llvm-project/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp

2817 lines
102 KiB
C++
Raw Normal View History

//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//
#include "AsmPrinterHandler.h"
#include "CodeViewDebug.h"
#include "DwarfDebug.h"
#include "DwarfException.h"
#include "WinException.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/ObjectUtils.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/CodeGen/GCStrategy.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalIndirectSymbol.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetOptions.h"
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
#include "llvm/MC/MCValue.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/Timer.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
static const char *const DWARFGroupName = "dwarf";
static const char *const DWARFGroupDescription = "DWARF Emission";
static const char *const DbgTimerName = "emit";
static const char *const DbgTimerDescription = "Debug Info Emission";
static const char *const EHTimerName = "write_exception";
static const char *const EHTimerDescription = "DWARF Exception Writer";
static const char *const CodeViewLineTablesGroupName = "linetables";
static const char *const CodeViewLineTablesGroupDescription =
"CodeView Line Tables";
STATISTIC(EmittedInsts, "Number of machine instrs printed");
static cl::opt<bool>
PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
cl::desc("Print 'sched: [latency:throughput]' in .s output"));
2007-05-03 09:11:54 +08:00
char AsmPrinter::ID = 0;
typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
static gcp_map_type &getGCMap(void *&P) {
2014-04-24 14:44:33 +08:00
if (!P)
P = new gcp_map_type();
return *(gcp_map_type*)P;
}
/// getGVAlignmentLog2 - Return the alignment to use for the specified global
/// value in log2 form. This rounds up to the preferred alignment if possible
/// and legal.
static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
unsigned InBits = 0) {
unsigned NumBits = 0;
if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
NumBits = DL.getPreferredAlignmentLog(GVar);
// If InBits is specified, round it to it.
if (InBits > NumBits)
NumBits = InBits;
// If the GV has a specified alignment, take it into account.
if (GV->getAlignment() == 0)
return NumBits;
unsigned GVAlign = Log2_32(GV->getAlignment());
// If the GVAlign is larger than NumBits, or if we are required to obey
// NumBits because the GV has an assigned section, obey it.
if (GVAlign > NumBits || GV->hasSection())
NumBits = GVAlign;
return NumBits;
}
AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
: MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
VerboseAsm = OutStreamer->isVerboseAsm();
}
AsmPrinter::~AsmPrinter() {
2014-04-28 12:05:08 +08:00
assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
2014-04-24 14:44:33 +08:00
if (GCMetadataPrinters) {
gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
delete &GCMap;
2014-04-24 14:44:33 +08:00
GCMetadataPrinters = nullptr;
}
}
bool AsmPrinter::isPositionIndependent() const {
return TM.isPositionIndependent();
}
/// getFunctionNumber - Return a unique ID for the current function.
///
unsigned AsmPrinter::getFunctionNumber() const {
return MF->getFunctionNumber();
}
const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
return *TM.getObjFileLowering();
}
const DataLayout &AsmPrinter::getDataLayout() const {
return MMI->getModule()->getDataLayout();
}
// Do not use the cached DataLayout because some client use it without a Module
// (llvm-dsymutil, llvm-dwarfdump).
unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
return MF->getSubtarget<MCSubtargetInfo>();
}
void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
S.EmitInstruction(Inst, getSubtargetInfo());
}
/// getCurrentSection() - Return the current section we are emitting to.
const MCSection *AsmPrinter::getCurrentSection() const {
return OutStreamer->getCurrentSectionOnly();
}
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineModuleInfo>();
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
AU.addRequired<GCModuleInfo>();
if (isVerbose())
AU.addRequired<MachineLoopInfo>();
}
bool AsmPrinter::doInitialization(Module &M) {
2010-04-04 13:09:10 +08:00
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
// Initialize TargetLoweringObjectFile.
const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
.Initialize(OutContext, TM);
OutStreamer->InitSections(false);
// Emit the version-min deplyment target directive if needed.
//
// FIXME: If we end up with a collection of these sorts of Darwin-specific
// or ELF-specific things, it may make sense to have a platform helper class
// that will work with the target helper class. For now keep it here, as the
// alternative is duplicated code in each of the target asm printers that
// use the directive, where it would need the same conditionalization
// anyway.
const Triple &TT = TM.getTargetTriple();
// If there is a version specified, Major will be non-zero.
if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
unsigned Major, Minor, Update;
MCVersionMinType VersionType;
if (TT.isWatchOS()) {
VersionType = MCVM_WatchOSVersionMin;
TT.getWatchOSVersion(Major, Minor, Update);
} else if (TT.isTvOS()) {
VersionType = MCVM_TvOSVersionMin;
TT.getiOSVersion(Major, Minor, Update);
} else if (TT.isMacOSX()) {
VersionType = MCVM_OSXVersionMin;
if (!TT.getMacOSXVersion(Major, Minor, Update))
Major = 0;
} else {
VersionType = MCVM_IOSVersionMin;
TT.getiOSVersion(Major, Minor, Update);
}
if (Major != 0)
OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
}
// Allow the target to emit any magic that it wants at the start of the file.
EmitStartOfAsmFile(M);
// Very minimal debug info. It is ignored if we emit actual debug info. If we
// don't, this at least helps the user find where a global came from.
if (MAI->hasSingleParameterDotFile()) {
// .file "foo.c"
OutStreamer->EmitFileDirective(M.getSourceFileName());
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (auto &I : *MI)
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
MP->beginAssembly(M, *MI, *this);
// Emit module-level inline asm if it exists.
if (!M.getModuleInlineAsm().empty()) {
// We're at the module level. Construct MCSubtarget from the default CPU
// and target triple.
std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
TM.getTargetTriple().str(), TM.getTargetCPU(),
TM.getTargetFeatureString()));
OutStreamer->AddComment("Start of file scope inline assembly");
OutStreamer->AddBlankLine();
EmitInlineAsm(M.getModuleInlineAsm()+"\n",
OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
OutStreamer->AddComment("End of file scope inline assembly");
OutStreamer->AddBlankLine();
}
if (MAI->doesSupportDebugInformation()) {
bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() ||
TM.getTargetTriple().isWindowsItaniumEnvironment())) {
Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
DbgTimerName, DbgTimerDescription,
CodeViewLineTablesGroupName,
CodeViewLineTablesGroupDescription));
}
if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
DD = new DwarfDebug(this, &M);
DD->beginModule();
Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
DWARFGroupName, DWARFGroupDescription));
}
}
switch (MAI->getExceptionHandlingType()) {
case ExceptionHandling::SjLj:
case ExceptionHandling::DwarfCFI:
case ExceptionHandling::ARM:
isCFIMoveForDebugging = true;
if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
break;
for (auto &F: M.getFunctionList()) {
// If the module contains any function with unwind data,
// .eh_frame has to be emitted.
// Ignore functions that won't get emitted.
if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
isCFIMoveForDebugging = false;
break;
}
}
break;
default:
isCFIMoveForDebugging = false;
break;
}
EHStreamer *ES = nullptr;
switch (MAI->getExceptionHandlingType()) {
case ExceptionHandling::None:
break;
case ExceptionHandling::SjLj:
case ExceptionHandling::DwarfCFI:
ES = new DwarfCFIException(this);
break;
case ExceptionHandling::ARM:
ES = new ARMException(this);
break;
case ExceptionHandling::WinEH:
switch (MAI->getWinEHEncodingType()) {
default: llvm_unreachable("unsupported unwinding information encoding");
case WinEH::EncodingType::Invalid:
break;
case WinEH::EncodingType::X86:
case WinEH::EncodingType::Itanium:
ES = new WinException(this);
break;
}
break;
}
if (ES)
Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
DWARFGroupName, DWARFGroupDescription));
return false;
}
static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
if (!MAI.hasWeakDefCanBeHiddenDirective())
return false;
return canBeOmittedFromSymbolTable(GV);
}
void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
GlobalValue::LinkageTypes Linkage = GV->getLinkage();
switch (Linkage) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
if (MAI->hasWeakDefDirective()) {
// .globl _foo
OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
if (!canBeHidden(GV, *MAI))
// .weak_definition _foo
OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
else
OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
} else if (MAI->hasLinkOnceDirective()) {
// .globl _foo
OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
//NOTE: linkonce is handled by the section the symbol was assigned to.
} else {
// .weak _foo
OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
}
return;
case GlobalValue::ExternalLinkage:
// If external, declare as a global symbol: .globl _foo
OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
return;
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
return;
case GlobalValue::AppendingLinkage:
case GlobalValue::AvailableExternallyLinkage:
case GlobalValue::ExternalWeakLinkage:
llvm_unreachable("Should never emit this");
}
llvm_unreachable("Unknown linkage type!");
}
void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
const GlobalValue *GV) const {
TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
}
MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
return TM.getSymbol(GV);
}
/// EmitGlobalVariable - Emit the specified global variable to the .s file.
void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
"No emulated TLS variables in the common section");
// Never emit TLS variable xyz in emulated TLS model.
