llvm-project/clang/lib/Analysis/GRState.cpp

624 lines
19 KiB
C++
Raw Normal View History

//= GRState*cpp - Path-Sens. "State" for tracking valuues -----*- C++ -*--=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SymbolID, ExprBindKey, and GRState*
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GRStateTrait.h"
#include "clang/Analysis/PathSensitive/GRState.h"
#include "llvm/ADT/SmallSet.h"
#include "clang/Analysis/PathSensitive/GRTransferFuncs.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
GRStateManager::~GRStateManager() {
for (std::vector<GRState::Printer*>::iterator I=Printers.begin(),
E=Printers.end(); I!=E; ++I)
delete *I;
for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
I!=E; ++I)
I->second.second(I->second.first);
}
//===----------------------------------------------------------------------===//
// Basic symbolic analysis. This will eventually be refactored into a
// separate component.
//===----------------------------------------------------------------------===//
typedef llvm::ImmutableMap<SymbolID,GRState::IntSetTy> ConstNotEqTy;
typedef llvm::ImmutableMap<SymbolID,const llvm::APSInt*> ConstEqTy;
static int ConstEqTyIndex = 0;
static int ConstNotEqTyIndex = 0;
namespace clang {
template<>
struct GRStateTrait<ConstNotEqTy> : public GRStatePartialTrait<ConstNotEqTy> {
static inline void* GDMIndex() { return &ConstNotEqTyIndex; }
};
template<>
struct GRStateTrait<ConstEqTy> : public GRStatePartialTrait<ConstEqTy> {
static inline void* GDMIndex() { return &ConstEqTyIndex; }
};
}
bool GRState::isNotEqual(SymbolID sym, const llvm::APSInt& V) const {
// Retrieve the NE-set associated with the given symbol.
const ConstNotEqTy::data_type* T = get<ConstNotEqTy>(sym);
// See if V is present in the NE-set.
return T ? T->contains(&V) : false;
}
bool GRState::isEqual(SymbolID sym, const llvm::APSInt& V) const {
// Retrieve the EQ-set associated with the given symbol.
const ConstEqTy::data_type* T = get<ConstEqTy>(sym);
// See if V is present in the EQ-set.
return T ? **T == V : false;
}
const llvm::APSInt* GRState::getSymVal(SymbolID sym) const {
const ConstEqTy::data_type* T = get<ConstEqTy>(sym);
return T ? *T : NULL;
}
const GRState*
GRStateManager::RemoveDeadBindings(const GRState* St, Stmt* Loc,
const LiveVariables& Liveness,
DeadSymbolsTy& DSymbols) {
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
// The roots are any Block-level exprs and Decls that our liveness algorithm
// tells us are live. We then see what Decls they may reference, and keep
// those around. This code more than likely can be made faster, and the
// frequency of which this method is called should be experimented with
// for optimum performance.
DRoots.clear();
StoreManager::LiveSymbolsTy LSymbols;
GRState NewSt = *St;
NewSt.Env = EnvMgr.RemoveDeadBindings(NewSt.Env, Loc, Liveness,
DRoots, LSymbols);
// Clean up the store.
DSymbols.clear();
NewSt.St = StMgr->RemoveDeadBindings(St->getStore(), Loc, Liveness, DRoots,
LSymbols, DSymbols);
GRStateRef state(getPersistentState(NewSt), *this);
// Remove the dead symbols from the symbol tracker.
// FIXME: Refactor into something else that manages symbol values.
ConstEqTy CE = state.get<ConstEqTy>();
ConstEqTy::Factory& CEFactory = state.get_context<ConstEqTy>();
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
SymbolID sym = I.getKey();
if (!LSymbols.count(sym)) {
DSymbols.insert(sym);
CE = CEFactory.Remove(CE, sym);
}
}
state = state.set<ConstEqTy>(CE);
ConstNotEqTy CNE = state.get<ConstNotEqTy>();
ConstNotEqTy::Factory& CNEFactory = state.get_context<ConstNotEqTy>();
for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
SymbolID sym = I.getKey();
if (!LSymbols.count(sym)) {
DSymbols.insert(sym);
CNE = CNEFactory.Remove(CNE, sym);
}
}
return state.set<ConstNotEqTy>(CNE);
}
const GRState* GRStateManager::SetRVal(const GRState* St, LVal LV,
RVal V) {
Store OldStore = St->getStore();
Store NewStore = StMgr->SetRVal(OldStore, LV, V);
if (NewStore == OldStore)
return St;
GRState NewSt = *St;
NewSt.St = NewStore;
return getPersistentState(NewSt);
}
const GRState* GRStateManager::AddDecl(const GRState* St, const VarDecl* VD,
Expr* Ex, unsigned Count) {
Store OldStore = St->getStore();
Store NewStore;
if (Ex)
NewStore = StMgr->AddDecl(OldStore, *this, VD, Ex,
GetRVal(St, Ex), Count);
else
NewStore = StMgr->AddDecl(OldStore, *this, VD, Ex);
if (NewStore == OldStore)
return St;
GRState NewSt = *St;
NewSt.St = NewStore;
return getPersistentState(NewSt);
}
const GRState* GRStateManager::Unbind(const GRState* St, LVal LV) {
Store OldStore = St->getStore();
Store NewStore = StMgr->Remove(OldStore, LV);
if (NewStore == OldStore)
return St;
GRState NewSt = *St;
NewSt.St = NewStore;
return getPersistentState(NewSt);
}
const GRState* GRStateManager::AddNE(const GRState* St, SymbolID sym,
const llvm::APSInt& V) {
GRStateRef state(St, *this);
// First, retrieve the NE-set associated with the given symbol.
