llvm-project/llvm/lib/Target/AMDGPU/SIFixSGPRCopies.cpp

715 lines
24 KiB
C++
Raw Normal View History

//===- SIFixSGPRCopies.cpp - Remove potential VGPR => SGPR copies ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Copies from VGPR to SGPR registers are illegal and the register coalescer
/// will sometimes generate these illegal copies in situations like this:
///
/// Register Class <vsrc> is the union of <vgpr> and <sgpr>
///
/// BB0:
/// %0 <sgpr> = SCALAR_INST
/// %1 <vsrc> = COPY %0 <sgpr>
/// ...
/// BRANCH %cond BB1, BB2
/// BB1:
/// %2 <vgpr> = VECTOR_INST
/// %3 <vsrc> = COPY %2 <vgpr>
/// BB2:
/// %4 <vsrc> = PHI %1 <vsrc>, <%bb.0>, %3 <vrsc>, <%bb.1>
/// %5 <vgpr> = VECTOR_INST %4 <vsrc>
2013-11-14 12:05:22 +08:00
///
///
/// The coalescer will begin at BB0 and eliminate its copy, then the resulting
/// code will look like this:
///
/// BB0:
/// %0 <sgpr> = SCALAR_INST
/// ...
/// BRANCH %cond BB1, BB2
/// BB1:
/// %2 <vgpr> = VECTOR_INST
/// %3 <vsrc> = COPY %2 <vgpr>
/// BB2:
/// %4 <sgpr> = PHI %0 <sgpr>, <%bb.0>, %3 <vsrc>, <%bb.1>
/// %5 <vgpr> = VECTOR_INST %4 <sgpr>
///
/// Now that the result of the PHI instruction is an SGPR, the register
/// allocator is now forced to constrain the register class of %3 to
/// <sgpr> so we end up with final code like this:
2013-11-14 12:05:22 +08:00
///
/// BB0:
/// %0 <sgpr> = SCALAR_INST
/// ...
/// BRANCH %cond BB1, BB2
/// BB1:
/// %2 <vgpr> = VECTOR_INST
/// %3 <sgpr> = COPY %2 <vgpr>
/// BB2:
/// %4 <sgpr> = PHI %0 <sgpr>, <%bb.0>, %3 <sgpr>, <%bb.1>
/// %5 <vgpr> = VECTOR_INST %4 <sgpr>
///
2013-11-14 12:05:22 +08:00
/// Now this code contains an illegal copy from a VGPR to an SGPR.
///
/// In order to avoid this problem, this pass searches for PHI instructions
/// which define a <vsrc> register and constrains its definition class to
/// <vgpr> if the user of the PHI's definition register is a vector instruction.
/// If the PHI's definition class is constrained to <vgpr> then the coalescer
/// will be unable to perform the COPY removal from the above example which
/// ultimately led to the creation of an illegal COPY.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <list>
#include <map>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "si-fix-sgpr-copies"
static cl::opt<bool> EnableM0Merge(
"amdgpu-enable-merge-m0",
cl::desc("Merge and hoist M0 initializations"),
cl::init(false));
namespace {
class SIFixSGPRCopies : public MachineFunctionPass {
MachineDominatorTree *MDT;
public:
static char ID;
SIFixSGPRCopies() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Fix SGPR copies"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(SIFixSGPRCopies, DEBUG_TYPE,
"SI Fix SGPR copies", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(SIFixSGPRCopies, DEBUG_TYPE,
"SI Fix SGPR copies", false, false)
char SIFixSGPRCopies::ID = 0;
char &llvm::SIFixSGPRCopiesID = SIFixSGPRCopies::ID;
FunctionPass *llvm::createSIFixSGPRCopiesPass() {
return new SIFixSGPRCopies();
}
static bool hasVGPROperands(const MachineInstr &MI, const SIRegisterInfo *TRI) {
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
if (!MI.getOperand(i).isReg() ||
!TargetRegisterInfo::isVirtualRegister(MI.getOperand(i).getReg()))
continue;
if (TRI->hasVGPRs(MRI.getRegClass(MI.getOperand(i).getReg())))
return true;
}
return false;
}
static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
getCopyRegClasses(const MachineInstr &Copy,
const SIRegisterInfo &TRI,
const MachineRegisterInfo &MRI) {
unsigned DstReg = Copy.getOperand(0).getReg();
unsigned SrcReg = Copy.getOperand(1).getReg();
const TargetRegisterClass *SrcRC =
TargetRegisterInfo::isVirtualRegister(SrcReg) ?
