llvm-project/llvm/lib/AsmParser/LLLexer.cpp

1008 lines
30 KiB
C++
Raw Normal View History

//===- LLLexer.cpp - Lexer for .ll Files ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implement the Lexer for .ll files.
//
//===----------------------------------------------------------------------===//
#include "LLLexer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SourceMgr.h"
#include <cassert>
#include <cctype>
#include <cstdio>
using namespace llvm;
bool LLLexer::Error(LocTy ErrorLoc, const Twine &Msg) const {
ErrorInfo = SM.GetMessage(ErrorLoc, SourceMgr::DK_Error, Msg);
return true;
}
void LLLexer::Warning(LocTy WarningLoc, const Twine &Msg) const {
SM.PrintMessage(WarningLoc, SourceMgr::DK_Warning, Msg);
}
//===----------------------------------------------------------------------===//
// Helper functions.
//===----------------------------------------------------------------------===//
// atoull - Convert an ascii string of decimal digits into the unsigned long
// long representation... this does not have to do input error checking,
// because we know that the input will be matched by a suitable regex...
//
uint64_t LLLexer::atoull(const char *Buffer, const char *End) {
uint64_t Result = 0;
for (; Buffer != End; Buffer++) {
uint64_t OldRes = Result;
Result *= 10;
Result += *Buffer-'0';
if (Result < OldRes) { // Uh, oh, overflow detected!!!
Error("constant bigger than 64 bits detected!");
return 0;
}
}
return Result;
}
uint64_t LLLexer::HexIntToVal(const char *Buffer, const char *End) {
uint64_t Result = 0;
for (; Buffer != End; ++Buffer) {
uint64_t OldRes = Result;
Result *= 16;
Result += hexDigitValue(*Buffer);
if (Result < OldRes) { // Uh, oh, overflow detected!!!
Error("constant bigger than 64 bits detected!");
return 0;
}
}
return Result;
}
void LLLexer::HexToIntPair(const char *Buffer, const char *End,
uint64_t Pair[2]) {
Pair[0] = 0;
if (End - Buffer >= 16) {
for (int i = 0; i < 16; i++, Buffer++) {
assert(Buffer != End);
Pair[0] *= 16;
Pair[0] += hexDigitValue(*Buffer);
}
}
Pair[1] = 0;
for (int i = 0; i < 16 && Buffer != End; i++, Buffer++) {
Pair[1] *= 16;
Pair[1] += hexDigitValue(*Buffer);
}
if (Buffer != End)
Error("constant bigger than 128 bits detected!");
}
/// FP80HexToIntPair - translate an 80 bit FP80 number (20 hexits) into
/// { low64, high16 } as usual for an APInt.
void LLLexer::FP80HexToIntPair(const char *Buffer, const char *End,
uint64_t Pair[2]) {
Pair[1] = 0;
for (int i=0; i<4 && Buffer != End; i++, Buffer++) {
assert(Buffer != End);
Pair[1] *= 16;
Pair[1] += hexDigitValue(*Buffer);
}
Pair[0] = 0;
for (int i = 0; i < 16 && Buffer != End; i++, Buffer++) {
Pair[0] *= 16;
Pair[0] += hexDigitValue(*Buffer);
}
if (Buffer != End)
Error("constant bigger than 128 bits detected!");
}
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character.
static void UnEscapeLexed(std::string &Str) {
if (Str.empty()) return;
char *Buffer = &Str[0], *EndBuffer = Buffer+Str.size();
char *BOut = Buffer;
for (char *BIn = Buffer; BIn != EndBuffer; ) {
if (BIn[0] == '\\') {
if (BIn < EndBuffer-1 && BIn[1] == '\\') {
*BOut++ = '\\'; // Two \ becomes one
BIn += 2;
} else if (BIn < EndBuffer-2 &&
isxdigit(static_cast<unsigned char>(BIn[1])) &&
isxdigit(static_cast<unsigned char>(BIn[2]))) {
*BOut = hexDigitValue(BIn[1]) * 16 + hexDigitValue(BIn[2]);
BIn += 3; // Skip over handled chars
++BOut;
} else {
*BOut++ = *BIn++;
}
} else {
*BOut++ = *BIn++;
}
}
Str.resize(BOut-Buffer);
}
/// isLabelChar - Return true for [-a-zA-Z$._0-9].
static bool isLabelChar(char C) {
return isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
C == '.' || C == '_';
}
/// isLabelTail - Return true if this pointer points to a valid end of a label.
static const char *isLabelTail(const char *CurPtr) {
while (true) {
if (CurPtr[0] == ':') return CurPtr+1;
if (!isLabelChar(CurPtr[0])) return nullptr;
++CurPtr;
}
}
//===----------------------------------------------------------------------===//
// Lexer definition.