// The initialization value is in __emutls_t.xyz instead of xyz.
if (IsEmuTLSVar)
return;
if (GV->hasInitializer()) {
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GV))
return;
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
// Skip the emission of global equivalents. The symbol can be emitted later
// on by emitGlobalGOTEquivs in case it turns out to be needed.
if (GlobalGOTEquivs.count(getSymbol(GV)))
return;
if (isVerbose()) {
// When printing the control variable __emutls_v.*,
// we don't need to print the original TLS variable name.
GV->printAsOperand(OutStreamer->GetCommentOS(),
/*PrintType=*/false, GV->getParent());
OutStreamer->GetCommentOS() << '\n';
}
}
MCSymbol *GVSym = getSymbol(GV);
MCSymbol *EmittedSym = GVSym;
// getOrCreateEmuTLSControlSym only creates the symbol with name and default
// attributes.
// GV's or GVSym's attributes will be used for the EmittedSym.
EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
if (!GV->hasInitializer()) // External globals require no extra code.
return;
GVSym->redefineIfPossible();
if (GVSym->isDefined() || GVSym->isVariable())
report_fatal_error("symbol '" + Twine(GVSym->getName()) +
"' is already defined");
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
const DataLayout &DL = GV->getParent()->getDataLayout();
uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
// If the alignment is specified, we *must* obey it. Overaligning a global
// with a specified alignment is a prompt way to break globals emitted to
// sections and expected to be contiguous (e.g. ObjC metadata).
unsigned AlignLog = getGVAlignmentLog2(GV, DL);
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
HI.TimerGroupName, HI.TimerGroupDescription,
TimePassesIsEnabled);
HI.Handler->setSymbolSize(GVSym, Size);
}
// Handle common symbols
if (GVKind.isCommon()) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
unsigned Align = 1 << AlignLog;
if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
Align = 0;
// .comm _foo, 42, 4
OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
return;
}
// Determine to which section this global should be emitted.
MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
// If we have a bss global going to a section that supports the
// zerofill directive, do so here.
if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
TheSection->isVirtualSection()) {
if (Size == 0)
Size = 1; // zerofill of 0 bytes is undefined.
unsigned Align = 1 << AlignLog;
EmitLinkage(GV, GVSym);
// .zerofill __DATA, __bss, _foo, 400, 5
OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
return;
}
// If this is a BSS local symbol and we are emitting in the BSS
// section use .lcomm/.comm directive.
if (GVKind.isBSSLocal() &&
getObjFileLowering().getBSSSection() == TheSection) {
if (Size == 0)
Size = 1; // .comm Foo, 0 is undefined, avoid it.
unsigned Align = 1 << AlignLog;
// Use .lcomm only if it supports user-specified alignment.
// Otherwise, while it would still be correct to use .lcomm in some
// cases (e.g. when Align == 1), the external assembler might enfore
// some -unknown- default alignment behavior, which could cause
// spurious differences between external and integrated assembler.
// Prefer to simply fall back to .local / .comm in this case.
if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
// .lcomm _foo, 42
OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
return;
}
if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
Align = 0;
// .local _foo
OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
// .comm _foo, 42, 4
OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
return;
}
// Handle thread local data for mach-o which requires us to output an
// additional structure of data and mangle the original symbol so that we
// can reference it later.
//
// TODO: This should become an "emit thread local global" method on TLOF.
// All of this macho specific stuff should be sunk down into TLOFMachO and
// stuff like "TLSExtraDataSection" should no longer be part of the parent
// TLOF class. This will also make it more obvious that stuff like
// MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
// specific code.
if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
// Emit the .tbss symbol
MCSymbol *MangSym =
OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
if (GVKind.isThreadBSS()) {
TheSection = getObjFileLowering().getTLSBSSSection();
OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
} else if (GVKind.isThreadData()) {
OutStreamer->SwitchSection(TheSection);
EmitAlignment(AlignLog, GV);
OutStreamer->EmitLabel(MangSym);
EmitGlobalConstant(GV->getParent()->getDataLayout(),
GV->getInitializer());
}
OutStreamer->AddBlankLine();
// Emit the variable struct for the runtime.
MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
OutStreamer->SwitchSection(TLVSect);
// Emit the linkage here.
EmitLinkage(GV, GVSym);
OutStreamer->EmitLabel(GVSym);
// Three pointers in size:
// - __tlv_bootstrap - used to make sure support exists
// - spare pointer, used when mapped by the runtime
// - pointer to mangled symbol above with initializer
unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
PtrSize);
OutStreamer->EmitIntValue(0, PtrSize);
OutStreamer->EmitSymbolValue(MangSym, PtrSize);
OutStreamer->AddBlankLine();
return;
}
MCSymbol *EmittedInitSym = GVSym;
OutStreamer->SwitchSection(TheSection);
EmitLinkage(GV, EmittedInitSym);
EmitAlignment(AlignLog, GV);
OutStreamer->EmitLabel(EmittedInitSym);
EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
if (MAI->hasDotTypeDotSizeDirective())
2010-01-25 15:53:05 +08:00
// .size foo, 42
OutStreamer->emitELFSize(EmittedInitSym,
MCConstantExpr::create(Size, OutContext));
OutStreamer->AddBlankLine();
}
/// Emit the directive and value for debug thread local expression
///
/// \p Value - The value to emit.
/// \p Size - The size of the integer (in bytes) to emit.
void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
unsigned Size) const {
OutStreamer->EmitValue(Value, Size);
}
/// EmitFunctionHeader - This method emits the header for the current
/// function.
void AsmPrinter::EmitFunctionHeader() {
// Print out constants referenced by the function
EmitConstantPool();
// Print the 'header' of function.
const Function *F = MF->getFunction();
OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM));
EmitVisibility(CurrentFnSym, F->getVisibility());
EmitLinkage(F, CurrentFnSym);
if (MAI->hasFunctionAlignment())
EmitAlignment(MF->getAlignment(), F);
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
if (isVerbose()) {
F->printAsOperand(OutStreamer->GetCommentOS(),
/*PrintType=*/false, F->getParent());
OutStreamer->GetCommentOS() << '\n';
}
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
// Emit the prefix data.
if (F->hasPrefixData()) {
if (MAI->hasSubsectionsViaSymbols()) {
// Preserving prefix data on platforms which use subsections-via-symbols
// is a bit tricky. Here we introduce a symbol for the prefix data
// and use the .alt_entry attribute to mark the function's real entry point
// as an alternative entry point to the prefix-data symbol.
MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
OutStreamer->EmitLabel(PrefixSym);
EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
// Emit an .alt_entry directive for the actual function symbol.
OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
} else {
EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
}
}
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
// Emit the CurrentFnSym. This is a virtual function to allow targets to
// do their wild and crazy things as required.
EmitFunctionEntryLabel();
// If the function had address-taken blocks that got deleted, then we have
// references to the dangling symbols. Emit them at the start of the function
// so that we don't get references to undefined symbols.
std::vector<MCSymbol*> DeadBlockSyms;
MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
OutStreamer->AddComment("Address taken block that was later removed");
OutStreamer->EmitLabel(DeadBlockSyms[i]);
}
if (CurrentFnBegin) {
if (MAI->useAssignmentForEHBegin()) {
MCSymbol *CurPos = OutContext.createTempSymbol();
OutStreamer->EmitLabel(CurPos);
OutStreamer->EmitAssignment(CurrentFnBegin,
MCSymbolRefExpr::create(CurPos, OutContext));
} else {
OutStreamer->EmitLabel(CurrentFnBegin);
}
}
// Emit pre-function debug and/or EH information.
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->beginFunction(MF);
}
Prologue support Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
2014-12-03 10:08:38 +08:00
// Emit the prologue data.
if (F->hasPrologueData())
EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
}
/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
/// function. This can be overridden by targets as required to do custom stuff.
void AsmPrinter::EmitFunctionEntryLabel() {
CurrentFnSym->redefineIfPossible();
// The function label could have already been emitted if two symbols end up
// conflicting due to asm renaming. Detect this and emit an error.
if (CurrentFnSym->isVariable())
report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
"' is a protected alias");
if (CurrentFnSym->isDefined())
report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
"' label emitted multiple times to assembly file");
return OutStreamer->EmitLabel(CurrentFnSym);
}
/// emitComments - Pretty-print comments for instructions.
static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
AsmPrinter *AP) {
const MachineFunction *MF = MI.getParent()->getParent();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
// Check for spills and reloads
int FI;
const MachineFrameInfo &MFI = MF->getFrameInfo();
bool Commented = false;
// We assume a single instruction only has a spill or reload, not
// both.
const MachineMemOperand *MMO;
if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
if (MFI.isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Reload";
Commented = true;
}
} else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
if (MFI.isSpillSlotObjectIndex(FI)) {
CommentOS << MMO->getSize() << "-byte Folded Reload";
Commented = true;
}
} else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
if (MFI.isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Spill";
Commented = true;
}
} else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
if (MFI.isSpillSlotObjectIndex(FI)) {
CommentOS << MMO->getSize() << "-byte Folded Spill";
Commented = true;
}
}
// Check for spill-induced copies
if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
Commented = true;
CommentOS << " Reload Reuse";
}
if (Commented && AP->EnablePrintSchedInfo)
// If any comment was added above and we need sched info comment then
// add this new comment just after the above comment w/o "\n" between them.
CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
else if (Commented)
CommentOS << "\n";
}
/// emitImplicitDef - This method emits the specified machine instruction
/// that is an implicit def.
void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
unsigned RegNo = MI->getOperand(0).getReg();
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << "implicit-def: "
<< PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
OutStreamer->AddComment(OS.str());
OutStreamer->AddBlankLine();
}
static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
std::string Str;
raw_string_ostream OS(Str);
OS << "kill:";
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &Op = MI->getOperand(i);
assert(Op.isReg() && "KILL instruction must have only register operands");
OS << ' '
<< PrintReg(Op.getReg(),
AP.MF->getSubtarget().getRegisterInfo())
<< (Op.isDef() ? "<def>" : "<kill>");
}
AP.OutStreamer->AddComment(OS.str());
AP.OutStreamer->AddBlankLine();
}
/// emitDebugValueComment - This method handles the target-independent form
/// of DBG_VALUE, returning true if it was able to do so. A false return
/// means the target will need to handle MI in EmitInstruction.
static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
2014-10-02 02:55:02 +08:00
// This code handles only the 4-operand target-independent form.
if (MI->getNumOperands() != 4)
return false;
2010-04-07 17:26:51 +08:00
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << "DEBUG_VALUE: ";
2010-04-07 17:26:51 +08:00
const DILocalVariable *V = MI->getDebugVariable();
if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
StringRef Name = SP->getDisplayName();
if (!Name.empty())
OS << Name << ":";
}
OS << V->getName();
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
2014-10-02 02:55:02 +08:00
const DIExpression *Expr = MI->getDebugExpression();
auto Fragment = Expr->getFragmentInfo();
if (Fragment)
OS << " [fragment offset=" << Fragment->OffsetInBits
<< " size=" << Fragment->SizeInBits << "]";
OS << " <- ";
// The second operand is only an offset if it's an immediate.
PR32382: Fix emitting complex DWARF expressions. The DWARF specification knows 3 kinds of non-empty simple location descriptions: 1. Register location descriptions - describe a variable in a register - consist of only a DW_OP_reg 2. Memory location descriptions - describe the address of a variable 3. Implicit location descriptions - describe the value of a variable - end with DW_OP_stack_value & friends The existing DwarfExpression code is pretty much ignorant of these restrictions. This used to not matter because we only emitted very short expressions that we happened to get right by accident. This patch makes DwarfExpression aware of the rules defined by the DWARF standard and now chooses the right kind of location description for each expression being emitted. This would have been an NFC commit (for the existing testsuite) if not for the way that clang describes captured block variables. Based on how the previous code in LLVM emitted locations, DW_OP_deref operations that should have come at the end of the expression are put at its beginning. Fixing this means changing the semantics of DIExpression, so this patch bumps the version number of DIExpression and implements a bitcode upgrade. There are two major changes in this patch: I had to fix the semantics of dbg.declare for describing function arguments. After this patch a dbg.declare always takes the *address* of a variable as the first argument, even if the argument is not an alloca. When lowering a DBG_VALUE, the decision of whether to emit a register location description or a memory location description depends on the MachineLocation — register machine locations may get promoted to memory locations based on their DIExpression. (Future) optimization passes that want to salvage implicit debug location for variables may do so by appending a DW_OP_stack_value. For example: DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8 DBG_VALUE, RAX --> DW_OP_reg0 +0 DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0 All testcases that were modified were regenerated from clang. I also added source-based testcases for each of these to the debuginfo-tests repository over the last week to make sure that no synchronized bugs slip in. The debuginfo-tests compile from source and run the debugger. https://bugs.llvm.org/show_bug.cgi?id=32382 <rdar://problem/31205000> Differential Revision: https://reviews.llvm.org/D31439 llvm-svn: 300522
2017-04-18 09:21:53 +08:00
bool Deref = false;
bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
for (unsigned i = 0; i < Expr->getNumElements(); ++i) {
uint64_t Op = Expr->getElement(i);
if (Op == dwarf::DW_OP_LLVM_fragment) {
// There can't be any operands after this in a valid expression
break;
} else if (Deref) {
// We currently don't support extra Offsets or derefs after the first
PR32382: Fix emitting complex DWARF expressions. The DWARF specification knows 3 kinds of non-empty simple location descriptions: 1. Register location descriptions - describe a variable in a register - consist of only a DW_OP_reg 2. Memory location descriptions - describe the address of a variable 3. Implicit location descriptions - describe the value of a variable - end with DW_OP_stack_value & friends The existing DwarfExpression code is pretty much ignorant of these restrictions. This used to not matter because we only emitted very short expressions that we happened to get right by accident. This patch makes DwarfExpression aware of the rules defined by the DWARF standard and now chooses the right kind of location description for each expression being emitted. This would have been an NFC commit (for the existing testsuite) if not for the way that clang describes captured block variables. Based on how the previous code in LLVM emitted locations, DW_OP_deref operations that should have come at the end of the expression are put at its beginning. Fixing this means changing the semantics of DIExpression, so this patch bumps the version number of DIExpression and implements a bitcode upgrade. There are two major changes in this patch: I had to fix the semantics of dbg.declare for describing function arguments. After this patch a dbg.declare always takes the *address* of a variable as the first argument, even if the argument is not an alloca. When lowering a DBG_VALUE, the decision of whether to emit a register location description or a memory location description depends on the MachineLocation — register machine locations may get promoted to memory locations based on their DIExpression. (Future) optimization passes that want to salvage implicit debug location for variables may do so by appending a DW_OP_stack_value. For example: DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8 DBG_VALUE, RAX --> DW_OP_reg0 +0 DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0 All testcases that were modified were regenerated from clang. I also added source-based testcases for each of these to the debuginfo-tests repository over the last week to make sure that no synchronized bugs slip in. The debuginfo-tests compile from source and run the debugger. https://bugs.llvm.org/show_bug.cgi?id=32382 <rdar://problem/31205000> Differential Revision: https://reviews.llvm.org/D31439 llvm-svn: 300522
2017-04-18 09:21:53 +08:00
// one. Bail out early instead of emitting an incorrect comment.
OS << " [complex expression]";
AP.OutStreamer->emitRawComment(OS.str());
return true;
} else if (Op == dwarf::DW_OP_deref) {
Deref = true;
continue;
}
uint64_t ExtraOffset = Expr->getElement(i++);
if (Op == dwarf::DW_OP_plus)
Offset += ExtraOffset;
else {
assert(Op == dwarf::DW_OP_minus);
Offset -= ExtraOffset;
}
}
// Register or immediate value. Register 0 means undef.
if (MI->getOperand(0).isFPImm()) {
APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
2010-04-07 17:26:51 +08:00
OS << (double)APF.convertToFloat();
} else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
2010-04-07 17:26:51 +08:00
OS << APF.convertToDouble();
} else {
// There is no good way to print long double. Convert a copy to
// double. Ah well, it's only a comment.
bool ignored;
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&ignored);
2010-04-07 17:26:51 +08:00
OS << "(long double) " << APF.convertToDouble();
}
} else if (MI->getOperand(0).isImm()) {
2010-04-07 17:26:51 +08:00
OS << MI->getOperand(0).getImm();
} else if (MI->getOperand(0).isCImm()) {
MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
2010-04-08 06:29:10 +08:00
} else {
unsigned Reg;
if (MI->getOperand(0).isReg()) {
Reg = MI->getOperand(0).getReg();
} else {
assert(MI->getOperand(0).isFI() && "Unknown operand type");
const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
Offset += TFI->getFrameIndexReference(*AP.MF,
MI->getOperand(0).getIndex(), Reg);
Deref = true;
}
if (Reg == 0) {
// Suppress offset, it is not meaningful here.
2010-04-07 17:26:51 +08:00
OS << "undef";
// NOTE: Want this comment at start of line, don't emit with AddComment.