MRI.getRegClass(SrcReg) :
TRI.getPhysRegClass(SrcReg);
// We don't really care about the subregister here.
// SrcRC = TRI.getSubRegClass(SrcRC, Copy.getOperand(1).getSubReg());
const TargetRegisterClass *DstRC =
TargetRegisterInfo::isVirtualRegister(DstReg) ?
MRI.getRegClass(DstReg) :
TRI.getPhysRegClass(DstReg);
return std::make_pair(SrcRC, DstRC);
}
static bool isVGPRToSGPRCopy(const TargetRegisterClass *SrcRC,
const TargetRegisterClass *DstRC,
const SIRegisterInfo &TRI) {
return SrcRC != &AMDGPU::VReg_1RegClass && TRI.isSGPRClass(DstRC) &&
TRI.hasVGPRs(SrcRC);
}
static bool isSGPRToVGPRCopy(const TargetRegisterClass *SrcRC,
const TargetRegisterClass *DstRC,
const SIRegisterInfo &TRI) {
return DstRC != &AMDGPU::VReg_1RegClass && TRI.isSGPRClass(SrcRC) &&
TRI.hasVGPRs(DstRC);
}
static bool tryChangeVGPRtoSGPRinCopy(MachineInstr &MI,
const SIRegisterInfo *TRI,
const SIInstrInfo *TII) {
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
auto &Src = MI.getOperand(1);
unsigned DstReg = MI.getOperand(0).getReg();
unsigned SrcReg = Src.getReg();
if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
!TargetRegisterInfo::isVirtualRegister(DstReg))
return false;
for (const auto &MO : MRI.reg_nodbg_operands(DstReg)) {
const auto *UseMI = MO.getParent();
if (UseMI == &MI)
continue;
if (MO.isDef() || UseMI->getParent() != MI.getParent() ||
UseMI->getOpcode() <= TargetOpcode::GENERIC_OP_END ||
!TII->isOperandLegal(*UseMI, UseMI->getOperandNo(&MO), &Src))
return false;
}
// Change VGPR to SGPR destination.
MRI.setRegClass(DstReg, TRI->getEquivalentSGPRClass(MRI.getRegClass(DstReg)));
return true;
}
// Distribute an SGPR->VGPR copy of a REG_SEQUENCE into a VGPR REG_SEQUENCE.
//
// SGPRx = ...
// SGPRy = REG_SEQUENCE SGPRx, sub0 ...
// VGPRz = COPY SGPRy
//
// ==>
//
// VGPRx = COPY SGPRx
// VGPRz = REG_SEQUENCE VGPRx, sub0
//
// This exposes immediate folding opportunities when materializing 64-bit
// immediates.
static bool foldVGPRCopyIntoRegSequence(MachineInstr &MI,
const SIRegisterInfo *TRI,
const SIInstrInfo *TII,
MachineRegisterInfo &MRI) {
assert(MI.isRegSequence());
unsigned DstReg = MI.getOperand(0).getReg();
if (!TRI->isSGPRClass(MRI.getRegClass(DstReg)))
return false;
if (!MRI.hasOneUse(DstReg))
return false;
MachineInstr &CopyUse = *MRI.use_instr_begin(DstReg);
if (!CopyUse.isCopy())
return false;
// It is illegal to have vreg inputs to a physreg defining reg_sequence.
if (TargetRegisterInfo::isPhysicalRegister(CopyUse.getOperand(0).getReg()))
return false;
const TargetRegisterClass *SrcRC, *DstRC;
std::tie(SrcRC, DstRC) = getCopyRegClasses(CopyUse, *TRI, MRI);
if (!isSGPRToVGPRCopy(SrcRC, DstRC, *TRI))
return false;
if (tryChangeVGPRtoSGPRinCopy(CopyUse, TRI, TII))
return true;
// TODO: Could have multiple extracts?
unsigned SubReg = CopyUse.getOperand(1).getSubReg();
if (SubReg != AMDGPU::NoSubRegister)
return false;
MRI.setRegClass(DstReg, DstRC);
// SGPRx = ...