//===----------------------------------------------------------------------===//
LLLexer::LLLexer(StringRef StartBuf, SourceMgr &sm, SMDiagnostic &Err,
LLVMContext &C)
: CurBuf(StartBuf), ErrorInfo(Err), SM(sm), Context(C), APFloatVal(0.0) {
CurPtr = CurBuf.begin();
}
int LLLexer::getNextChar() {
char CurChar = *CurPtr++;
switch (CurChar) {
default: return (unsigned char)CurChar;
case 0:
// A nul character in the stream is either the end of the current buffer or
// a random nul in the file. Disambiguate that here.
if (CurPtr-1 != CurBuf.end())
return 0; // Just whitespace.
// Otherwise, return end of file.
--CurPtr; // Another call to lex will return EOF again.
return EOF;
}
}
lltok::Kind LLLexer::LexToken() {
TokStart = CurPtr;
int CurChar = getNextChar();
switch (CurChar) {
default:
// Handle letters: [a-zA-Z_]
if (isalpha(static_cast<unsigned char>(CurChar)) || CurChar == '_')
return LexIdentifier();
return lltok::Error;
case EOF: return lltok::Eof;
case 0:
case ' ':
case '\t':
case '\n':
case '\r':
// Ignore whitespace.
return LexToken();
case '+': return LexPositive();
case '@': return LexAt();
case '$': return LexDollar();
case '%': return LexPercent();
case '"': return LexQuote();
case '.':
if (const char *Ptr = isLabelTail(CurPtr)) {
CurPtr = Ptr;
StrVal.assign(TokStart, CurPtr-1);
return lltok::LabelStr;
}
if (CurPtr[0] == '.' && CurPtr[1] == '.') {
CurPtr += 2;
return lltok::dotdotdot;
}
return lltok::Error;
case ';':
SkipLineComment();
return LexToken();
case '!': return LexExclaim();
case '#': return LexHash();
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case '-':
return LexDigitOrNegative();
case '=': return lltok::equal;
case '[': return lltok::lsquare;
case ']': return lltok::rsquare;
case '{': return lltok::lbrace;
case '}': return lltok::rbrace;
case '<': return lltok::less;
case '>': return lltok::greater;
case '(': return lltok::lparen;
case ')': return lltok::rparen;
case ',': return lltok::comma;
case '*': return lltok::star;
case '|': return lltok::bar;
}
}
void LLLexer::SkipLineComment() {
while (true) {
if (CurPtr[0] == '\n' || CurPtr[0] == '\r' || getNextChar() == EOF)
return;
}
}
/// Lex all tokens that start with an @ character.
/// GlobalVar @\"[^\"]*\"
/// GlobalVar @[-a-zA-Z$._][-a-zA-Z$._0-9]*
/// GlobalVarID @[0-9]+
lltok::Kind LLLexer::LexAt() {
return LexVar(lltok::GlobalVar, lltok::GlobalID);
}
lltok::Kind LLLexer::LexDollar() {
if (const char *Ptr = isLabelTail(TokStart)) {
CurPtr = Ptr;
StrVal.assign(TokStart, CurPtr - 1);
return lltok::LabelStr;
}
// Handle DollarStringConstant: $\"[^\"]*\"
if (CurPtr[0] == '"') {
++CurPtr;
while (true) {
int CurChar = getNextChar();
if (CurChar == EOF) {
Error("end of file in COMDAT variable name");
return lltok::Error;
}
if (CurChar == '"') {
StrVal.assign(TokStart + 2, CurPtr - 1);
UnEscapeLexed(StrVal);
if (StringRef(StrVal).find_first_of(0) != StringRef::npos) {
Error("Null bytes are not allowed in names");
return lltok::Error;
}
return lltok::ComdatVar;
}
}
}
// Handle ComdatVarName: $[-a-zA-Z$._][-a-zA-Z$._0-9]*
if (ReadVarName())
return lltok::ComdatVar;
return lltok::Error;
}
/// ReadString - Read a string until the closing quote.
lltok::Kind LLLexer::ReadString(lltok::Kind kind) {
const char *Start = CurPtr;
while (true) {
int CurChar = getNextChar();
if (CurChar == EOF) {
Error("end of file in string constant");
return lltok::Error;
}
if (CurChar == '"') {
StrVal.assign(Start, CurPtr-1);
UnEscapeLexed(StrVal);
return kind;
}
}
}
/// ReadVarName - Read the rest of a token containing a variable name.