AP.OutStreamer->emitRawComment(OS.str());
return true;
}
PR32382: Fix emitting complex DWARF expressions. The DWARF specification knows 3 kinds of non-empty simple location descriptions: 1. Register location descriptions - describe a variable in a register - consist of only a DW_OP_reg 2. Memory location descriptions - describe the address of a variable 3. Implicit location descriptions - describe the value of a variable - end with DW_OP_stack_value & friends The existing DwarfExpression code is pretty much ignorant of these restrictions. This used to not matter because we only emitted very short expressions that we happened to get right by accident. This patch makes DwarfExpression aware of the rules defined by the DWARF standard and now chooses the right kind of location description for each expression being emitted. This would have been an NFC commit (for the existing testsuite) if not for the way that clang describes captured block variables. Based on how the previous code in LLVM emitted locations, DW_OP_deref operations that should have come at the end of the expression are put at its beginning. Fixing this means changing the semantics of DIExpression, so this patch bumps the version number of DIExpression and implements a bitcode upgrade. There are two major changes in this patch: I had to fix the semantics of dbg.declare for describing function arguments. After this patch a dbg.declare always takes the *address* of a variable as the first argument, even if the argument is not an alloca. When lowering a DBG_VALUE, the decision of whether to emit a register location description or a memory location description depends on the MachineLocation — register machine locations may get promoted to memory locations based on their DIExpression. (Future) optimization passes that want to salvage implicit debug location for variables may do so by appending a DW_OP_stack_value. For example: DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8 DBG_VALUE, RAX --> DW_OP_reg0 +0 DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0 All testcases that were modified were regenerated from clang. I also added source-based testcases for each of these to the debuginfo-tests repository over the last week to make sure that no synchronized bugs slip in. The debuginfo-tests compile from source and run the debugger. https://bugs.llvm.org/show_bug.cgi?id=32382 <rdar://problem/31205000> Differential Revision: https://reviews.llvm.org/D31439 llvm-svn: 300522
2017-04-18 09:21:53 +08:00
if (MemLoc || Deref)
OS << '[';
OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
2010-04-08 06:29:10 +08:00
}
PR32382: Fix emitting complex DWARF expressions. The DWARF specification knows 3 kinds of non-empty simple location descriptions: 1. Register location descriptions - describe a variable in a register - consist of only a DW_OP_reg 2. Memory location descriptions - describe the address of a variable 3. Implicit location descriptions - describe the value of a variable - end with DW_OP_stack_value & friends The existing DwarfExpression code is pretty much ignorant of these restrictions. This used to not matter because we only emitted very short expressions that we happened to get right by accident. This patch makes DwarfExpression aware of the rules defined by the DWARF standard and now chooses the right kind of location description for each expression being emitted. This would have been an NFC commit (for the existing testsuite) if not for the way that clang describes captured block variables. Based on how the previous code in LLVM emitted locations, DW_OP_deref operations that should have come at the end of the expression are put at its beginning. Fixing this means changing the semantics of DIExpression, so this patch bumps the version number of DIExpression and implements a bitcode upgrade. There are two major changes in this patch: I had to fix the semantics of dbg.declare for describing function arguments. After this patch a dbg.declare always takes the *address* of a variable as the first argument, even if the argument is not an alloca. When lowering a DBG_VALUE, the decision of whether to emit a register location description or a memory location description depends on the MachineLocation — register machine locations may get promoted to memory locations based on their DIExpression. (Future) optimization passes that want to salvage implicit debug location for variables may do so by appending a DW_OP_stack_value. For example: DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8 DBG_VALUE, RAX --> DW_OP_reg0 +0 DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0 All testcases that were modified were regenerated from clang. I also added source-based testcases for each of these to the debuginfo-tests repository over the last week to make sure that no synchronized bugs slip in. The debuginfo-tests compile from source and run the debugger. https://bugs.llvm.org/show_bug.cgi?id=32382 <rdar://problem/31205000> Differential Revision: https://reviews.llvm.org/D31439 llvm-svn: 300522
2017-04-18 09:21:53 +08:00
if (MemLoc || Deref)
OS << '+' << Offset << ']';
// NOTE: Want this comment at start of line, don't emit with AddComment.
AP.OutStreamer->emitRawComment(OS.str());
return true;
}
AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
MF->getFunction()->needsUnwindTableEntry())
return CFI_M_EH;
if (MMI->hasDebugInfo())
return CFI_M_Debug;
return CFI_M_None;
}
bool AsmPrinter::needsSEHMoves() {
return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
}
void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
ExceptionHandlingType != ExceptionHandling::ARM)
return;
if (needsCFIMoves() == CFI_M_None)
return;
const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
const MCCFIInstruction &CFI = Instrs[CFIIndex];
emitCFIInstruction(CFI);
}
void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
// The operands are the MCSymbol and the frame offset of the allocation.
MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
int FrameOffset = MI.getOperand(1).getImm();
// Emit a symbol assignment.
OutStreamer->EmitAssignment(FrameAllocSym,
MCConstantExpr::create(FrameOffset, OutContext));
}
/// EmitFunctionBody - This method emits the body and trailer for a
/// function.
void AsmPrinter::EmitFunctionBody() {
EmitFunctionHeader();
// Emit target-specific gunk before the function body.
EmitFunctionBodyStart();
bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
// Print out code for the function.
bool HasAnyRealCode = false;
int NumInstsInFunction = 0;
for (auto &MBB : *MF) {
// Print a label for the basic block.
EmitBasicBlockStart(MBB);
for (auto &MI : MBB) {
// Print the assembly for the instruction.
if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
!MI.isDebugValue()) {
HasAnyRealCode = true;
++NumInstsInFunction;
}
if (ShouldPrintDebugScopes) {
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
HI.TimerGroupName, HI.TimerGroupDescription,
TimePassesIsEnabled);
HI.Handler->beginInstruction(&MI);
}
}
if (isVerbose())
emitComments(MI, OutStreamer->GetCommentOS(), this);
switch (MI.getOpcode()) {
case TargetOpcode::CFI_INSTRUCTION:
emitCFIInstruction(MI);
break;
case TargetOpcode::LOCAL_ESCAPE:
emitFrameAlloc(MI);
break;
case TargetOpcode::EH_LABEL:
case TargetOpcode::GC_LABEL:
OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
break;
case TargetOpcode::INLINEASM:
EmitInlineAsm(&MI);
break;
case TargetOpcode::DBG_VALUE:
if (isVerbose()) {
if (!emitDebugValueComment(&MI, *this))
EmitInstruction(&MI);
}
break;
case TargetOpcode::IMPLICIT_DEF:
if (isVerbose()) emitImplicitDef(&MI);
break;
case TargetOpcode::KILL:
if (isVerbose()) emitKill(&MI, *this);
break;
default:
EmitInstruction(&MI);
break;
}
if (ShouldPrintDebugScopes) {
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
HI.TimerGroupName, HI.TimerGroupDescription,
TimePassesIsEnabled);
HI.Handler->endInstruction();
}
}
}
EmitBasicBlockEnd(MBB);
}
EmittedInsts += NumInstsInFunction;
MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
MF->getFunction()->getSubprogram(),
&MF->front());
R << ore::NV("NumInstructions", NumInstsInFunction)
<< " instructions in function";
ORE->emit(R);
// If the function is empty and the object file uses .subsections_via_symbols,
// then we need to emit *something* to the function body to prevent the
// labels from collapsing together. Just emit a noop.
if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
MCInst Noop;
MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop);
OutStreamer->AddComment("avoids zero-length function");
// Targets can opt-out of emitting the noop here by leaving the opcode
// unspecified.
if (Noop.getOpcode())
OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
}
const Function *F = MF->getFunction();
for (const auto &BB : *F) {
if (!BB.hasAddressTaken())
continue;
MCSymbol *Sym = GetBlockAddressSymbol(&BB);
if (Sym->isDefined())
continue;
OutStreamer->AddComment("Address of block that was removed by CodeGen");
OutStreamer->EmitLabel(Sym);
}
// Emit target-specific gunk after the function body.
EmitFunctionBodyEnd();
if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() ||
MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
// Create a symbol for the end of function.
CurrentFnEnd = createTempSymbol("func_end");
OutStreamer->EmitLabel(CurrentFnEnd);
}
// If the target wants a .size directive for the size of the function, emit
// it.
if (MAI->hasDotTypeDotSizeDirective()) {
// We can get the size as difference between the function label and the
// temp label.
2015-06-14 08:23:33 +08:00
const MCExpr *SizeExp = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
}
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->markFunctionEnd();
}
// Print out jump tables referenced by the function.
EmitJumpTableInfo();
// Emit post-function debug and/or EH information.
