order;
}
else
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
Clear();
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
return IsValid();
}
static bool
ParseMachCPUDashSubtypeTriple (const char *triple_cstr, ArchSpec &arch)
{
// Accept "12-10" or "12.10" as cpu type/subtype
if (isdigit(triple_cstr[0]))
{
char *end = NULL;
errno = 0;
uint32_t cpu = (uint32_t)::strtoul (triple_cstr, &end, 0);
if (errno == 0 && cpu != 0 && end && ((*end == '-') || (*end == '.')))
{
errno = 0;
uint32_t sub = (uint32_t)::strtoul (end + 1, &end, 0);
if (errno == 0 && end && ((*end == '-') || (*end == '.') || (*end == '\0')))
{
if (arch.SetArchitecture (eArchTypeMachO, cpu, sub))
{
if (*end == '-')
{
llvm::StringRef vendor_os (end + 1);
size_t dash_pos = vendor_os.find('-');
if (dash_pos != llvm::StringRef::npos)
{
llvm::StringRef vendor_str(vendor_os.substr(0, dash_pos));
arch.GetTriple().setVendorName(vendor_str);
const size_t vendor_start_pos = dash_pos+1;
dash_pos = vendor_os.find('-', vendor_start_pos);
if (dash_pos == llvm::StringRef::npos)
{
if (vendor_start_pos < vendor_os.size())
arch.GetTriple().setOSName(vendor_os.substr(vendor_start_pos));
}
else
{
arch.GetTriple().setOSName(vendor_os.substr(vendor_start_pos, dash_pos - vendor_start_pos));
}
}
}
return true;
}
}
}
}
return false;
}
bool
ArchSpec::SetTriple (const char *triple_cstr)
{
if (triple_cstr && triple_cstr[0])
{
if (ParseMachCPUDashSubtypeTriple (triple_cstr, *this))
return true;
llvm::StringRef triple_stref (triple_cstr);
if (triple_stref.startswith (LLDB_ARCH_DEFAULT))
{
// Special case for the current host default architectures...
if (triple_stref.equals (LLDB_ARCH_DEFAULT_32BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind32);
else if (triple_stref.equals (LLDB_ARCH_DEFAULT_64BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind64);
else if (triple_stref.equals (LLDB_ARCH_DEFAULT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKindDefault);
}
else
{
std::string normalized_triple_sstr (llvm::Triple::normalize(triple_stref));
triple_stref = normalized_triple_sstr;
SetTriple (llvm::Triple (triple_stref));
}
}
else
Clear();
return IsValid();
}
bool
ArchSpec::SetTriple (const char *triple_cstr, Platform *platform)
{
if (triple_cstr && triple_cstr[0])
{
if (ParseMachCPUDashSubtypeTriple (triple_cstr, *this))
return true;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
llvm::StringRef triple_stref (triple_cstr);
if (triple_stref.startswith (LLDB_ARCH_DEFAULT))
{
// Special case for the current host default architectures...
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
if (triple_stref.equals (LLDB_ARCH_DEFAULT_32BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind32);
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
else if (triple_stref.equals (LLDB_ARCH_DEFAULT_64BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind64);
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
else if (triple_stref.equals (LLDB_ARCH_DEFAULT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKindDefault);
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
else
{
ArchSpec raw_arch (triple_cstr);
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
std::string normalized_triple_sstr (llvm::Triple::normalize(triple_stref));
triple_stref = normalized_triple_sstr;
llvm::Triple normalized_triple (triple_stref);
const bool os_specified = normalized_triple.getOSName().size() > 0;
const bool vendor_specified = normalized_triple.getVendorName().size() > 0;
const bool env_specified = normalized_triple.getEnvironmentName().size() > 0;
// If we got an arch only, then default the vendor, os, environment
// to match the platform if one is supplied
if (!(os_specified || vendor_specified || env_specified))
{
if (platform)
{
// If we were given a platform, use the platform's system
// architecture. If this is not available (might not be
// connected) use the first supported architecture.