bool LLLexer::ReadVarName() {
const char *NameStart = CurPtr;
if (isalpha(static_cast<unsigned char>(CurPtr[0])) ||
CurPtr[0] == '-' || CurPtr[0] == '$' ||
CurPtr[0] == '.' || CurPtr[0] == '_') {
++CurPtr;
while (isalnum(static_cast<unsigned char>(CurPtr[0])) ||
CurPtr[0] == '-' || CurPtr[0] == '$' ||
CurPtr[0] == '.' || CurPtr[0] == '_')
++CurPtr;
StrVal.assign(NameStart, CurPtr);
return true;
}
return false;
}
lltok::Kind LLLexer::LexVar(lltok::Kind Var, lltok::Kind VarID) {
// Handle StringConstant: \"[^\"]*\"
if (CurPtr[0] == '"') {
++CurPtr;
while (true) {
int CurChar = getNextChar();
if (CurChar == EOF) {
Error("end of file in global variable name");
return lltok::Error;
}
if (CurChar == '"') {
StrVal.assign(TokStart+2, CurPtr-1);
UnEscapeLexed(StrVal);
if (StringRef(StrVal).find_first_of(0) != StringRef::npos) {
Error("Null bytes are not allowed in names");
return lltok::Error;
}
return Var;
}
}
}
// Handle VarName: [-a-zA-Z$._][-a-zA-Z$._0-9]*
if (ReadVarName())
return Var;
// Handle VarID: [0-9]+
if (isdigit(static_cast<unsigned char>(CurPtr[0]))) {
for (++CurPtr; isdigit(static_cast<unsigned char>(CurPtr[0])); ++CurPtr)
/*empty*/;
uint64_t Val = atoull(TokStart+1, CurPtr);
if ((unsigned)Val != Val)
Error("invalid value number (too large)!");
UIntVal = unsigned(Val);
return VarID;
}
return lltok::Error;
}
/// Lex all tokens that start with a % character.
/// LocalVar ::= %\"[^\"]*\"
/// LocalVar ::= %[-a-zA-Z$._][-a-zA-Z$._0-9]*
/// LocalVarID ::= %[0-9]+
lltok::Kind LLLexer::LexPercent() {
return LexVar(lltok::LocalVar, lltok::LocalVarID);
}
/// Lex all tokens that start with a " character.
/// QuoteLabel "[^"]+":
/// StringConstant "[^"]*"
lltok::Kind LLLexer::LexQuote() {
lltok::Kind kind = ReadString(lltok::StringConstant);
if (kind == lltok::Error || kind == lltok::Eof)
return kind;
if (CurPtr[0] == ':') {
++CurPtr;
if (StringRef(StrVal).find_first_of(0) != StringRef::npos) {
Error("Null bytes are not allowed in names");
kind = lltok::Error;
} else {
kind = lltok::LabelStr;
}
}
return kind;
}
/// Lex all tokens that start with a ! character.
2009-07-29 08:34:02 +08:00
/// !foo
/// !
lltok::Kind LLLexer::LexExclaim() {
// Lex a metadata name as a MetadataVar.
if (isalpha(static_cast<unsigned char>(CurPtr[0])) ||
CurPtr[0] == '-' || CurPtr[0] == '$' ||
CurPtr[0] == '.' || CurPtr[0] == '_' || CurPtr[0] == '\\') {
2009-07-29 08:34:02 +08:00
++CurPtr;
while (isalnum(static_cast<unsigned char>(CurPtr[0])) ||
CurPtr[0] == '-' || CurPtr[0] == '$' ||
CurPtr[0] == '.' || CurPtr[0] == '_' || CurPtr[0] == '\\')
2009-07-29 08:34:02 +08:00
++CurPtr;
2009-07-29 08:34:02 +08:00
StrVal.assign(TokStart+1, CurPtr); // Skip !
UnEscapeLexed(StrVal);
return lltok::MetadataVar;
2009-07-29 08:34:02 +08:00
}
return lltok::exclaim;
2009-07-29 08:34:02 +08:00
}
/// Lex all tokens that start with a # character.
/// AttrGrpID ::= #[0-9]+
lltok::Kind LLLexer::LexHash() {
// Handle AttrGrpID: #[0-9]+
if (isdigit(static_cast<unsigned char>(CurPtr[0]))) {
for (++CurPtr; isdigit(static_cast<unsigned char>(CurPtr[0])); ++CurPtr)
/*empty*/;
uint64_t Val = atoull(TokStart+1, CurPtr);
if ((unsigned)Val != Val)
Error("invalid value number (too large)!");
UIntVal = unsigned(Val);
return lltok::AttrGrpID;
}
return lltok::Error;
}
/// Lex a label, integer type, keyword, or hexadecimal integer constant.
/// Label [-a-zA-Z$._0-9]+:
/// IntegerType i[0-9]+
/// Keyword sdiv, float, ...