// SGPRy = REG_SEQUENCE SGPRx, sub0 ...
// VGPRz = COPY SGPRy
// =>
// VGPRx = COPY SGPRx
// VGPRz = REG_SEQUENCE VGPRx, sub0
MI.getOperand(0).setReg(CopyUse.getOperand(0).getReg());
for (unsigned I = 1, N = MI.getNumOperands(); I != N; I += 2) {
unsigned SrcReg = MI.getOperand(I).getReg();
unsigned SrcSubReg = MI.getOperand(I).getSubReg();
const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
assert(TRI->isSGPRClass(SrcRC) &&
"Expected SGPR REG_SEQUENCE to only have SGPR inputs");
SrcRC = TRI->getSubRegClass(SrcRC, SrcSubReg);
const TargetRegisterClass *NewSrcRC = TRI->getEquivalentVGPRClass(SrcRC);
unsigned TmpReg = MRI.createVirtualRegister(NewSrcRC);
BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(), TII->get(AMDGPU::COPY),
TmpReg)
.add(MI.getOperand(I));
MI.getOperand(I).setReg(TmpReg);
}
CopyUse.eraseFromParent();
return true;
}
static bool phiHasVGPROperands(const MachineInstr &PHI,
const MachineRegisterInfo &MRI,
const SIRegisterInfo *TRI,
const SIInstrInfo *TII) {
for (unsigned i = 1; i < PHI.getNumOperands(); i += 2) {
unsigned Reg = PHI.getOperand(i).getReg();
if (TRI->hasVGPRs(MRI.getRegClass(Reg)))
return true;
}
return false;
}
static bool phiHasBreakDef(const MachineInstr &PHI,
const MachineRegisterInfo &MRI,
SmallSet<unsigned, 8> &Visited) {
for (unsigned i = 1; i < PHI.getNumOperands(); i += 2) {
unsigned Reg = PHI.getOperand(i).getReg();
if (Visited.count(Reg))
continue;
Visited.insert(Reg);
MachineInstr *DefInstr = MRI.getVRegDef(Reg);
switch (DefInstr->getOpcode()) {
default:
break;
case AMDGPU::SI_IF_BREAK:
return true;
case AMDGPU::PHI:
if (phiHasBreakDef(*DefInstr, MRI, Visited))
return true;
}
}
return false;
}
static bool hasTerminatorThatModifiesExec(const MachineBasicBlock &MBB,
const TargetRegisterInfo &TRI) {
for (MachineBasicBlock::const_iterator I = MBB.getFirstTerminator(),
E = MBB.end(); I != E; ++I) {
if (I->modifiesRegister(AMDGPU::EXEC, &TRI))
return true;
}
return false;
}
static bool isSafeToFoldImmIntoCopy(const MachineInstr *Copy,
const MachineInstr *MoveImm,
const SIInstrInfo *TII,
unsigned &SMovOp,
int64_t &Imm) {
if (Copy->getOpcode() != AMDGPU::COPY)
return false;
if (!MoveImm->isMoveImmediate())
return false;
const MachineOperand *ImmOp =
TII->getNamedOperand(*MoveImm, AMDGPU::OpName::src0);
if (!ImmOp->isImm())
return false;
// FIXME: Handle copies with sub-regs.
if (Copy->getOperand(0).getSubReg())
return false;
switch (MoveImm->getOpcode()) {
default:
return false;
case AMDGPU::V_MOV_B32_e32:
SMovOp = AMDGPU::S_MOV_B32;
break;
case AMDGPU::V_MOV_B64_PSEUDO:
SMovOp = AMDGPU::S_MOV_B64;
break;
}
Imm = ImmOp->getImm();
return true;
}
template <class UnaryPredicate>
bool searchPredecessors(const MachineBasicBlock *MBB,
const MachineBasicBlock *CutOff,
UnaryPredicate Predicate) {
if (MBB == CutOff)
return false;
DenseSet<const MachineBasicBlock *> Visited;
SmallVector<MachineBasicBlock *, 4> Worklist(MBB->pred_begin(),
MBB->pred_end());
while (!Worklist.empty()) {
MachineBasicBlock *MBB = Worklist.pop_back_val();
if (!Visited.insert(MBB).second)
continue;
if (MBB == CutOff)
continue;
if (Predicate(MBB))
return true;
Worklist.append(MBB->pred_begin(), MBB->pred_end());
}
return false;
}
static bool predsHasDivergentTerminator(MachineBasicBlock *MBB,
const TargetRegisterInfo *TRI) {
return searchPredecessors(MBB, nullptr, [TRI](MachineBasicBlock *MBB) {
return hasTerminatorThatModifiesExec(*MBB, *TRI); });
}
// Checks if there is potential path From instruction To instruction.