ArchSpec compatible_arch;
if (platform->IsCompatibleArchitecture (raw_arch, false, &compatible_arch))
{
if (compatible_arch.IsValid())
{
const llvm::Triple &compatible_triple = compatible_arch.GetTriple();
if (!vendor_specified)
normalized_triple.setVendor(compatible_triple.getVendor());
if (!os_specified)
normalized_triple.setOS(compatible_triple.getOS());
if (!env_specified && compatible_triple.getEnvironmentName().size())
normalized_triple.setEnvironment(compatible_triple.getEnvironment());
}
}
else
{
*this = raw_arch;
return IsValid();
}
}
else
{
// No platform specified, fall back to the host system for
// the default vendor, os, and environment.
llvm::Triple host_triple(llvm::sys::getDefaultTargetTriple());
if (!vendor_specified)
normalized_triple.setVendor(host_triple.getVendor());
if (!vendor_specified)
normalized_triple.setOS(host_triple.getOS());
if (!env_specified && host_triple.getEnvironmentName().size())
normalized_triple.setEnvironment(host_triple.getEnvironment());
}
}
SetTriple (normalized_triple);
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
}
else
Clear();
return IsValid();
}
void
ArchSpec::MergeFrom(const ArchSpec &other)
{
if (TripleVendorIsUnspecifiedUnknown() && !other.TripleVendorIsUnspecifiedUnknown())
GetTriple().setVendor(other.GetTriple().getVendor());
if (TripleOSIsUnspecifiedUnknown() && !other.TripleOSIsUnspecifiedUnknown())
GetTriple().setOS(other.GetTriple().getOS());
if (GetTriple().getArch() == llvm::Triple::UnknownArch)
GetTriple().setArch(other.GetTriple().getArch());
if (GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment && !TripleVendorWasSpecified())
{
if (other.TripleVendorWasSpecified())
GetTriple().setEnvironment(other.GetTriple().getEnvironment());
}
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
bool
ArchSpec::SetArchitecture (ArchitectureType arch_type, uint32_t cpu, uint32_t sub, uint32_t os)
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
{
m_core = kCore_invalid;
bool update_triple = true;
const ArchDefinition *arch_def = FindArchDefinition(arch_type);
if (arch_def)
{
const ArchDefinitionEntry *arch_def_entry = FindArchDefinitionEntry (arch_def, cpu, sub);
if (arch_def_entry)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const CoreDefinition *core_def = FindCoreDefinition (arch_def_entry->core);
if (core_def)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
m_core = core_def->core;
update_triple = false;
// Always use the architecture name because it might be more descriptive
// than the architecture enum ("armv7" -> llvm::Triple::arm).
m_triple.setArchName(llvm::StringRef(core_def->name));
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
if (arch_type == eArchTypeMachO)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
m_triple.setVendor (llvm::Triple::Apple);
// Don't set the OS. It could be simulator, macosx, ios, watchos, tvos. We could
// get close with the cpu type - but we can't get it right all of the time. Better
// to leave this unset so other sections of code will set it when they have more
// information.
// NB: don't call m_triple.setOS (llvm::Triple::UnknownOS). That sets the OSName to
// "unknown" and the ArchSpec::TripleVendorWasSpecified() method says that any
// OSName setting means it was specified.
}
else if (arch_type == eArchTypeELF)
{
switch (os)
{
case llvm::ELF::ELFOSABI_AIX: m_triple.setOS (llvm::Triple::OSType::AIX); break;
case llvm::ELF::ELFOSABI_FREEBSD: m_triple.setOS (llvm::Triple::OSType::FreeBSD); break;
case llvm::ELF::ELFOSABI_GNU: m_triple.setOS (llvm::Triple::OSType::Linux); break;
case llvm::ELF::ELFOSABI_NETBSD: m_triple.setOS (llvm::Triple::OSType::NetBSD); break;
case llvm::ELF::ELFOSABI_OPENBSD: m_triple.setOS (llvm::Triple::OSType::OpenBSD); break;
case llvm::ELF::ELFOSABI_SOLARIS: m_triple.setOS (llvm::Triple::OSType::Solaris); break;
}
}
else
{
m_triple.setVendor (llvm::Triple::UnknownVendor);
m_triple.setOS (llvm::Triple::UnknownOS);
}
// Fall back onto setting the machine type if the arch by name failed...