/// HexIntConstant [us]0x[0-9A-Fa-f]+
lltok::Kind LLLexer::LexIdentifier() {
const char *StartChar = CurPtr;
const char *IntEnd = CurPtr[-1] == 'i' ? nullptr : StartChar;
const char *KeywordEnd = nullptr;
for (; isLabelChar(*CurPtr); ++CurPtr) {
// If we decide this is an integer, remember the end of the sequence.
if (!IntEnd && !isdigit(static_cast<unsigned char>(*CurPtr)))
IntEnd = CurPtr;
if (!KeywordEnd && !isalnum(static_cast<unsigned char>(*CurPtr)) &&
*CurPtr != '_')
KeywordEnd = CurPtr;
}
// If we stopped due to a colon, this really is a label.
if (*CurPtr == ':') {
StrVal.assign(StartChar-1, CurPtr++);
return lltok::LabelStr;
}
// Otherwise, this wasn't a label. If this was valid as an integer type,
// return it.
if (!IntEnd) IntEnd = CurPtr;
if (IntEnd != StartChar) {
CurPtr = IntEnd;
uint64_t NumBits = atoull(StartChar, CurPtr);
if (NumBits < IntegerType::MIN_INT_BITS ||
NumBits > IntegerType::MAX_INT_BITS) {
Error("bitwidth for integer type out of range!");
return lltok::Error;
}
TyVal = IntegerType::get(Context, NumBits);
return lltok::Type;
}
// Otherwise, this was a letter sequence. See which keyword this is.
if (!KeywordEnd) KeywordEnd = CurPtr;
CurPtr = KeywordEnd;
--StartChar;
StringRef Keyword(StartChar, CurPtr - StartChar);
#define KEYWORD(STR) \
do { \
if (Keyword == #STR) \
return lltok::kw_##STR; \
} while (false)
KEYWORD(true); KEYWORD(false);
KEYWORD(declare); KEYWORD(define);
KEYWORD(global); KEYWORD(constant);
KEYWORD(private);
KEYWORD(internal);
KEYWORD(available_externally);
KEYWORD(linkonce);
KEYWORD(linkonce_odr);
KEYWORD(weak); // Use as a linkage, and a modifier for "cmpxchg".
KEYWORD(weak_odr);
KEYWORD(appending);
KEYWORD(dllimport);
KEYWORD(dllexport);
KEYWORD(common);
KEYWORD(default);
KEYWORD(hidden);
KEYWORD(protected);
KEYWORD(unnamed_addr);
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
KEYWORD(local_unnamed_addr);
KEYWORD(externally_initialized);
KEYWORD(extern_weak);
KEYWORD(external);
KEYWORD(thread_local);
KEYWORD(localdynamic);
KEYWORD(initialexec);
KEYWORD(localexec);
KEYWORD(zeroinitializer);
KEYWORD(undef);
KEYWORD(null);
KEYWORD(none);
KEYWORD(to);
KEYWORD(caller);
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
KEYWORD(within);
KEYWORD(from);
KEYWORD(tail);
KEYWORD(musttail);
KEYWORD(notail);
KEYWORD(target);
KEYWORD(triple);
KEYWORD(source_filename);
KEYWORD(unwind);
KEYWORD(deplibs); // FIXME: Remove in 4.0.
KEYWORD(datalayout);
KEYWORD(volatile);
KEYWORD(atomic);
KEYWORD(unordered);
KEYWORD(monotonic);
KEYWORD(acquire);
KEYWORD(release);
KEYWORD(acq_rel);
KEYWORD(seq_cst);
KEYWORD(singlethread);
KEYWORD(nnan);
KEYWORD(ninf);
KEYWORD(nsz);
KEYWORD(arcp);
KEYWORD(fast);
KEYWORD(nuw);
KEYWORD(nsw);
KEYWORD(exact);
KEYWORD(inbounds);
KEYWORD(align);
KEYWORD(addrspace);
KEYWORD(section);
KEYWORD(alias);
KEYWORD(ifunc);
KEYWORD(module);
KEYWORD(asm);
KEYWORD(sideeffect);
KEYWORD(alignstack);
KEYWORD(inteldialect);
KEYWORD(gc);
KEYWORD(prefix);
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
KEYWORD(prologue);
KEYWORD(ccc);
KEYWORD(fastcc);
KEYWORD(coldcc);
KEYWORD(x86_stdcallcc);
KEYWORD(x86_fastcallcc);
KEYWORD(x86_thiscallcc);
KEYWORD(x86_vectorcallcc);
KEYWORD(arm_apcscc);
KEYWORD(arm_aapcscc);
KEYWORD(arm_aapcs_vfpcc);
KEYWORD(msp430_intrcc);
KEYWORD(avr_intrcc);
KEYWORD(avr_signalcc);
KEYWORD(ptx_kernel);
KEYWORD(ptx_device);
KEYWORD(spir_kernel);
KEYWORD(spir_func);
KEYWORD(intel_ocl_bicc);
KEYWORD(x86_64_sysvcc);
KEYWORD(x86_64_win64cc);
KEYWORD(x86_regcallcc);
KEYWORD(webkit_jscc);
KEYWORD(swiftcc);
KEYWORD(anyregcc);
KEYWORD(preserve_mostcc);
KEYWORD(preserve_allcc);
KEYWORD(ghccc);
KEYWORD(x86_intrcc);
KEYWORD(hhvmcc);
KEYWORD(hhvm_ccc);
KEYWORD(cxx_fast_tlscc);
KEYWORD(amdgpu_vs);
KEYWORD(amdgpu_gs);
KEYWORD(amdgpu_ps);
KEYWORD(amdgpu_cs);
KEYWORD(amdgpu_kernel);
KEYWORD(cc);
KEYWORD(c);
KEYWORD(attributes);
KEYWORD(alwaysinline);
KEYWORD(allocsize);
KEYWORD(argmemonly);
KEYWORD(builtin);
KEYWORD(byval);
KEYWORD(inalloca);
KEYWORD(cold);