ConstNotEqTy::data_type* T = state.get<ConstNotEqTy>(sym);
GRState::IntSetTy S = T ? *T : ISetFactory.GetEmptySet();
// Now add V to the NE set.
S = ISetFactory.Add(S, &V);
// Create a new state with the old binding replaced.
return state.set<ConstNotEqTy>(sym, S);
}
const GRState* GRStateManager::AddEQ(const GRState* St, SymbolID sym,
const llvm::APSInt& V) {
// Create a new state with the old binding replaced.
GRStateRef state(St, *this);
return state.set<ConstEqTy>(sym, &V);
}
const GRState* GRStateManager::getInitialState() {
GRState StateImpl(EnvMgr.getInitialEnvironment(),
StMgr->getInitialStore(*this),
GDMFactory.GetEmptyMap());
return getPersistentState(StateImpl);
}
const GRState* GRStateManager::getPersistentState(GRState& State) {
llvm::FoldingSetNodeID ID;
State.Profile(ID);
void* InsertPos;
if (GRState* I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
return I;
GRState* I = (GRState*) Alloc.Allocate<GRState>();
new (I) GRState(State);
StateSet.InsertNode(I, InsertPos);
return I;
}
//===----------------------------------------------------------------------===//
// State pretty-printing.
//===----------------------------------------------------------------------===//
void GRState::print(std::ostream& Out, StoreManager& StoreMgr,
Printer** Beg, Printer** End,
const char* nl, const char* sep) const {
// Print the store.
StoreMgr.print(getStore(), Out, nl, sep);
// Print Subexpression bindings.
bool isFirst = true;
for (seb_iterator I = seb_begin(), E = seb_end(); I != E; ++I) {
if (isFirst) {
Out << nl << nl << "Sub-Expressions:" << nl;
isFirst = false;
}
else { Out << nl; }
Out << " (" << (void*) I.getKey() << ") ";
I.getKey()->printPretty(Out);
Out << " : ";
I.getData().print(Out);
}
// Print block-expression bindings.
isFirst = true;
for (beb_iterator I = beb_begin(), E = beb_end(); I != E; ++I) {
if (isFirst) {
Out << nl << nl << "Block-level Expressions:" << nl;
isFirst = false;
}
else { Out << nl; }
Out << " (" << (void*) I.getKey() << ") ";
I.getKey()->printPretty(Out);
Out << " : ";
I.getData().print(Out);
}
// Print equality constraints.
// FIXME: Make just another printer do this.
ConstEqTy CE = get<ConstEqTy>();
if (!CE.isEmpty()) {
Out << nl << sep << "'==' constraints:";
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
Out << nl << " $" << I.getKey();
llvm::raw_os_ostream OS(Out);
OS << " : " << *I.getData();
}
}
// Print != constraints.
// FIXME: Make just another printer do this.
ConstNotEqTy CNE = get<ConstNotEqTy>();
if (!CNE.isEmpty()) {
Out << nl << sep << "'!=' constraints:";
for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
Out << nl << " $" << I.getKey() << " : ";
isFirst = true;
IntSetTy::iterator J = I.getData().begin(), EJ = I.getData().end();
for ( ; J != EJ; ++J) {
if (isFirst) isFirst = false;
else Out << ", ";
Out << *J;
}
}
}
// Print checker-specific data.
for ( ; Beg != End ; ++Beg) (*Beg)->Print(Out, this, nl, sep);
}
void GRStateRef::printDOT(std::ostream& Out) const {
print(Out, "\\l", "\\|");
}
void GRStateRef::printStdErr() const {
print(*llvm::cerr);
}
void GRStateRef::print(std::ostream& Out, const char* nl, const char* sep)const{
GRState::Printer **beg = Mgr->Printers.empty() ? 0 : &Mgr->Printers[0];
GRState::Printer **end = !beg ? 0 : beg + Mgr->Printers.size();
St->print(Out, *Mgr->StMgr, beg, end, nl, sep);
}
//===----------------------------------------------------------------------===//
// Generic Data Map.