if (m_triple.getArch () == llvm::Triple::UnknownArch)
m_triple.setArch (core_def->machine);
}
}
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
CoreUpdated(update_triple);
return IsValid();
}
Added the ability to get the min and max instruction byte size for an architecture into ArchSpec: uint32_t ArchSpec::GetMinimumOpcodeByteSize() const; uint32_t ArchSpec::GetMaximumOpcodeByteSize() const; Added an AddressClass to the Instruction class in Disassembler.h. This allows decoded instructions to know know if they are code, code with alternate ISA (thumb), or even data which can be mixed into code. The instruction does have an address, but it is a good idea to cache this value so we don't have to look it up more than once. Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't getting set. Changed: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc); To: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc, bool merge_symbol_into_function); This function was typically being used when looking up functions and symbols. Now if you lookup a function, then find the symbol, they can be merged into the same symbol context and not cause multiple symbol contexts to appear in a symbol context list that describes the same function. Fixed the SymbolContext not equal operator which was causing mixed mode disassembly to not work ("disassembler --mixed --name main"). Modified the disassembler classes to know about the fact we know, for a given architecture, what the min and max opcode byte sizes are. The InstructionList class was modified to return the max opcode byte size for all of the instructions in its list. These two fixes means when disassemble a list of instructions and dump them and show the opcode bytes, we can format the output more intelligently when showing opcode bytes. This affects any architectures that have varying opcode byte sizes (x86_64 and i386). Knowing the max opcode byte size also helps us to be able to disassemble N instructions without having to re-read data if we didn't read enough bytes. Added the ability to set the architecture for the disassemble command. This means you can easily cross disassemble data for any supported architecture. I also added the ability to specify "thumb" as an architecture so that we can force disassembly into thumb mode when needed. In GDB this was done using a hack of specifying an odd address when disassembling. I don't want to repeat this hack in LLDB, so the auto detection between ARM and thumb is failing, just specify thumb when disassembling: (lldb) disassemble --arch thumb --name main You can also have data in say an x86_64 file executable and disassemble data as any other supported architecture: % lldb a.out Current executable set to 'a.out' (x86_64). (lldb) b main (lldb) run (lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes 0x100001080: 0xb580 push {r7, lr} 0x100001082: 0xaf00 add r7, sp, #0 Fixed Target::ReadMemory(...) to be able to deal with Address argument object that isn't section offset. When an address object was supplied that was out on the heap or stack, target read memory would fail. Disassembly uses Target::ReadMemory(...), and the example above where we disassembler thumb opcodes in an x86 binary was failing do to this bug. llvm-svn: 128347
2011-03-27 03:14:58 +08:00
uint32_t
ArchSpec::GetMinimumOpcodeByteSize() const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->min_opcode_byte_size;
return 0;
}
uint32_t
ArchSpec::GetMaximumOpcodeByteSize() const
{
Added the ability to get the min and max instruction byte size for an architecture into ArchSpec: uint32_t ArchSpec::GetMinimumOpcodeByteSize() const; uint32_t ArchSpec::GetMaximumOpcodeByteSize() const; Added an AddressClass to the Instruction class in Disassembler.h. This allows decoded instructions to know know if they are code, code with alternate ISA (thumb), or even data which can be mixed into code. The instruction does have an address, but it is a good idea to cache this value so we don't have to look it up more than once. Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't getting set. Changed: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc); To: bool SymbolContextList::AppendIfUnique (const SymbolContext& sc, bool merge_symbol_into_function); This function was typically being used when looking up functions and symbols. Now if you lookup a function, then find the symbol, they can be merged into the same symbol context and not cause multiple symbol contexts to appear in a symbol context list that describes the same function. Fixed the SymbolContext not equal operator which was causing mixed mode disassembly to not work ("disassembler --mixed --name main"). Modified the disassembler classes to know about the fact we know, for a given architecture, what the min and max opcode byte sizes are. The InstructionList class was modified to return the max opcode byte size for all of the instructions in its list. These two fixes means when disassemble a list of instructions and dump them and show the opcode bytes, we can format the output more intelligently when showing opcode bytes. This affects any architectures that have varying opcode byte sizes (x86_64 and i386). Knowing the max opcode byte size also helps us to be able to disassemble N instructions without having to re-read data if we didn't read enough bytes. Added the ability to set the architecture for the disassemble command. This means you can easily cross disassemble data for any supported architecture. I also added the ability to specify "thumb" as an architecture so that we can force disassembly into thumb mode when needed. In GDB this was done using a hack of specifying an odd address when disassembling. I don't want to repeat this hack in LLDB, so the auto detection between ARM and thumb is failing, just specify thumb when disassembling: (lldb) disassemble --arch thumb --name main You can also have data in say an x86_64 file executable and disassemble data as any other supported architecture: % lldb a.out Current executable set to 'a.out' (x86_64). (lldb) b main (lldb) run (lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes 0x100001080: 0xb580 push {r7, lr} 0x100001082: 0xaf00 add r7, sp, #0 Fixed Target::ReadMemory(...) to be able to deal with Address argument object that isn't section offset. When an address object was supplied that was out on the heap or stack, target read memory would fail. Disassembly uses Target::ReadMemory(...), and the example above where we disassembler thumb opcodes in an x86 binary was failing do to this bug. llvm-svn: 128347
2011-03-27 03:14:58 +08:00
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->max_opcode_byte_size;
return 0;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
}
bool
ArchSpec::IsExactMatch (const ArchSpec& rhs) const
{
return IsEqualTo (rhs, true);
}
bool
ArchSpec::IsCompatibleMatch (const ArchSpec& rhs) const
{
return IsEqualTo (rhs, false);
}
bool
ArchSpec::IsEqualTo (const ArchSpec& rhs, bool exact_match) const
{
// explicitly ignoring m_distribution_id in this method.