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->endFunction(MF);
}
OutStreamer->AddBlankLine();
}
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
/// \brief Compute the number of Global Variables that uses a Constant.
static unsigned getNumGlobalVariableUses(const Constant *C) {
if (!C)
return 0;
if (isa<GlobalVariable>(C))
return 1;
unsigned NumUses = 0;
for (auto *CU : C->users())
NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
return NumUses;
}
/// \brief Only consider global GOT equivalents if at least one user is a
/// cstexpr inside an initializer of another global variables. Also, don't
/// handle cstexpr inside instructions. During global variable emission,
/// candidates are skipped and are emitted later in case at least one cstexpr
/// isn't replaced by a PC relative GOT entry access.
static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
unsigned &NumGOTEquivUsers) {
// Global GOT equivalents are unnamed private globals with a constant
// pointer initializer to another global symbol. They must point to a
// GlobalVariable or Function, i.e., as GlobalValue.
if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
!GV->isConstant() || !GV->isDiscardableIfUnused() ||
!dyn_cast<GlobalValue>(GV->getOperand(0)))
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
return false;
// To be a got equivalent, at least one of its users need to be a constant
// expression used by another global variable.
for (auto *U : GV->users())
NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
return NumGOTEquivUsers > 0;
}
/// \brief Unnamed constant global variables solely contaning a pointer to
/// another globals variable is equivalent to a GOT table entry; it contains the
/// the address of another symbol. Optimize it and replace accesses to these
/// "GOT equivalents" by using the GOT entry for the final global instead.
/// Compute GOT equivalent candidates among all global variables to avoid
/// emitting them if possible later on, after it use is replaced by a GOT entry
/// access.
void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
return;
for (const auto &G : M.globals()) {
unsigned NumGOTEquivUsers = 0;
if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
continue;
const MCSymbol *GOTEquivSym = getSymbol(&G);
GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
}
}
/// \brief Constant expressions using GOT equivalent globals may not be eligible
/// for PC relative GOT entry conversion, in such cases we need to emit such
/// globals we previously omitted in EmitGlobalVariable.
void AsmPrinter::emitGlobalGOTEquivs() {
if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
return;
SmallVector<const GlobalVariable *, 8> FailedCandidates;
for (auto &I : GlobalGOTEquivs) {
const GlobalVariable *GV = I.second.first;
unsigned Cnt = I.second.second;
if (Cnt)
FailedCandidates.push_back(GV);
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
}
GlobalGOTEquivs.clear();
for (auto *GV : FailedCandidates)
EmitGlobalVariable(GV);
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
}
void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
const GlobalIndirectSymbol& GIS) {
MCSymbol *Name = getSymbol(&GIS);
if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
else
assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
// Set the symbol type to function if the alias has a function type.
// This affects codegen when the aliasee is not a function.
if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
if (isa<GlobalIFunc>(GIS))
OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
}
EmitVisibility(Name, GIS.getVisibility());
const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
// Emit the directives as assignments aka .set:
OutStreamer->EmitAssignment(Name, Expr);
if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
// If the aliasee does not correspond to a symbol in the output, i.e. the
// alias is not of an object or the aliased object is private, then set the
// size of the alias symbol from the type of the alias. We don't do this in
// other situations as the alias and aliasee having differing types but same
// size may be intentional.
const GlobalObject *BaseObject = GA->getBaseObject();
if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
(!BaseObject || BaseObject->hasPrivateLinkage())) {
const DataLayout &DL = M.getDataLayout();
uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
}
}
}
bool AsmPrinter::doFinalization(Module &M) {
// Set the MachineFunction to nullptr so that we can catch attempted
// accesses to MF specific features at the module level and so that
// we can conditionalize accesses based on whether or not it is nullptr.
MF = nullptr;
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
// Gather all GOT equivalent globals in the module. We really need two
// passes over the globals: one to compute and another to avoid its emission
// in EmitGlobalVariable, otherwise we would not be able to handle cases
// where the got equivalent shows up before its use.
computeGlobalGOTEquivs(M);
// Emit global variables.
for (const auto &G : M.globals())
EmitGlobalVariable(&G);
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
// Emit remaining GOT equivalent globals.
emitGlobalGOTEquivs();
// Emit visibility info for declarations
for (const Function &F : M) {
if (!F.isDeclarationForLinker())
continue;
GlobalValue::VisibilityTypes V = F.getVisibility();
if (V == GlobalValue::DefaultVisibility)
continue;
MCSymbol *Name = getSymbol(&F);
EmitVisibility(Name, V, false);
}
const TargetLoweringObjectFile &TLOF = getObjFileLowering();
// Emit module flags.
SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
M.getModuleFlagsMetadata(ModuleFlags);
if (!ModuleFlags.empty())
TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM);
if (TM.getTargetTriple().isOSBinFormatELF()) {
MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
// Output stubs for external and common global variables.
MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
if (!Stubs.empty()) {
OutStreamer->SwitchSection(TLOF.getDataSection());
const DataLayout &DL = M.getDataLayout();
for (const auto &Stub : Stubs) {
OutStreamer->EmitLabel(Stub.first);
OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
DL.getPointerSize());
}
}
}
// Finalize debug and EH information.
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->endModule();
delete HI.Handler;
}
Handlers.clear();
2014-04-24 14:44:33 +08:00
DD = nullptr;
// If the target wants to know about weak references, print them all.
if (MAI->getWeakRefDirective()) {
// FIXME: This is not lazy, it would be nice to only print weak references
// to stuff that is actually used. Note that doing so would require targets
// to notice uses in operands (due to constant exprs etc). This should
// happen with the MC stuff eventually.
// Print out module-level global objects here.
for (const auto &GO : M.global_objects()) {
if (!GO.hasExternalWeakLinkage())
continue;
OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
}
}
OutStreamer->AddBlankLine();
// Print aliases in topological order, that is, for each alias a = b,
// b must be printed before a.
// This is because on some targets (e.g. PowerPC) linker expects aliases in
// such an order to generate correct TOC information.
SmallVector<const GlobalAlias *, 16> AliasStack;
SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
for (const auto &Alias : M.aliases()) {
for (const GlobalAlias *Cur = &Alias; Cur;
Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
if (!AliasVisited.insert(Cur).second)
break;
AliasStack.push_back(Cur);
}
for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
emitGlobalIndirectSymbol(M, *AncestorAlias);
AliasStack.clear();
}
for (const auto &IFunc : M.ifuncs())
emitGlobalIndirectSymbol(M, IFunc);
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
MP->finishAssembly(M, *MI, *this);
// Emit llvm.ident metadata in an '.ident' directive.
EmitModuleIdents(M);
// Emit __morestack address if needed for indirect calls.
if (MMI->usesMorestackAddr()) {
unsigned Align = 1;
MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
getDataLayout(), SectionKind::getReadOnly(),
/*C=*/nullptr, Align);
OutStreamer->SwitchSection(ReadOnlySection);
MCSymbol *AddrSymbol =
OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
OutStreamer->EmitLabel(AddrSymbol);
unsigned PtrSize = MAI->getCodePointerSize();
OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
PtrSize);
}
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
OutStreamer->SwitchSection(S);
// Allow the target to emit any magic that it wants at the end of the file,
// after everything else has gone out.
EmitEndOfAsmFile(M);
2014-04-24 14:44:33 +08:00
MMI = nullptr;
OutStreamer->Finish();
OutStreamer->reset();
return false;
}
MCSymbol *AsmPrinter::getCurExceptionSym() {
if (!CurExceptionSym)
CurExceptionSym = createTempSymbol("exception");
return CurExceptionSym;
}
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
this->MF = &MF;
// Get the function symbol.
CurrentFnSym = getSymbol(MF.getFunction());
CurrentFnSymForSize = CurrentFnSym;
CurrentFnBegin = nullptr;
CurExceptionSym = nullptr;
bool NeedsLocalForSize = MAI->needsLocalForSize();
if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() ||
MF.hasEHFunclets() || NeedsLocalForSize) {
CurrentFnBegin = createTempSymbol("func_begin");
if (NeedsLocalForSize)
CurrentFnSymForSize = CurrentFnBegin;
}
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
if (isVerbose())
LI = &getAnalysis<MachineLoopInfo>();
const TargetSubtargetInfo &STI = MF.getSubtarget();
EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
? PrintSchedule
: STI.supportPrintSchedInfo();
}
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
namespace {
// Keep track the alignment, constpool entries per Section.
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
struct SectionCPs {
MCSection *S;
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
unsigned Alignment;
SmallVector<unsigned, 4> CPEs;
SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
};
} // end anonymous namespace
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AsmPrinter::EmitConstantPool() {
const MachineConstantPool *MCP = MF->getConstantPool();
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
if (CP.empty()) return;
// Calculate sections for constant pool entries. We collect entries to go into
// the same section together to reduce amount of section switch statements.