// If CutOff is specified and it sits in between of that path we ignore
// a higher portion of the path and report it is not reachable.
static bool isReachable(const MachineInstr *From,
const MachineInstr *To,
const MachineBasicBlock *CutOff,
MachineDominatorTree &MDT) {
// If either From block dominates To block or instructions are in the same
// block and From is higher.
if (MDT.dominates(From, To))
return true;
const MachineBasicBlock *MBBFrom = From->getParent();
const MachineBasicBlock *MBBTo = To->getParent();
if (MBBFrom == MBBTo)
return false;
// Instructions are in different blocks, do predecessor search.
// We should almost never get here since we do not usually produce M0 stores
// other than -1.
return searchPredecessors(MBBTo, CutOff, [MBBFrom]
(const MachineBasicBlock *MBB) { return MBB == MBBFrom; });
}
// Hoist and merge identical SGPR initializations into a common predecessor.
// This is intended to combine M0 initializations, but can work with any
// SGPR. A VGPR cannot be processed since we cannot guarantee vector
// executioon.
static bool hoistAndMergeSGPRInits(unsigned Reg,
const MachineRegisterInfo &MRI,
MachineDominatorTree &MDT) {
// List of inits by immediate value.
using InitListMap = std::map<unsigned, std::list<MachineInstr *>>;
InitListMap Inits;
// List of clobbering instructions.
SmallVector<MachineInstr*, 8> Clobbers;
bool Changed = false;
for (auto &MI : MRI.def_instructions(Reg)) {
MachineOperand *Imm = nullptr;
for (auto &MO: MI.operands()) {
if ((MO.isReg() && ((MO.isDef() && MO.getReg() != Reg) || !MO.isDef())) ||
(!MO.isImm() && !MO.isReg()) || (MO.isImm() && Imm)) {
Imm = nullptr;
break;
} else if (MO.isImm())
Imm = &MO;
}
if (Imm)
Inits[Imm->getImm()].push_front(&MI);
else
Clobbers.push_back(&MI);
}
for (auto &Init : Inits) {
auto &Defs = Init.second;
for (auto I1 = Defs.begin(), E = Defs.end(); I1 != E; ) {
MachineInstr *MI1 = *I1;
for (auto I2 = std::next(I1); I2 != E; ) {
MachineInstr *MI2 = *I2;
// Check any possible interference
auto intereferes = [&](MachineBasicBlock::iterator From,
MachineBasicBlock::iterator To) -> bool {
assert(MDT.dominates(&*To, &*From));
auto interferes = [&MDT, From, To](MachineInstr* &Clobber) -> bool {
const MachineBasicBlock *MBBFrom = From->getParent();
const MachineBasicBlock *MBBTo = To->getParent();
bool MayClobberFrom = isReachable(Clobber, &*From, MBBTo, MDT);
bool MayClobberTo = isReachable(Clobber, &*To, MBBTo, MDT);
if (!MayClobberFrom && !MayClobberTo)
return false;
if ((MayClobberFrom && !MayClobberTo) ||
(!MayClobberFrom && MayClobberTo))
return true;
// Both can clobber, this is not an interference only if both are
// dominated by Clobber and belong to the same block or if Clobber
// properly dominates To, given that To >> From, so it dominates
// both and located in a common dominator.