if (GetByteOrder() != rhs.GetByteOrder())
return false;
const ArchSpec::Core lhs_core = GetCore ();
const ArchSpec::Core rhs_core = rhs.GetCore ();
const bool core_match = cores_match (lhs_core, rhs_core, true, exact_match);
if (core_match)
{
const llvm::Triple &lhs_triple = GetTriple();
const llvm::Triple &rhs_triple = rhs.GetTriple();
const llvm::Triple::VendorType lhs_triple_vendor = lhs_triple.getVendor();
const llvm::Triple::VendorType rhs_triple_vendor = rhs_triple.getVendor();
if (lhs_triple_vendor != rhs_triple_vendor)
{
const bool rhs_vendor_specified = rhs.TripleVendorWasSpecified();
const bool lhs_vendor_specified = TripleVendorWasSpecified();
// Both architectures had the vendor specified, so if they aren't
// equal then we return false
if (rhs_vendor_specified && lhs_vendor_specified)
return false;
// Only fail if both vendor types are not unknown
if (lhs_triple_vendor != llvm::Triple::UnknownVendor &&
rhs_triple_vendor != llvm::Triple::UnknownVendor)
return false;
}
const llvm::Triple::OSType lhs_triple_os = lhs_triple.getOS();
const llvm::Triple::OSType rhs_triple_os = rhs_triple.getOS();
if (lhs_triple_os != rhs_triple_os)
{
const bool rhs_os_specified = rhs.TripleOSWasSpecified();
const bool lhs_os_specified = TripleOSWasSpecified();
// Both architectures had the OS specified, so if they aren't
// equal then we return false
if (rhs_os_specified && lhs_os_specified)
return false;
// Only fail if both os types are not unknown
if (lhs_triple_os != llvm::Triple::UnknownOS &&
rhs_triple_os != llvm::Triple::UnknownOS)
return false;
}
const llvm::Triple::EnvironmentType lhs_triple_env = lhs_triple.getEnvironment();
const llvm::Triple::EnvironmentType rhs_triple_env = rhs_triple.getEnvironment();
if (lhs_triple_env != rhs_triple_env)
{
// Only fail if both environment types are not unknown
if (lhs_triple_env != llvm::Triple::UnknownEnvironment &&
rhs_triple_env != llvm::Triple::UnknownEnvironment)
return false;
}
return true;
}
return false;
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
//===----------------------------------------------------------------------===//
// Helper methods.
void
ArchSpec::CoreUpdated (bool update_triple)
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
if (update_triple)
m_triple = llvm::Triple(core_def->name, "unknown", "unknown");
m_byte_order = core_def->default_byte_order;
}
else
{
if (update_triple)
m_triple = llvm::Triple();
m_byte_order = eByteOrderInvalid;
}
}
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
//===----------------------------------------------------------------------===//
// Operators.
static bool
cores_match (const ArchSpec::Core core1, const ArchSpec::Core core2, bool try_inverse, bool enforce_exact_match)
{
if (core1 == core2)
return true;
switch (core1)
{
case ArchSpec::kCore_any:
return true;
case ArchSpec::eCore_arm_generic:
if (enforce_exact_match)
break;
LLVM_FALLTHROUGH;
case ArchSpec::kCore_arm_any:
if (core2 >= ArchSpec::kCore_arm_first && core2 <= ArchSpec::kCore_arm_last)
return true;
if (core2 >= ArchSpec::kCore_thumb_first && core2 <= ArchSpec::kCore_thumb_last)
return true;
if (core2 == ArchSpec::kCore_arm_any)
return true;
break;
case ArchSpec::kCore_x86_32_any:
if ((core2 >= ArchSpec::kCore_x86_32_first && core2 <= ArchSpec::kCore_x86_32_last) || (core2 == ArchSpec::kCore_x86_32_any))
return true;
break;
case ArchSpec::kCore_x86_64_any:
if ((core2 >= ArchSpec::kCore_x86_64_first && core2 <= ArchSpec::kCore_x86_64_last) || (core2 == ArchSpec::kCore_x86_64_any))
return true;
break;
case ArchSpec::kCore_ppc_any:
if ((core2 >= ArchSpec::kCore_ppc_first && core2 <= ArchSpec::kCore_ppc_last) || (core2 == ArchSpec::kCore_ppc_any))
return true;
break;
case ArchSpec::kCore_ppc64_any:
if ((core2 >= ArchSpec::kCore_ppc64_first && core2 <= ArchSpec::kCore_ppc64_last) || (core2 == ArchSpec::kCore_ppc64_any))
return true;
break;
case ArchSpec::eCore_arm_armv6m:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_generic)
return true;
try_inverse = false;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
if (core2 == ArchSpec::eCore_arm_armv6m)
return true;
}
break;
case ArchSpec::kCore_hexagon_any:
if ((core2 >= ArchSpec::kCore_hexagon_first && core2 <= ArchSpec::kCore_hexagon_last) || (core2 == ArchSpec::kCore_hexagon_any))
return true;
break;