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
SmallVector<SectionCPs, 4> CPSections;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
const MachineConstantPoolEntry &CPE = CP[i];
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
unsigned Align = CPE.getAlignment();
SectionKind Kind = CPE.getSectionKind(&getDataLayout());
const Constant *C = nullptr;
if (!CPE.isMachineConstantPoolEntry())
C = CPE.Val.ConstVal;
MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
Kind, C, Align);
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
// The number of sections are small, just do a linear search from the
// last section to the first.
bool Found = false;
unsigned SecIdx = CPSections.size();
while (SecIdx != 0) {
if (CPSections[--SecIdx].S == S) {
Found = true;
break;
}
}
if (!Found) {
SecIdx = CPSections.size();
CPSections.push_back(SectionCPs(S, Align));
}
if (Align > CPSections[SecIdx].Alignment)
CPSections[SecIdx].Alignment = Align;
CPSections[SecIdx].CPEs.push_back(i);
}
// Now print stuff into the calculated sections.
const MCSection *CurSection = nullptr;
unsigned Offset = 0;
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
unsigned CPI = CPSections[i].CPEs[j];
MCSymbol *Sym = GetCPISymbol(CPI);
if (!Sym->isUndefined())
continue;
if (CurSection != CPSections[i].S) {
OutStreamer->SwitchSection(CPSections[i].S);
EmitAlignment(Log2_32(CPSections[i].Alignment));
CurSection = CPSections[i].S;
Offset = 0;
}
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
MachineConstantPoolEntry CPE = CP[CPI];
// Emit inter-object padding for alignment.
unsigned AlignMask = CPE.getAlignment() - 1;
unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
OutStreamer->EmitZeros(NewOffset - Offset);
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
Type *Ty = CPE.getType();
Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
OutStreamer->EmitLabel(Sym);
Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues. 1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants. 2. MachineConstantPool alignment field is also a log2 value. 3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values. 4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries. 5. Asm printer uses expensive data structure multimap to track constant pool entries by sections. 6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic. Solutions: 1. ConstantPoolSDNode alignment field is changed to keep non-log2 value. 2. MachineConstantPool alignment field is also changed to keep non-log2 value. 3. Functions that create ConstantPool nodes are passing in non-log2 alignments. 4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT. 5. Asm printer uses cheaper data structure to group constant pool entries. 6. Asm printer compute entry offsets after grouping is done. 7. Change JIT code to compute entry offsets on the fly. llvm-svn: 66875
2009-03-13 15:51:59 +08:00
if (CPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
else
EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
}
}
}
/// EmitJumpTableInfo - Print assembly representations of the jump tables used
/// by the current function to the current output stream.
///
void AsmPrinter::EmitJumpTableInfo() {
const DataLayout &DL = MF->getDataLayout();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2014-04-24 14:44:33 +08:00
if (!MJTI) return;
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
// Pick the directive to use to print the jump table entries, and switch to
// the appropriate section.
const Function *F = MF->getFunction();
const TargetLoweringObjectFile &TLOF = getObjFileLowering();
bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
*F);
if (JTInDiffSection) {
// Drop it in the readonly section.
MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM);
OutStreamer->SwitchSection(ReadOnlySection);
}
EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
// Jump tables in code sections are marked with a data_region directive
// where that's supported.
if (!JTInDiffSection)
OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
// For the EK_LabelDifference32 entry, if using .set avoids a relocation,
/// emit a .set directive for each unique entry.
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
MAI->doesSetDirectiveSuppressReloc()) {
SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
const MachineBasicBlock *MBB = JTBBs[ii];
if (!EmittedSets.insert(MBB).second)
continue;
// .set LJTSet, LBB32-base
const MCExpr *LHS =
MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
MCBinaryExpr::createSub(LHS, Base,
OutContext));
}
}
// On some targets (e.g. Darwin) we want to emit two consecutive labels
// before each jump table. The first label is never referenced, but tells
// the assembler and linker the extents of the jump table object. The
// second label is actually referenced by the code.
if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
// FIXME: This doesn't have to have any specific name, just any randomly
// named and numbered 'l' label would work. Simplify GetJTISymbol.
OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
OutStreamer->EmitLabel(GetJTISymbol(JTI));
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
}
if (!JTInDiffSection)
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
}
/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
/// current stream.
void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned UID) const {
assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2014-04-24 14:44:33 +08:00
const MCExpr *Value = nullptr;
switch (MJTI->getEntryKind()) {
case MachineJumpTableInfo::EK_Inline:
llvm_unreachable("Cannot emit EK_Inline jump table entry");
case MachineJumpTableInfo::EK_Custom32:
Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
MJTI, MBB, UID, OutContext);
break;
case MachineJumpTableInfo::EK_BlockAddress:
// EK_BlockAddress - Each entry is a plain address of block, e.g.:
// .word LBB123
Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
break;
case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
// EK_GPRel32BlockAddress - Each entry is an address of block, encoded
// with a relocation as gp-relative, e.g.:
// .gprel32 LBB123
MCSymbol *MBBSym = MBB->getSymbol();
OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
return;
}
case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
// EK_GPRel64BlockAddress - Each entry is an address of block, encoded
// with a relocation as gp-relative, e.g.:
// .gpdword LBB123
MCSymbol *MBBSym = MBB->getSymbol();
OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
return;
}
case MachineJumpTableInfo::EK_LabelDifference32: {
// Each entry is the address of the block minus the address of the jump
// table. This is used for PIC jump tables where gprel32 is not supported.
// e.g.:
// .word LBB123 - LJTI1_2
// If the .set directive avoids relocations, this is emitted as:
// .set L4_5_set_123, LBB123 - LJTI1_2
// .word L4_5_set_123
if (MAI->doesSetDirectiveSuppressReloc()) {
Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
OutContext);
break;
}
Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
Value = MCBinaryExpr::createSub(Value, Base, OutContext);
break;
}
}
assert(Value && "Unknown entry kind!");
unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
OutStreamer->EmitValue(Value, EntrySize);
}
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM. If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
if (GV->getName() == "llvm.used") {
if (MAI->hasNoDeadStrip()) // No need to emit this at all.
EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
return true;
}
// Ignore debug and non-emitted data. This handles llvm.compiler.used.
if (GV->getSection() == "llvm.metadata" ||
GV->hasAvailableExternallyLinkage())
return true;
if (!GV->hasAppendingLinkage()) return false;
assert(GV->hasInitializer() && "Not a special LLVM global!");
if (GV->getName() == "llvm.global_ctors") {
EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
/* isCtor */ true);
return true;
}
if (GV->getName() == "llvm.global_dtors") {
EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
/* isCtor */ false);
return true;
}
report_fatal_error("unknown special variable");
}
/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
/// global in the specified llvm.used list for which emitUsedDirectiveFor
/// is true, as being used with this directive.
void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
// Should be an array of 'i8*'.
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
const GlobalValue *GV =
dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
if (GV)
OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
}
}
namespace {
struct Structor {
int Priority = 0;
Constant *Func = nullptr;
GlobalValue *ComdatKey = nullptr;
Structor() = default;
};
} // end anonymous namespace
/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
/// priority.
void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
bool isCtor) {
// Should be an array of '{ int, void ()* }' structs. The first value is the
// init priority.
if (!isa<ConstantArray>(List)) return;
// Sanity check the structors list.
const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
if (!InitList) return; // Not an array!
StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
// FIXME: Only allow the 3-field form in LLVM 4.0.
if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
return; // Not an array of two or three elements!
if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
!isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
return; // Not (int, ptr, ptr).
// Gather the structors in a form that's convenient for sorting by priority.
SmallVector<Structor, 8> Structors;
for (Value *O : InitList->operands()) {
ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
if (!CS) continue; // Malformed.
if (CS->getOperand(1)->isNullValue())
break; // Found a null terminator, skip the rest.
ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
if (!Priority) continue; // Malformed.
Structors.push_back(Structor());
Structor &S = Structors.back();
S.Priority = Priority->getLimitedValue(65535);
S.Func = CS->getOperand(1);
if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
S.ComdatKey =
dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
}
// Emit the function pointers in the target-specific order
unsigned Align = Log2_32(DL.getPointerPrefAlignment());
std::stable_sort(Structors.begin(), Structors.end(),
[](const Structor &L,
const Structor &R) { return L.Priority < R.Priority; });
for (Structor &S : Structors) {
const TargetLoweringObjectFile &Obj = getObjFileLowering();
const MCSymbol *KeySym = nullptr;
if (GlobalValue *GV = S.ComdatKey) {
if (GV->isDeclarationForLinker())
// If the associated variable is not defined in this module
// (it might be available_externally, or have been an
// available_externally definition that was dropped by the
// EliminateAvailableExternally pass), some other TU
// will provide its dynamic initializer.
continue;
KeySym = getSymbol(GV);
}
MCSection *OutputSection =
(isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
: Obj.getStaticDtorSection(S.Priority, KeySym));
OutStreamer->SwitchSection(OutputSection);
if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
EmitAlignment(Align);
EmitXXStructor(DL, S.Func);
}
}
void AsmPrinter::EmitModuleIdents(Module &M) {
if (!MAI->hasIdentDirective())
return;
if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *N = NMD->getOperand(i);
2014-02-12 05:23:02 +08:00
assert(N->getNumOperands() == 1 &&
"llvm.ident metadata entry can have only one operand");
const MDString *S = cast<MDString>(N->getOperand(0));
OutStreamer->EmitIdent(S->getString());
}
}
}
//===--------------------------------------------------------------------===//
// Emission and print routines
//
/// EmitInt8 - Emit a byte directive and value.