return !((MBBFrom == MBBTo &&
MDT.dominates(Clobber, &*From) &&
MDT.dominates(Clobber, &*To)) ||
MDT.properlyDominates(Clobber->getParent(), MBBTo));
};
return (llvm::any_of(Clobbers, interferes)) ||
(llvm::any_of(Inits, [&](InitListMap::value_type &C) {
return C.first != Init.first &&
llvm::any_of(C.second, interferes);
}));
};
if (MDT.dominates(MI1, MI2)) {
if (!intereferes(MI2, MI1)) {
LLVM_DEBUG(dbgs()
<< "Erasing from "
<< printMBBReference(*MI2->getParent()) << " " << *MI2);
MI2->eraseFromParent();
Defs.erase(I2++);
Changed = true;
continue;
}
} else if (MDT.dominates(MI2, MI1)) {
if (!intereferes(MI1, MI2)) {
LLVM_DEBUG(dbgs()
<< "Erasing from "
<< printMBBReference(*MI1->getParent()) << " " << *MI1);
MI1->eraseFromParent();
Defs.erase(I1++);
Changed = true;
break;
}
} else {
auto *MBB = MDT.findNearestCommonDominator(MI1->getParent(),
MI2->getParent());
if (!MBB) {
++I2;
continue;
}
MachineBasicBlock::iterator I = MBB->getFirstNonPHI();
if (!intereferes(MI1, I) && !intereferes(MI2, I)) {
LLVM_DEBUG(dbgs()
<< "Erasing from "
<< printMBBReference(*MI1->getParent()) << " " << *MI1
<< "and moving from "
<< printMBBReference(*MI2->getParent()) << " to "
<< printMBBReference(*I->getParent()) << " " << *MI2);
I->getParent()->splice(I, MI2->getParent(), MI2);
MI1->eraseFromParent();
Defs.erase(I1++);
Changed = true;
break;
}
}
++I2;
}
++I1;
}
}
if (Changed)
MRI.clearKillFlags(Reg);
return Changed;
}
bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
MachineRegisterInfo &MRI = MF.getRegInfo();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
MDT = &getAnalysis<MachineDominatorTree>();
SmallVector<MachineInstr *, 16> Worklist;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
MachineInstr &MI = *I;
switch (MI.getOpcode()) {
default:
continue;
case AMDGPU::COPY:
[AMDGPU] Add support for Whole Wavefront Mode Summary: Whole Wavefront Wode (WWM) is similar to WQM, except that all of the lanes are always enabled, regardless of control flow. This is required for implementing wavefront reductions in non-uniform control flow, where we need to use the inactive lanes to propagate intermediate results, so they need to be enabled. We need to propagate WWM to uses (unless they're explicitly marked as exact) so that they also propagate intermediate results correctly. We do the analysis and exec mask munging during the WQM pass, since there are interactions with WQM for things that require both WQM and WWM. For simplicity, WWM is entirely block-local -- blocks are never WWM on entry or exit of a block, and WWM is not propagated to the block level. This means that computations involving WWM cannot involve control flow, but we only ever plan to use WWM for a few limited purposes (none of which involve control flow) anyways. Shaders can ask for WWM using the @llvm.amdgcn.wwm intrinsic. There isn't yet a way to turn WWM off -- that will be added in a future change. Finally, it turns out that turning on inactive lanes causes a number of problems with register allocation. While the best long-term solution seems like teaching LLVM's register allocator about predication, for now we need to add some hacks to prevent ourselves from getting into trouble due to constraints that aren't currently expressed in LLVM. For the gory details, see the comments at the top of SIFixWWMLiveness.cpp. Reviewers: arsenm, nhaehnle, tpr Subscribers: kzhuravl, wdng, mgorny, yaxunl, dstuttard, t-tye, llvm-commits Differential Revision: https://reviews.llvm.org/D35524 llvm-svn: 310087
2017-08-05 02:36:52 +08:00
case AMDGPU::WQM:
case AMDGPU::WWM: {
// If the destination register is a physical register there isn't really
// much we can do to fix this.
if (!TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg()))
continue;
const TargetRegisterClass *SrcRC, *DstRC;
std::tie(SrcRC, DstRC) = getCopyRegClasses(MI, *TRI, MRI);
if (isVGPRToSGPRCopy(SrcRC, DstRC, *TRI)) {
unsigned SrcReg = MI.getOperand(1).getReg();
if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
TII->moveToVALU(MI, MDT);
break;
}
MachineInstr *DefMI = MRI.getVRegDef(SrcReg);
unsigned SMovOp;
int64_t Imm;
// If we are just copying an immediate, we can replace the copy with
// s_mov_b32.