Re-commit the (fixed) changes from r248985 which were reverted by Pavel when they introduced android testsuite regressions. Pavel has run the testsuite against the updated patch and it completes cleanly now. The original commit message: Fixing a subtle issue on Mac OS X systems with dSYMs (possibly introduced by r235737 but I didn't look into it too closely). A dSYM can have a per-UUID plist in it which tells lldb where to find an executable binary for the dSYM (DBGSymbolRichExecutable) - other information can be included in this plist, like how to remap the source file paths from their build pathnames to their long-term storage pathnames. This per-UUID plist is a unusual; it is used probably exclusively inside apple with our build system. It is not created by default in normal dSYMs. The problem was like this: 1. lldb wants to find an executable, given only a UUID (this happens when lldb is doing cross-host debugging and doesn't have a copy of the target system's binaries) 2. It eventually calls LocateMacOSXFilesUsingDebugSymbols which does a spotlight search for the dSYM on the local system, and failing that, tries the DBGShellCommands command to find the dSYM. 3. It gets a dSYM. It reads the per-UUID plist in the dSYM. The dSYM has a DBGSymbolRichExecutable kv pair pointing to the binary on a network filesystem. 4. Using the binary on the network filesystem, lldb now goes to find the dSYM. 5. It starts by looking for a dSYM next to the binary it found. 6. lldb is now reading the dSYM over a network filesystem, ignoring the one it found on its local filesystem earlier. Everything still *works* but it's much slower. This would be a tricky one to write up in a testsuite case; you really need the binary to not exist on the local system. And LocateMacOSXFilesUsingDebugSymbols will only compile on Mac OS X - even if I found a way to write up a test case, it would not run anywhere but on a mac. One change Greg wanted while I was touching this code was to have LocateMacOSXFilesUsingDebugSymbols (which could be asked to find a binary OR find a dSYM) to instead return a ModuleSpec with the sum total of everything it could find. This change of passing around a ModuleSpec instead of a FileSpec was percolated up into ModuleList::GetSharedModule. The changes to LocateMacOSXFilesUsingDebugSymbols look larger than they really are - there's a lot of simple whitespace changes in there. I ran the testsuites on mac, no new regressions introduced <rdar://problem/21993813> llvm-svn: 249755
2015-10-09 05:48:35 +08:00
// v. https://en.wikipedia.org/wiki/ARM_Cortex-M#Silicon_customization
// Cortex-M0 - ARMv6-M - armv6m
// Cortex-M3 - ARMv7-M - armv7m
// Cortex-M4 - ARMv7E-M - armv7em
case ArchSpec::eCore_arm_armv7em:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_generic)
return true;
if (core2 == ArchSpec::eCore_arm_armv7m)
return true;
if (core2 == ArchSpec::eCore_arm_armv6m)
return true;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
try_inverse = true;
}
break;
Re-commit the (fixed) changes from r248985 which were reverted by Pavel when they introduced android testsuite regressions. Pavel has run the testsuite against the updated patch and it completes cleanly now. The original commit message: Fixing a subtle issue on Mac OS X systems with dSYMs (possibly introduced by r235737 but I didn't look into it too closely). A dSYM can have a per-UUID plist in it which tells lldb where to find an executable binary for the dSYM (DBGSymbolRichExecutable) - other information can be included in this plist, like how to remap the source file paths from their build pathnames to their long-term storage pathnames. This per-UUID plist is a unusual; it is used probably exclusively inside apple with our build system. It is not created by default in normal dSYMs. The problem was like this: 1. lldb wants to find an executable, given only a UUID (this happens when lldb is doing cross-host debugging and doesn't have a copy of the target system's binaries) 2. It eventually calls LocateMacOSXFilesUsingDebugSymbols which does a spotlight search for the dSYM on the local system, and failing that, tries the DBGShellCommands command to find the dSYM. 3. It gets a dSYM. It reads the per-UUID plist in the dSYM. The dSYM has a DBGSymbolRichExecutable kv pair pointing to the binary on a network filesystem. 4. Using the binary on the network filesystem, lldb now goes to find the dSYM. 5. It starts by looking for a dSYM next to the binary it found. 6. lldb is now reading the dSYM over a network filesystem, ignoring the one it found on its local filesystem earlier. Everything still *works* but it's much slower. This would be a tricky one to write up in a testsuite case; you really need the binary to not exist on the local system. And LocateMacOSXFilesUsingDebugSymbols will only compile on Mac OS X - even if I found a way to write up a test case, it would not run anywhere but on a mac. One change Greg wanted while I was touching this code was to have LocateMacOSXFilesUsingDebugSymbols (which could be asked to find a binary OR find a dSYM) to instead return a ModuleSpec with the sum total of everything it could find. This change of passing around a ModuleSpec instead of a FileSpec was percolated up into ModuleList::GetSharedModule. The changes to LocateMacOSXFilesUsingDebugSymbols look larger than they really are - there's a lot of simple whitespace changes in there. I ran the testsuites on mac, no new regressions introduced <rdar://problem/21993813> llvm-svn: 249755