///
void AsmPrinter::EmitInt8(int Value) const {
OutStreamer->EmitIntValue(Value, 1);
}
/// EmitInt16 - Emit a short directive and value.
///
void AsmPrinter::EmitInt16(int Value) const {
OutStreamer->EmitIntValue(Value, 2);
}
/// EmitInt32 - Emit a long directive and value.
///
void AsmPrinter::EmitInt32(int Value) const {
OutStreamer->EmitIntValue(Value, 4);
}
/// Emit something like ".long Hi-Lo" where the size in bytes of the directive
/// is specified by Size and Hi/Lo specify the labels. This implicitly uses
/// .set if it avoids relocations.
void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
unsigned Size) const {
OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
}
/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
/// where the size in bytes of the directive is specified by Size and Label
/// specifies the label. This implicitly uses .set if it is available.
void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
unsigned Size,
bool IsSectionRelative) const {
if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
OutStreamer->EmitCOFFSecRel32(Label, Offset);
if (Size > 4)
OutStreamer->EmitZeros(Size - 4);
return;
}
// Emit Label+Offset (or just Label if Offset is zero)
const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
if (Offset)
Expr = MCBinaryExpr::createAdd(
Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
OutStreamer->EmitValue(Expr, Size);
}
//===----------------------------------------------------------------------===//
// EmitAlignment - Emit an alignment directive to the specified power of
// two boundary. For example, if you pass in 3 here, you will get an 8
// byte alignment. If a global value is specified, and if that global has
// an explicit alignment requested, it will override the alignment request
// if required for correctness.
//
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
if (GV)
NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
assert(NumBits <
static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
"undefined behavior");
if (getCurrentSection()->getKind().isText())
OutStreamer->EmitCodeAlignment(1u << NumBits);
else
OutStreamer->EmitValueToAlignment(1u << NumBits);
}
//===----------------------------------------------------------------------===//
// Constant emission.
//===----------------------------------------------------------------------===//
const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
MCContext &Ctx = OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
return MCConstantExpr::create(0, Ctx);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
return MCConstantExpr::create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2010-08-19 02:41:13 +08:00
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2014-04-24 14:44:33 +08:00
if (!CE) {
llvm_unreachable("Unknown constant value to lower!");
}
switch (CE->getOpcode()) {
default:
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
if (C != CE)
return lowerConstant(C);
// Otherwise report the problem to the user.
{
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
CE->printAsOperand(OS, /*PrintType=*/false,
!MF ? nullptr : MF->getFunction()->getParent());
report_fatal_error(OS.str());
}
case Instruction::GetElementPtr: {
// Generate a symbolic expression for the byte address
APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
const MCExpr *Base = lowerConstant(CE->getOperand(0));
if (!OffsetAI)
return Base;
int64_t Offset = OffsetAI.getSExtValue();
return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
Ctx);
}
case Instruction::Trunc:
// We emit the value and depend on the assembler to truncate the generated
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
LLVM_FALLTHROUGH;
case Instruction::BitCast:
return lowerConstant(CE->getOperand(0));
case Instruction::IntToPtr: {
const DataLayout &DL = getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
false/*ZExt*/);
return lowerConstant(Op);
}
case Instruction::PtrToInt: {
const DataLayout &DL = getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
Type *Ty = CE->getType();
const MCExpr *OpExpr = lowerConstant(Op);
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
return OpExpr;
// Otherwise the pointer is smaller than the resultant integer, mask off
// the high bits so we are sure to get a proper truncation if the input is
// a constant expr.
unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
}
case Instruction::Sub: {
GlobalValue *LHSGV;
APInt LHSOffset;
if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
getDataLayout())) {
GlobalValue *RHSGV;
APInt RHSOffset;
if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
getDataLayout())) {
const MCExpr *RelocExpr =
getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
if (!RelocExpr)
RelocExpr = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
if (Addend != 0)
RelocExpr = MCBinaryExpr::createAdd(
RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
return RelocExpr;
}
}
}
// else fallthrough
// The MC library also has a right-shift operator, but it isn't consistently
// signed or unsigned between different targets.
case Instruction::Add:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
const MCExpr *LHS = lowerConstant(CE->getOperand(0));
const MCExpr *RHS = lowerConstant(CE->getOperand(1));
switch (CE->getOpcode()) {
default: llvm_unreachable("Unknown binary operator constant cast expr");
case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx);
case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
}
}
}
}
static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
AsmPrinter &AP,
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
const Constant *BaseCV = nullptr,
uint64_t Offset = 0);
static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
/// isRepeatedByteSequence - Determine whether the given value is
/// composed of a repeated sequence of identical bytes and return the
/// byte value. If it is not a repeated sequence, return -1.
static int isRepeatedByteSequence(const ConstantDataSequential *V) {
StringRef Data = V->getRawDataValues();
assert(!Data.empty() && "Empty aggregates should be CAZ node");
char C = Data[0];
for (unsigned i = 1, e = Data.size(); i != e; ++i)
if (Data[i] != C) return -1;
return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
}
/// isRepeatedByteSequence - Determine whether the given value is
/// composed of a repeated sequence of identical bytes and return the
/// byte value. If it is not a repeated sequence, return -1.
static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
assert(Size % 8 == 0);
// Extend the element to take zero padding into account.
APInt Value = CI->getValue().zextOrSelf(Size);
if (!Value.isSplat(8))
return -1;
return Value.zextOrTrunc(8).getZExtValue();
}
if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
// Make sure all array elements are sequences of the same repeated
// byte.
assert(CA->getNumOperands() != 0 && "Should be a CAZ");
Constant *Op0 = CA->getOperand(0);
int Byte = isRepeatedByteSequence(Op0, DL);
if (Byte == -1)
return -1;
// All array elements must be equal.
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
if (CA->getOperand(i) != Op0)
return -1;
return Byte;
}
2012-11-21 04:34:44 +08:00
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
return isRepeatedByteSequence(CDS);
return -1;
}
static void emitGlobalConstantDataSequential(const DataLayout &DL,
const ConstantDataSequential *CDS,
AsmPrinter &AP) {
// See if we can aggregate this into a .fill, if so, emit it as such.
int Value = isRepeatedByteSequence(CDS, DL);
if (Value != -1) {
uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
// Don't emit a 1-byte object as a .fill.
if (Bytes > 1)
return AP.OutStreamer->emitFill(Bytes, Value);
}
2012-11-21 04:34:44 +08:00
// If this can be emitted with .ascii/.asciz, emit it as such.
if (CDS->isString())
return AP.OutStreamer->EmitBytes(CDS->getAsString());
// Otherwise, emit the values in successive locations.
unsigned ElementByteSize = CDS->getElementByteSize();
if (isa<IntegerType>(CDS->getElementType())) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
if (AP.isVerbose())
AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
CDS->getElementAsInteger(i));
AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
ElementByteSize);
}
} else {
for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
}
unsigned Size = DL.getTypeAllocSize(CDS->getType());
unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
CDS->getNumElements();
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer->EmitZeros(Padding);
}
static void emitGlobalConstantArray(const DataLayout &DL,
const ConstantArray *CA, AsmPrinter &AP,
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
const Constant *BaseCV, uint64_t Offset) {
// See if we can aggregate some values. Make sure it can be
// represented as a series of bytes of the constant value.
int Value = isRepeatedByteSequence(CA, DL);
if (Value != -1) {
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
AP.OutStreamer->emitFill(Bytes, Value);
}
else {
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
}
}
}
static void emitGlobalConstantVector(const DataLayout &DL,
const ConstantVector *CV, AsmPrinter &AP) {
for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
unsigned Size = DL.getTypeAllocSize(CV->getType());
unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
CV->getType()->getNumElements();
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer->EmitZeros(Padding);
}
static void emitGlobalConstantStruct(const DataLayout &DL,
const ConstantStruct *CS, AsmPrinter &AP,
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
const Constant *BaseCV, uint64_t Offset) {
// Print the fields in successive locations. Pad to align if needed!
unsigned Size = DL.getTypeAllocSize(CS->getType());
const StructLayout *Layout = DL.getStructLayout(CS->getType());
uint64_t SizeSoFar = 0;
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
const Constant *Field = CS->getOperand(i);
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
// Print the actual field value.
emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
// Check if padding is needed and insert one or more 0s.
uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
- Layout->getElementOffset(i)) - FieldSize;
SizeSoFar += FieldSize + PadSize;
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
AP.OutStreamer->EmitZeros(PadSize);
}
assert(SizeSoFar == Layout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
APInt API = CFP->getValueAPF().bitcastToAPInt();
// First print a comment with what we think the original floating-point value
// should have been.
if (AP.isVerbose()) {
SmallString<8> StrVal;
CFP->getValueAPF().toString(StrVal);
if (CFP->getType())
CFP->getType()->print(AP.OutStreamer->GetCommentOS());
else
AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
}
// Now iterate through the APInt chunks, emitting them in endian-correct
// order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
// floats).
unsigned NumBytes = API.getBitWidth() / 8;
unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
const uint64_t *p = API.getRawData();
// PPC's long double has odd notions of endianness compared to how LLVM
// handles it: p[0] goes first for *big* endian on PPC.
if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
int Chunk = API.getNumWords() - 1;
if (TrailingBytes)
AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
for (; Chunk >= 0; --Chunk)
AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
} else {
unsigned Chunk;
for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
if (TrailingBytes)
AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
}
// Emit the tail padding for the long double.
const DataLayout &DL = AP.getDataLayout();
AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
DL.getTypeStoreSize(CFP->getType()));
}
static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
const DataLayout &DL = AP.getDataLayout();
unsigned BitWidth = CI->getBitWidth();
// Copy the value as we may massage the layout for constants whose bit width
// is not a multiple of 64-bits.