KEYWORD(convergent);
KEYWORD(dereferenceable);
KEYWORD(dereferenceable_or_null);
KEYWORD(inaccessiblememonly);
KEYWORD(inaccessiblemem_or_argmemonly);
KEYWORD(inlinehint);
KEYWORD(inreg);
KEYWORD(jumptable);
KEYWORD(minsize);
KEYWORD(naked);
KEYWORD(nest);
KEYWORD(noalias);
KEYWORD(nobuiltin);
KEYWORD(nocapture);
KEYWORD(noduplicate);
KEYWORD(noimplicitfloat);
KEYWORD(noinline);
KEYWORD(norecurse);
KEYWORD(nonlazybind);
KEYWORD(nonnull);
KEYWORD(noredzone);
KEYWORD(noreturn);
KEYWORD(nounwind);
KEYWORD(optnone);
KEYWORD(optsize);
KEYWORD(readnone);
KEYWORD(readonly);
KEYWORD(returned);
KEYWORD(returns_twice);
KEYWORD(signext);
KEYWORD(sret);
KEYWORD(ssp);
KEYWORD(sspreq);
KEYWORD(sspstrong);
Protection against stack-based memory corruption errors using SafeStack This patch adds the safe stack instrumentation pass to LLVM, which separates the program stack into a safe stack, which stores return addresses, register spills, and local variables that are statically verified to be accessed in a safe way, and the unsafe stack, which stores everything else. Such separation makes it much harder for an attacker to corrupt objects on the safe stack, including function pointers stored in spilled registers and return addresses. You can find more information about the safe stack, as well as other parts of or control-flow hijack protection technique in our OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf) and our project website (http://levee.epfl.ch). The overhead of our implementation of the safe stack is very close to zero (0.01% on the Phoronix benchmarks). This is lower than the overhead of stack cookies, which are supported by LLVM and are commonly used today, yet the security guarantees of the safe stack are strictly stronger than stack cookies. In some cases, the safe stack improves performance due to better cache locality. Our current implementation of the safe stack is stable and robust, we used it to recompile multiple projects on Linux including Chromium, and we also recompiled the entire FreeBSD user-space system and more than 100 packages. We ran unit tests on the FreeBSD system and many of the packages and observed no errors caused by the safe stack. The safe stack is also fully binary compatible with non-instrumented code and can be applied to parts of a program selectively. This patch is our implementation of the safe stack on top of LLVM. The patches make the following changes: - Add the safestack function attribute, similar to the ssp, sspstrong and sspreq attributes. - Add the SafeStack instrumentation pass that applies the safe stack to all functions that have the safestack attribute. This pass moves all unsafe local variables to the unsafe stack with a separate stack pointer, whereas all safe variables remain on the regular stack that is managed by LLVM as usual. - Invoke the pass as the last stage before code generation (at the same time the existing cookie-based stack protector pass is invoked). - Add unit tests for the safe stack. Original patch by Volodymyr Kuznetsov and others at the Dependable Systems Lab at EPFL; updates and upstreaming by myself. Differential Revision: http://reviews.llvm.org/D6094 llvm-svn: 239761
2015-06-16 05:07:11 +08:00
KEYWORD(safestack);
KEYWORD(sanitize_address);
KEYWORD(sanitize_thread);
KEYWORD(sanitize_memory);
KEYWORD(swifterror);
KEYWORD(swiftself);
KEYWORD(uwtable);
KEYWORD(writeonly);
KEYWORD(zeroext);
KEYWORD(type);
KEYWORD(opaque);
KEYWORD(comdat);
// Comdat types
KEYWORD(any);
KEYWORD(exactmatch);
KEYWORD(largest);
KEYWORD(noduplicates);
KEYWORD(samesize);
KEYWORD(eq); KEYWORD(ne); KEYWORD(slt); KEYWORD(sgt); KEYWORD(sle);
KEYWORD(sge); KEYWORD(ult); KEYWORD(ugt); KEYWORD(ule); KEYWORD(uge);
KEYWORD(oeq); KEYWORD(one); KEYWORD(olt); KEYWORD(ogt); KEYWORD(ole);
KEYWORD(oge); KEYWORD(ord); KEYWORD(uno); KEYWORD(ueq); KEYWORD(une);
KEYWORD(xchg); KEYWORD(nand); KEYWORD(max); KEYWORD(min); KEYWORD(umax);
KEYWORD(umin);
KEYWORD(x);
KEYWORD(blockaddress);
// Metadata types.