2015-10-09 05:48:35 +08:00
// v. https://en.wikipedia.org/wiki/ARM_Cortex-M#Silicon_customization
// Cortex-M0 - ARMv6-M - armv6m
// Cortex-M3 - ARMv7-M - armv7m
// Cortex-M4 - ARMv7E-M - armv7em
case ArchSpec::eCore_arm_armv7m:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_generic)
return true;
if (core2 == ArchSpec::eCore_arm_armv6m)
return true;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
if (core2 == ArchSpec::eCore_arm_armv7em)
return true;
try_inverse = true;
}
break;
case ArchSpec::eCore_arm_armv7f:
case ArchSpec::eCore_arm_armv7k:
case ArchSpec::eCore_arm_armv7s:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_generic)
return true;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_x86_64_x86_64h:
if (!enforce_exact_match)
{
try_inverse = false;
if (core2 == ArchSpec::eCore_x86_64_x86_64)
return true;
}
break;
case ArchSpec::eCore_arm_armv8:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_arm64)
return true;
if (core2 == ArchSpec::eCore_arm_aarch64)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_arm_aarch64:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_arm64)
return true;
if (core2 == ArchSpec::eCore_arm_armv8)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_arm_arm64:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_aarch64)
return true;
if (core2 == ArchSpec::eCore_arm_armv8)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips32:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32_first && core2 <= ArchSpec::kCore_mips32_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips32el:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32el_first && core2 <= ArchSpec::kCore_mips32el_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32_first && core2 <= ArchSpec::kCore_mips32_last)
return true;
if (core2 >= ArchSpec::kCore_mips64_first && core2 <= ArchSpec::kCore_mips64_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64el:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32el_first && core2 <= ArchSpec::kCore_mips32el_last)
return true;
if (core2 >= ArchSpec::kCore_mips64el_first && core2 <= ArchSpec::kCore_mips64el_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64r2:
case ArchSpec::eCore_mips64r3:
case ArchSpec::eCore_mips64r5:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32_first && core2 <= (core1 - 10))
return true;
if (core2 >= ArchSpec::kCore_mips64_first && core2 <= (core1 - 1))
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64r2el:
case ArchSpec::eCore_mips64r3el:
case ArchSpec::eCore_mips64r5el:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32el_first && core2 <= (core1 - 10))
return true;
if (core2 >= ArchSpec::kCore_mips64el_first && core2 <= (core1 - 1))
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips32r2:
case ArchSpec::eCore_mips32r3:
case ArchSpec::eCore_mips32r5:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32_first && core2 <= core1)
return true;
}
break;
case ArchSpec::eCore_mips32r2el:
case ArchSpec::eCore_mips32r3el:
case ArchSpec::eCore_mips32r5el:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32el_first && core2 <= core1)
return true;
}
break;
case ArchSpec::eCore_mips32r6:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_mips32 || core2 == ArchSpec::eCore_mips32r6)
return true;
}
break;
case ArchSpec::eCore_mips32r6el:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_mips32el || core2 == ArchSpec::eCore_mips32r6el)
return true;
return true;
}
break;
case ArchSpec::eCore_mips64r6:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_mips32 || core2 == ArchSpec::eCore_mips32r6)
return true;
if (core2 == ArchSpec::eCore_mips64 || core2 == ArchSpec::eCore_mips64r6)
return true;
}
break;
case ArchSpec::eCore_mips64r6el:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_mips32el || core2 == ArchSpec::eCore_mips32r6el)
return true;
if (core2 == ArchSpec::eCore_mips64el || core2 == ArchSpec::eCore_mips64r6el)
return true;
}
break;
default:
break;
}
if (try_inverse)
return cores_match (core2, core1, false, enforce_exact_match);
return false;
}
bool
lldb_private::operator<(const ArchSpec& lhs, const ArchSpec& rhs)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
const ArchSpec::Core lhs_core = lhs.GetCore ();
const ArchSpec::Core rhs_core = rhs.GetCore ();
return lhs_core < rhs_core;