//===----------------------------------------------------------------------===//
void* const* GRState::FindGDM(void* K) const {
return GDM.lookup(K);
}
void*
GRStateManager::FindGDMContext(void* K,
void* (*CreateContext)(llvm::BumpPtrAllocator&),
void (*DeleteContext)(void*)) {
std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
if (!p.first) {
p.first = CreateContext(Alloc);
p.second = DeleteContext;
}
return p.first;
}
const GRState* GRStateManager::addGDM(const GRState* St, void* Key, void* Data){
GRState::GenericDataMap M1 = St->getGDM();
GRState::GenericDataMap M2 = GDMFactory.Add(M1, Key, Data);
if (M1 == M2)
return St;
GRState NewSt = *St;
NewSt.GDM = M2;
return getPersistentState(NewSt);
}
//===----------------------------------------------------------------------===//
// Queries.
//===----------------------------------------------------------------------===//
bool GRStateManager::isEqual(const GRState* state, Expr* Ex,
const llvm::APSInt& Y) {
RVal V = GetRVal(state, Ex);
if (lval::ConcreteInt* X = dyn_cast<lval::ConcreteInt>(&V))
return X->getValue() == Y;
if (nonlval::ConcreteInt* X = dyn_cast<nonlval::ConcreteInt>(&V))
return X->getValue() == Y;
if (nonlval::SymbolVal* X = dyn_cast<nonlval::SymbolVal>(&V))
return state->isEqual(X->getSymbol(), Y);
if (lval::SymbolVal* X = dyn_cast<lval::SymbolVal>(&V))
return state->isEqual(X->getSymbol(), Y);
return false;
}
bool GRStateManager::isEqual(const GRState* state, Expr* Ex, uint64_t x) {
return isEqual(state, Ex, BasicVals.getValue(x, Ex->getType()));
}
//===----------------------------------------------------------------------===//
// "Assume" logic.
//===----------------------------------------------------------------------===//
const GRState* GRStateManager::Assume(const GRState* St, LVal Cond,
bool Assumption, bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
: St;
}
const GRState* GRStateManager::AssumeAux(const GRState* St, LVal Cond,
bool Assumption, bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this LVal.");
return St;
case lval::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
case lval::StringLiteralValKind:
isFeasible = Assumption;
return St;
case lval::FieldOffsetKind:
return AssumeAux(St, cast<lval::FieldOffset>(Cond).getBase(),
Assumption, isFeasible);
case lval::ArrayOffsetKind:
return AssumeAux(St, cast<lval::ArrayOffset>(Cond).getBase(),
Assumption, isFeasible);
case lval::ConcreteIntKind: {
bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
const GRState* GRStateManager::Assume(const GRState* St, NonLVal Cond,
bool Assumption, bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
: St;
}
const GRState* GRStateManager::AssumeAux(const GRState* St, NonLVal Cond,
bool Assumption, bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this NonLVal.");
return St;
case nonlval::SymbolValKind: {
nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond);
SymbolID sym = SV.getSymbol();
if (Assumption)
return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
else
return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
}
case nonlval::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonlval::ConcreteIntKind: {
bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
case nonlval::LValAsIntegerKind: {
return AssumeAux(St, cast<nonlval::LValAsInteger>(Cond).getLVal(),
Assumption, isFeasible);
}
}
}
const GRState* GRStateManager::AssumeSymInt(const GRState* St,
bool Assumption,
const SymIntConstraint& C,
bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
isFeasible = true;
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GE:
if (Assumption)
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LE:
if (Assumption)
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
}
}
//===----------------------------------------------------------------------===//
// FIXME: This should go into a plug-in constraint engine.
//===----------------------------------------------------------------------===//
const GRState*
GRStateManager::AssumeSymNE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X != V;
return St;
}
// Second, determine if sym != V.
if (St->isNotEqual(sym, V)) {
isFeasible = true;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is != V.
// Make that assumption.
isFeasible = true;
return AddNE(St, sym, V);
}
const GRState*
GRStateManager::AssumeSymEQ(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X == V;
return St;
}
// Second, determine if sym != V.
if (St->isNotEqual(sym, V)) {
isFeasible = false;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is == V.
// Make that assumption.
isFeasible = true;
return AddEQ(St, sym, V);
}
const GRState*
GRStateManager::AssumeSymLT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: For now have assuming x < y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const GRState*
GRStateManager::AssumeSymGT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: For now have assuming x > y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const GRState*
GRStateManager::AssumeSymGE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: Primitive logic for now. Only reject a path if the value of
// sym is a constant X and !(X >= V).
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X >= V;
return St;
}
isFeasible = true;
return St;
}
const GRState*
GRStateManager::AssumeSymLE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: Primitive logic for now. Only reject a path if the value of
// sym is a constant X and !(X <= V).
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X <= V;
return St;
}
isFeasible = true;
return St;
}