KEYWORD(distinct);
// Use-list order directives.
KEYWORD(uselistorder);
KEYWORD(uselistorder_bb);
KEYWORD(personality);
KEYWORD(cleanup);
KEYWORD(catch);
KEYWORD(filter);
#undef KEYWORD
// Keywords for types.
#define TYPEKEYWORD(STR, LLVMTY) \
do { \
if (Keyword == STR) { \
TyVal = LLVMTY; \
return lltok::Type; \
} \
} while (false)
TYPEKEYWORD("void", Type::getVoidTy(Context));
TYPEKEYWORD("half", Type::getHalfTy(Context));
TYPEKEYWORD("float", Type::getFloatTy(Context));
TYPEKEYWORD("double", Type::getDoubleTy(Context));
TYPEKEYWORD("x86_fp80", Type::getX86_FP80Ty(Context));
TYPEKEYWORD("fp128", Type::getFP128Ty(Context));
TYPEKEYWORD("ppc_fp128", Type::getPPC_FP128Ty(Context));
TYPEKEYWORD("label", Type::getLabelTy(Context));
TYPEKEYWORD("metadata", Type::getMetadataTy(Context));
TYPEKEYWORD("x86_mmx", Type::getX86_MMXTy(Context));
[IR] Add token types This introduces the basic functionality to support "token types". The motivation stems from the need to perform operations on a Value whose provenance cannot be obscured. There are several applications for such a type but my immediate motivation stems from WinEH. Our personality routine enforces a single-entry - single-exit regime for cleanups. After several rounds of optimizations, we may be left with a terminator whose "cleanup-entry block" is not entirely clear because control flow has merged two cleanups together. We have experimented with using labels as operands inside of instructions which are not terminators to indicate where we came from but found that LLVM does not expect such exotic uses of BasicBlocks. Instead, we can use this new type to clearly associate the "entry point" and "exit point" of our cleanup. This is done by having the cleanuppad yield a Token and consuming it at the cleanupret. The token type makes it impossible to obscure or otherwise hide the Value, making it trivial to track the relationship between the two points. What is the burden to the optimizer? Well, it turns out we have already paid down this cost by accepting that there are certain calls that we are not permitted to duplicate, optimizations have to watch out for such instructions anyway. There are additional places in the optimizer that we will probably have to update but early examination has given me the impression that this will not be heroic. Differential Revision: http://reviews.llvm.org/D11861 llvm-svn: 245029
2015-08-14 13:09:07 +08:00
TYPEKEYWORD("token", Type::getTokenTy(Context));
#undef TYPEKEYWORD
// Keywords for instructions.
#define INSTKEYWORD(STR, Enum) \
do { \
if (Keyword == #STR) { \
UIntVal = Instruction::Enum; \
return lltok::kw_##STR; \
} \
} while (false)
INSTKEYWORD(add, Add); INSTKEYWORD(fadd, FAdd);
INSTKEYWORD(sub, Sub); INSTKEYWORD(fsub, FSub);
INSTKEYWORD(mul, Mul); INSTKEYWORD(fmul, FMul);
INSTKEYWORD(udiv, UDiv); INSTKEYWORD(sdiv, SDiv); INSTKEYWORD(fdiv, FDiv);
INSTKEYWORD(urem, URem); INSTKEYWORD(srem, SRem); INSTKEYWORD(frem, FRem);
INSTKEYWORD(shl, Shl); INSTKEYWORD(lshr, LShr); INSTKEYWORD(ashr, AShr);
INSTKEYWORD(and, And); INSTKEYWORD(or, Or); INSTKEYWORD(xor, Xor);
INSTKEYWORD(icmp, ICmp); INSTKEYWORD(fcmp, FCmp);
INSTKEYWORD(phi, PHI);
INSTKEYWORD(call, Call);
INSTKEYWORD(trunc, Trunc);
INSTKEYWORD(zext, ZExt);
INSTKEYWORD(sext, SExt);
INSTKEYWORD(fptrunc, FPTrunc);
INSTKEYWORD(fpext, FPExt);
INSTKEYWORD(uitofp, UIToFP);
INSTKEYWORD(sitofp, SIToFP);
INSTKEYWORD(fptoui, FPToUI);
INSTKEYWORD(fptosi, FPToSI);
INSTKEYWORD(inttoptr, IntToPtr);
INSTKEYWORD(ptrtoint, PtrToInt);