}
Handle thumb IT instructions correctly all the time. The issue with Thumb IT (if/then) instructions is the IT instruction preceeds up to four instructions that are made conditional. If a breakpoint is placed on one of the conditional instructions, the instruction either needs to match the thumb opcode size (2 or 4 bytes) or a BKPT instruction needs to be used as these are always unconditional (even in a IT instruction). If BKPT instructions are used, then we might end up stopping on an instruction that won't get executed. So if we do stop at a BKPT instruction, we need to continue if the condition is not true. When using the BKPT isntructions are easy in that you don't need to detect the size of the breakpoint that needs to be used when setting a breakpoint even in a thumb IT instruction. The bad part is you will now always stop at the opcode location and let LLDB determine if it should auto-continue. If the BKPT instruction is used, the BKPT that is used for ARM code should be something that also triggers the BKPT instruction in Thumb in case you set a breakpoint in the middle of code and the code is actually Thumb code. A value of 0xE120BE70 will work since the lower 16 bits being 0xBE70 happens to be a Thumb BKPT instruction. The alternative is to use trap or illegal instructions that the kernel will translate into breakpoint hits. On Mac this was 0xE7FFDEFE for ARM and 0xDEFE for Thumb. The darwin kernel currently doesn't recognize any 32 bit Thumb instruction as a instruction that will get turned into a breakpoint exception (EXC_BREAKPOINT), so we had to use the BKPT instruction on Mac. The linux kernel recognizes a 16 and a 32 bit instruction as valid thumb breakpoint opcodes. The benefit of using 16 or 32 bit instructions is you don't stop on opcodes in a IT block when the condition doesn't match. To further complicate things, single stepping on ARM is often implemented by modifying the BCR/BVR registers and setting the processor to stop when the PC is not equal to the current value. This means single stepping is another way the ARM target can stop on instructions that won't get executed. This patch does the following: 1 - Fix the internal debugserver for Apple to use the BKPT instruction for ARM and Thumb 2 - Fix LLDB to catch when we stop in the middle of a Thumb IT instruction and continue if we stop at an instruction that won't execute 3 - Fixes this in a way that will work for any target on any platform as long as it is ARM/Thumb 4 - Adds a patch for ignoring conditions that don't match when in ARM mode (see below) This patch also provides the code that implements the same thing for ARM instructions, though it is disabled for now. The ARM patch will check the condition of the instruction in ARM mode and continue if the condition isn't true (and therefore the instruction would not be executed). Again, this is not enable, but the code for it has been added. <rdar://problem/19145455> llvm-svn: 223851
2014-12-10 07:31:02 +08:00
static void
StopInfoOverrideCallbackTypeARM(lldb_private::Thread &thread)
{
// We need to check if we are stopped in Thumb mode in a IT instruction
// and detect if the condition doesn't pass. If this is the case it means
// we won't actually execute this instruction. If this happens we need to
// clear the stop reason to no thread plans think we are stopped for a
// reason and the plans should keep going.
//
// We do this because when single stepping many ARM processes, debuggers
// often use the BVR/BCR registers that says "stop when the PC is not
// equal to its current value". This method of stepping means we can end
// up stopping on instructions inside an if/then block that wouldn't get
// executed. By fixing this we can stop the debugger from seeming like
// you stepped through both the "if" _and_ the "else" clause when source
// level stepping because the debugger stops regardless due to the BVR/BCR
// triggering a stop.
//
// It also means we can set breakpoints on instructions inside an an
// if/then block and correctly skip them if we use the BKPT instruction.
// The ARM and Thumb BKPT instructions are unconditional even when executed
// in a Thumb IT block.
//
// If your debugger inserts software traps in ARM/Thumb code, it will
// need to use 16 and 32 bit instruction for 16 and 32 bit thumb
// instructions respectively. If your debugger inserts a 16 bit thumb
// trap on top of a 32 bit thumb instruction for an opcode that is inside
// an if/then, it will change the it/then to conditionally execute your
// 16 bit trap and then cause your program to crash if it executes the
// trailing 16 bits (the second half of the 32 bit thumb instruction you
// partially overwrote).