if (isSafeToFoldImmIntoCopy(&MI, DefMI, TII, SMovOp, Imm)) {
MI.getOperand(1).ChangeToImmediate(Imm);
MI.addImplicitDefUseOperands(MF);
MI.setDesc(TII->get(SMovOp));
break;
}
TII->moveToVALU(MI, MDT);
} else if (isSGPRToVGPRCopy(SrcRC, DstRC, *TRI)) {
tryChangeVGPRtoSGPRinCopy(MI, TRI, TII);
}
break;
}
case AMDGPU::PHI: {
unsigned Reg = MI.getOperand(0).getReg();
if (!TRI->isSGPRClass(MRI.getRegClass(Reg)))
break;
// We don't need to fix the PHI if the common dominator of the
// two incoming blocks terminates with a uniform branch.
bool HasVGPROperand = phiHasVGPROperands(MI, MRI, TRI, TII);
if (MI.getNumExplicitOperands() == 5 && !HasVGPROperand) {
MachineBasicBlock *MBB0 = MI.getOperand(2).getMBB();
MachineBasicBlock *MBB1 = MI.getOperand(4).getMBB();
if (!predsHasDivergentTerminator(MBB0, TRI) &&
!predsHasDivergentTerminator(MBB1, TRI)) {
LLVM_DEBUG(dbgs()
<< "Not fixing PHI for uniform branch: " << MI << '\n');
break;
}
}
// If a PHI node defines an SGPR and any of its operands are VGPRs,
// then we need to move it to the VALU.
//
// Also, if a PHI node defines an SGPR and has all SGPR operands
// we must move it to the VALU, because the SGPR operands will
// all end up being assigned the same register, which means
// there is a potential for a conflict if different threads take
// different control flow paths.
//
// For Example:
//
// sgpr0 = def;
// ...
// sgpr1 = def;
// ...
// sgpr2 = PHI sgpr0, sgpr1
// use sgpr2;
//
// Will Become:
//
// sgpr2 = def;
// ...
// sgpr2 = def;
// ...
// use sgpr2
//
// The one exception to this rule is when one of the operands
// is defined by a SI_BREAK, SI_IF_BREAK, or SI_ELSE_BREAK
// instruction. In this case, there we know the program will
// never enter the second block (the loop) without entering
// the first block (where the condition is computed), so there
// is no chance for values to be over-written.
SmallSet<unsigned, 8> Visited;
if (HasVGPROperand || !phiHasBreakDef(MI, MRI, Visited)) {
LLVM_DEBUG(dbgs() << "Fixing PHI: " << MI);
TII->moveToVALU(MI, MDT);
}
break;
}
case AMDGPU::REG_SEQUENCE:
if (TRI->hasVGPRs(TII->getOpRegClass(MI, 0)) ||
!hasVGPROperands(MI, TRI)) {
foldVGPRCopyIntoRegSequence(MI, TRI, TII, MRI);
continue;
}
LLVM_DEBUG(dbgs() << "Fixing REG_SEQUENCE: " << MI);
TII->moveToVALU(MI, MDT);
break;
case AMDGPU::INSERT_SUBREG: {
const TargetRegisterClass *DstRC, *Src0RC, *Src1RC;
DstRC = MRI.getRegClass(MI.getOperand(0).getReg());
Src0RC = MRI.getRegClass(MI.getOperand(1).getReg());
Src1RC = MRI.getRegClass(MI.getOperand(2).getReg());
if (TRI->isSGPRClass(DstRC) &&
(TRI->hasVGPRs(Src0RC) || TRI->hasVGPRs(Src1RC))) {
LLVM_DEBUG(dbgs() << " Fixing INSERT_SUBREG: " << MI);
TII->moveToVALU(MI, MDT);
}
break;
}
}
}
}
if (MF.getTarget().getOptLevel() > CodeGenOpt::None && EnableM0Merge)
hoistAndMergeSGPRInits(AMDGPU::M0, MRI, *MDT);
return true;
}