INSTKEYWORD(bitcast, BitCast);
INSTKEYWORD(addrspacecast, AddrSpaceCast);
INSTKEYWORD(select, Select);
INSTKEYWORD(va_arg, VAArg);
INSTKEYWORD(ret, Ret);
INSTKEYWORD(br, Br);
INSTKEYWORD(switch, Switch);
INSTKEYWORD(indirectbr, IndirectBr);
INSTKEYWORD(invoke, Invoke);
INSTKEYWORD(resume, Resume);
INSTKEYWORD(unreachable, Unreachable);
INSTKEYWORD(alloca, Alloca);
INSTKEYWORD(load, Load);
INSTKEYWORD(store, Store);
INSTKEYWORD(cmpxchg, AtomicCmpXchg);
INSTKEYWORD(atomicrmw, AtomicRMW);
INSTKEYWORD(fence, Fence);
INSTKEYWORD(getelementptr, GetElementPtr);
INSTKEYWORD(extractelement, ExtractElement);
INSTKEYWORD(insertelement, InsertElement);
INSTKEYWORD(shufflevector, ShuffleVector);
INSTKEYWORD(extractvalue, ExtractValue);
INSTKEYWORD(insertvalue, InsertValue);
INSTKEYWORD(landingpad, LandingPad);
INSTKEYWORD(cleanupret, CleanupRet);
INSTKEYWORD(catchret, CatchRet);
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
INSTKEYWORD(catchswitch, CatchSwitch);
INSTKEYWORD(catchpad, CatchPad);
INSTKEYWORD(cleanuppad, CleanupPad);
#undef INSTKEYWORD
#define DWKEYWORD(TYPE, TOKEN) \
do { \
if (Keyword.startswith("DW_" #TYPE "_")) { \
StrVal.assign(Keyword.begin(), Keyword.end()); \
return lltok::TOKEN; \
} \
} while (false)
DWKEYWORD(TAG, DwarfTag);
DWKEYWORD(ATE, DwarfAttEncoding);
DWKEYWORD(VIRTUALITY, DwarfVirtuality);
DWKEYWORD(LANG, DwarfLang);
DWKEYWORD(CC, DwarfCC);
DWKEYWORD(OP, DwarfOp);
DWKEYWORD(MACINFO, DwarfMacinfo);
#undef DWKEYWORD
if (Keyword.startswith("DIFlag")) {
StrVal.assign(Keyword.begin(), Keyword.end());
return lltok::DIFlag;
}
if (Keyword == "NoDebug" || Keyword == "FullDebug" ||
Keyword == "LineTablesOnly") {
StrVal.assign(Keyword.begin(), Keyword.end());
return lltok::EmissionKind;
}
// Check for [us]0x[0-9A-Fa-f]+ which are Hexadecimal constant generated by
// the CFE to avoid forcing it to deal with 64-bit numbers.
if ((TokStart[0] == 'u' || TokStart[0] == 's') &&
TokStart[1] == '0' && TokStart[2] == 'x' &&
isxdigit(static_cast<unsigned char>(TokStart[3]))) {
int len = CurPtr-TokStart-3;
uint32_t bits = len * 4;
StringRef HexStr(TokStart + 3, len);
if (!all_of(HexStr, isxdigit)) {
// Bad token, return it as an error.
CurPtr = TokStart+3;
return lltok::Error;
}
APInt Tmp(bits, HexStr, 16);
uint32_t activeBits = Tmp.getActiveBits();
if (activeBits > 0 && activeBits < bits)
Tmp = Tmp.trunc(activeBits);
APSIntVal = APSInt(Tmp, TokStart[0] == 'u');
return lltok::APSInt;
}
// If this is "cc1234", return this as just "cc".
if (TokStart[0] == 'c' && TokStart[1] == 'c') {
CurPtr = TokStart+2;
return lltok::kw_cc;
}
// Finally, if this isn't known, return an error.
CurPtr = TokStart+1;
return lltok::Error;
}
/// Lex all tokens that start with a 0x prefix, knowing they match and are not
/// labels.
/// HexFPConstant 0x[0-9A-Fa-f]+
/// HexFP80Constant 0xK[0-9A-Fa-f]+
/// HexFP128Constant 0xL[0-9A-Fa-f]+
/// HexPPC128Constant 0xM[0-9A-Fa-f]+
/// HexHalfConstant 0xH[0-9A-Fa-f]+
lltok::Kind LLLexer::Lex0x() {
CurPtr = TokStart + 2;
char Kind;
if ((CurPtr[0] >= 'K' && CurPtr[0] <= 'M') || CurPtr[0] == 'H') {
Kind = *CurPtr++;
} else {
Kind = 'J';
}
if (!isxdigit(static_cast<unsigned char>(CurPtr[0]))) {
// Bad token, return it as an error.
CurPtr = TokStart+1;
return lltok::Error;
}
while (isxdigit(static_cast<unsigned char>(CurPtr[0])))
++CurPtr;
if (Kind == 'J') {
// HexFPConstant - Floating point constant represented in IEEE format as a
// hexadecimal number for when exponential notation is not precise enough.
// Half, Float, and double only.