RegisterContextSP reg_ctx_sp (thread.GetRegisterContext());
if (reg_ctx_sp)
{
const uint32_t cpsr = reg_ctx_sp->GetFlags(0);
if (cpsr != 0)
{
// Read the J and T bits to get the ISETSTATE
const uint32_t J = Bit32(cpsr, 24);
const uint32_t T = Bit32(cpsr, 5);
const uint32_t ISETSTATE = J << 1 | T;
if (ISETSTATE == 0)
{
// NOTE: I am pretty sure we want to enable the code below
// that detects when we stop on an instruction in ARM mode
// that is conditional and the condition doesn't pass. This
// can happen if you set a breakpoint on an instruction that
// is conditional. We currently will _always_ stop on the
// instruction which is bad. You can also run into this while
// single stepping and you could appear to run code in the "if"
// and in the "else" clause because it would stop at all of the
// conditional instructions in both.
// In such cases, we really don't want to stop at this location.
// I will check with the lldb-dev list first before I enable this.
#if 0
// ARM mode: check for condition on intsruction
const addr_t pc = reg_ctx_sp->GetPC();
Error error;
// If we fail to read the opcode we will get UINT64_MAX as the
// result in "opcode" which we can use to detect if we read a
// valid opcode.
const uint64_t opcode = thread.GetProcess()->ReadUnsignedIntegerFromMemory(pc, 4, UINT64_MAX, error);
if (opcode <= UINT32_MAX)
{
const uint32_t condition = Bits32((uint32_t)opcode, 31, 28);
if (ARMConditionPassed(condition, cpsr) == false)
{
// We ARE stopped on an ARM instruction whose condition doesn't
// pass so this instruction won't get executed.
// Regardless of why it stopped, we need to clear the stop info
thread.SetStopInfo (StopInfoSP());
}
}
#endif
}
else if (ISETSTATE == 1)
{
// Thumb mode
const uint32_t ITSTATE = Bits32 (cpsr, 15, 10) << 2 | Bits32 (cpsr, 26, 25);
if (ITSTATE != 0)
{
const uint32_t condition = Bits32(ITSTATE, 7, 4);
if (ARMConditionPassed(condition, cpsr) == false)
{
// We ARE stopped in a Thumb IT instruction on an instruction whose
// condition doesn't pass so this instruction won't get executed.
// Regardless of why it stopped, we need to clear the stop info
thread.SetStopInfo (StopInfoSP());
}
}
}
}
}
}
ArchSpec::StopInfoOverrideCallbackType
ArchSpec::GetStopInfoOverrideCallback () const
{
const llvm::Triple::ArchType machine = GetMachine();
if (machine == llvm::Triple::arm)
return StopInfoOverrideCallbackTypeARM;
return NULL;
}
bool
ArchSpec::IsFullySpecifiedTriple () const
{
const auto& user_specified_triple = GetTriple();
bool user_triple_fully_specified = false;
if ((user_specified_triple.getOS() != llvm::Triple::UnknownOS) || TripleOSWasSpecified())
{
if ((user_specified_triple.getVendor() != llvm::Triple::UnknownVendor) || TripleVendorWasSpecified())
{
const unsigned unspecified = 0;
if (user_specified_triple.getOSMajorVersion() != unspecified)
{
user_triple_fully_specified = true;
}
}
}
return user_triple_fully_specified;
}
void
ArchSpec::PiecewiseTripleCompare (const ArchSpec &other,
bool &arch_different,
bool &vendor_different,
bool &os_different,
bool &os_version_different,
bool &env_different)
{
const llvm::Triple &me(GetTriple());
const llvm::Triple &them(other.GetTriple());
arch_different = (me.getArch() != them.getArch());
vendor_different = (me.getVendor() != them.getVendor());
os_different = (me.getOS() != them.getOS());
os_version_different = (me.getOSMajorVersion() != them.getOSMajorVersion());
env_different = (me.getEnvironment() != them.getEnvironment());
}
void
ArchSpec::DumpTriple(Stream &s) const
{
const llvm::Triple &triple = GetTriple();
llvm::StringRef arch_str = triple.getArchName();
llvm::StringRef vendor_str = triple.getVendorName();
llvm::StringRef os_str = triple.getOSName();
s.Printf("%s-%s-%s",
arch_str.empty() ? "*" : arch_str.str().c_str(),
vendor_str.empty() ? "*" : vendor_str.str().c_str(),
os_str.empty() ? "*" : os_str.str().c_str()
);
}