APFloatVal = APFloat(APFloat::IEEEdouble,
APInt(64, HexIntToVal(TokStart + 2, CurPtr)));
return lltok::APFloat;
}
uint64_t Pair[2];
switch (Kind) {
default: llvm_unreachable("Unknown kind!");
case 'K':
// F80HexFPConstant - x87 long double in hexadecimal format (10 bytes)
FP80HexToIntPair(TokStart+3, CurPtr, Pair);
APFloatVal = APFloat(APFloat::x87DoubleExtended, APInt(80, Pair));
return lltok::APFloat;
case 'L':
// F128HexFPConstant - IEEE 128-bit in hexadecimal format (16 bytes)
HexToIntPair(TokStart+3, CurPtr, Pair);
APFloatVal = APFloat(APFloat::IEEEquad, APInt(128, Pair));
return lltok::APFloat;
case 'M':
// PPC128HexFPConstant - PowerPC 128-bit in hexadecimal format (16 bytes)
HexToIntPair(TokStart+3, CurPtr, Pair);
APFloatVal = APFloat(APFloat::PPCDoubleDouble, APInt(128, Pair));
return lltok::APFloat;
case 'H':
APFloatVal = APFloat(APFloat::IEEEhalf,
APInt(16,HexIntToVal(TokStart+3, CurPtr)));
return lltok::APFloat;
}
}
/// Lex tokens for a label or a numeric constant, possibly starting with -.
/// Label [-a-zA-Z$._0-9]+:
/// NInteger -[0-9]+
/// FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
/// PInteger [0-9]+
/// HexFPConstant 0x[0-9A-Fa-f]+
/// HexFP80Constant 0xK[0-9A-Fa-f]+
/// HexFP128Constant 0xL[0-9A-Fa-f]+
/// HexPPC128Constant 0xM[0-9A-Fa-f]+
lltok::Kind LLLexer::LexDigitOrNegative() {
// If the letter after the negative is not a number, this is probably a label.
if (!isdigit(static_cast<unsigned char>(TokStart[0])) &&
!isdigit(static_cast<unsigned char>(CurPtr[0]))) {
// Okay, this is not a number after the -, it's probably a label.
if (const char *End = isLabelTail(CurPtr)) {
StrVal.assign(TokStart, End-1);
CurPtr = End;
return lltok::LabelStr;
}
return lltok::Error;
}
// At this point, it is either a label, int or fp constant.
// Skip digits, we have at least one.
for (; isdigit(static_cast<unsigned char>(CurPtr[0])); ++CurPtr)
/*empty*/;
// Check to see if this really is a label afterall, e.g. "-1:".
if (isLabelChar(CurPtr[0]) || CurPtr[0] == ':') {
if (const char *End = isLabelTail(CurPtr)) {
StrVal.assign(TokStart, End-1);
CurPtr = End;
return lltok::LabelStr;
}
}
// If the next character is a '.', then it is a fp value, otherwise its
// integer.
if (CurPtr[0] != '.') {
if (TokStart[0] == '0' && TokStart[1] == 'x')
return Lex0x();
APSIntVal = APSInt(StringRef(TokStart, CurPtr - TokStart));
return lltok::APSInt;
}
++CurPtr;
// Skip over [0-9]*([eE][-+]?[0-9]+)?
while (isdigit(static_cast<unsigned char>(CurPtr[0]))) ++CurPtr;
if (CurPtr[0] == 'e' || CurPtr[0] == 'E') {
if (isdigit(static_cast<unsigned char>(CurPtr[1])) ||
((CurPtr[1] == '-' || CurPtr[1] == '+') &&
isdigit(static_cast<unsigned char>(CurPtr[2])))) {
CurPtr += 2;
while (isdigit(static_cast<unsigned char>(CurPtr[0]))) ++CurPtr;
}
}
APFloatVal = APFloat(APFloat::IEEEdouble,
StringRef(TokStart, CurPtr - TokStart));
return lltok::APFloat;
}
/// Lex a floating point constant starting with +.
/// FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
lltok::Kind LLLexer::LexPositive() {
// If the letter after the negative is a number, this is probably not a
// label.
if (!isdigit(static_cast<unsigned char>(CurPtr[0])))
return lltok::Error;
// Skip digits.
for (++CurPtr; isdigit(static_cast<unsigned char>(CurPtr[0])); ++CurPtr)
/*empty*/;
// At this point, we need a '.'.
if (CurPtr[0] != '.') {
CurPtr = TokStart+1;
return lltok::Error;
}
++CurPtr;
// Skip over [0-9]*([eE][-+]?[0-9]+)?
while (isdigit(static_cast<unsigned char>(CurPtr[0]))) ++CurPtr;
if (CurPtr[0] == 'e' || CurPtr[0] == 'E') {
if (isdigit(static_cast<unsigned char>(CurPtr[1])) ||
((CurPtr[1] == '-' || CurPtr[1] == '+') &&
isdigit(static_cast<unsigned char>(CurPtr[2])))) {
CurPtr += 2;
while (isdigit(static_cast<unsigned char>(CurPtr[0]))) ++CurPtr;
}
}
APFloatVal = APFloat(APFloat::IEEEdouble,
StringRef(TokStart, CurPtr - TokStart));
return lltok::APFloat;
}