APInt Realigned(CI->getValue());
uint64_t ExtraBits = 0;
unsigned ExtraBitsSize = BitWidth & 63;
if (ExtraBitsSize) {
// The bit width of the data is not a multiple of 64-bits.
// The extra bits are expected to be at the end of the chunk of the memory.
// Little endian:
// * Nothing to be done, just record the extra bits to emit.
// Big endian:
// * Record the extra bits to emit.
// * Realign the raw data to emit the chunks of 64-bits.
if (DL.isBigEndian()) {
// Basically the structure of the raw data is a chunk of 64-bits cells:
// 0 1 BitWidth / 64
// [chunk1][chunk2] ... [chunkN].
// The most significant chunk is chunkN and it should be emitted first.
// However, due to the alignment issue chunkN contains useless bits.
// Realign the chunks so that they contain only useless information:
// ExtraBits 0 1 (BitWidth / 64) - 1
// chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
ExtraBits = Realigned.getRawData()[0] &
(((uint64_t)-1) >> (64 - ExtraBitsSize));
Realigned.lshrInPlace(ExtraBitsSize);
} else
ExtraBits = Realigned.getRawData()[BitWidth / 64];
}
// We don't expect assemblers to support integer data directives
// for more than 64 bits, so we emit the data in at most 64-bit
// quantities at a time.
const uint64_t *RawData = Realigned.getRawData();
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
AP.OutStreamer->EmitIntValue(Val, 8);
}
if (ExtraBitsSize) {
// Emit the extra bits after the 64-bits chunks.
// Emit a directive that fills the expected size.
uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
Size -= (BitWidth / 64) * 8;
assert(Size && Size * 8 >= ExtraBitsSize &&
(ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
== ExtraBits && "Directive too small for extra bits.");
AP.OutStreamer->EmitIntValue(ExtraBits, Size);
}
}
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
/// \brief Transform a not absolute MCExpr containing a reference to a GOT
/// equivalent global, by a target specific GOT pc relative access to the
/// final symbol.
static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
const Constant *BaseCst,
uint64_t Offset) {
// The global @foo below illustrates a global that uses a got equivalent.
//
// @bar = global i32 42
// @gotequiv = private unnamed_addr constant i32* @bar
// @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
// i64 ptrtoint (i32* @foo to i64))
// to i32)
//
// The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
// check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
// form:
//
// foo = cstexpr, where
// cstexpr := <gotequiv> - "." + <cst>
// cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
//
// After canonicalization by evaluateAsRelocatable `ME` turns into:
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
//
// cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
// gotpcrelcst := <offset from @foo base> + <cst>
//
MCValue MV;
if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
return;
const MCSymbolRefExpr *SymA = MV.getSymA();
if (!SymA)
return;
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
// Check that GOT equivalent symbol is cached.
const MCSymbol *GOTEquivSym = &SymA->getSymbol();
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
return;
const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
if (!BaseGV)
return;
// Check for a valid base symbol
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
const MCSymbolRefExpr *SymB = MV.getSymB();
if (!SymB || BaseSym != &SymB->getSymbol())
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
return;
// Make sure to match:
//
// gotpcrelcst := <offset from @foo base> + <cst>
//
// If gotpcrelcst is positive it means that we can safely fold the pc rel
// displacement into the GOTPCREL. We can also can have an extra offset <cst>
// if the target knows how to encode it.
//
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
int64_t GOTPCRelCst = Offset + MV.getConstant();
if (GOTPCRelCst < 0)
return;
if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
return;
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
// Emit the GOT PC relative to replace the got equivalent global, i.e.:
//
// bar:
// .long 42
// gotequiv:
// .quad bar
// foo:
// .long gotequiv - "." + <cst>
//
// is replaced by the target specific equivalent to:
//
// bar:
// .long 42
// foo:
// .long bar@GOTPCREL+<gotpcrelcst>
//
AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
const GlobalVariable *GV = Result.first;
int NumUses = (int)Result.second;
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
*ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
// Update GOT equivalent usage information
--NumUses;
if (NumUses >= 0)
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
}
static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
AsmPrinter &AP, const Constant *BaseCV,
uint64_t Offset) {
uint64_t Size = DL.getTypeAllocSize(CV->getType());
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
// Globals with sub-elements such as combinations of arrays and structs
// are handled recursively by emitGlobalConstantImpl. Keep track of the
// constant symbol base and the current position with BaseCV and Offset.
if (!BaseCV && CV->hasOneUse())
BaseCV = dyn_cast<Constant>(CV->user_back());
if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
return AP.OutStreamer->EmitZeros(Size);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
switch (Size) {
case 1:
case 2:
case 4:
case 8:
if (AP.isVerbose())
AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
CI->getZExtValue());
AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
return;
default:
emitGlobalConstantLargeInt(CI, AP);
return;
}
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
return emitGlobalConstantFP(CFP, AP);
if (isa<ConstantPointerNull>(CV)) {
AP.OutStreamer->EmitIntValue(0, Size);
return;
}
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
return emitGlobalConstantDataSequential(DL, CDS, AP);
2012-11-21 04:34:44 +08:00
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
// Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
// vectors).
if (CE->getOpcode() == Instruction::BitCast)
return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
if (Size > 8) {
// If the constant expression's size is greater than 64-bits, then we have
// to emit the value in chunks. Try to constant fold the value and emit it
// that way.
Constant *New = ConstantFoldConstant(CE, DL);
if (New && New != CE)
return emitGlobalConstantImpl(DL, New, AP);
}
}
2012-11-21 04:34:44 +08:00
if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
return emitGlobalConstantVector(DL, V, AP);
2012-11-21 04:34:44 +08:00
// Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
// thread the streamer with EmitValue.
[AsmPrinter] Access pointers to globals via pcrel GOT entries Front-ends could use global unnamed_addr to hold pointers to other symbols, like @gotequivalent below: @foo = global i32 42 @gotequivalent = private unnamed_addr constant i32* @foo @delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64), i64 ptrtoint (i32* @delta to i64)) to i32) The global @delta holds a data "PC"-relative offset to @gotequivalent, an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows: .globl _foo _foo: .long 42 .globl _gotequivalent _gotequivalent: .quad _foo .globl _delta _delta: .long _gotequivalent-_delta Since unnamed_addr indicates that the address is not significant, only the content, we can optimize the case above by replacing pc-relative accesses to "GOT equivalent" globals, by a PC relative access to the GOT entry of the final symbol instead. Therefore, "delta" can contain a pc relative relocation to foo's GOT entry and we avoid the emission of "gotequivalent", yielding the assembly code below: .globl _foo _foo: .long 42 .globl _delta _delta: .long _foo@GOTPCREL+4 There are a couple of advantages of doing this: (1) Front-ends that need to emit a great deal of data to store pointers to external symbols could save space by not emitting such "got equivalent" globals and (2) IR constructs combined with this opt opens a way to represent GOT pcrel relocations by using the LLVM IR, which is something we previously had no way to express. Differential Revision: http://reviews.llvm.org/D6922 rdar://problem/18534217 llvm-svn: 230264
2015-02-24 05:26:18 +08:00
const MCExpr *ME = AP.lowerConstant(CV);
// Since lowerConstant already folded and got rid of all IR pointer and
// integer casts, detect GOT equivalent accesses by looking into the MCExpr
// directly.
if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
AP.OutStreamer->EmitValue(ME, Size);
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
uint64_t Size = DL.getTypeAllocSize(CV->getType());
if (Size)
emitGlobalConstantImpl(DL, CV, *this);
else if (MAI->hasSubsectionsViaSymbols()) {
// If the global has zero size, emit a single byte so that two labels don't
// look like they are at the same location.
OutStreamer->EmitIntValue(0, 1);
}
}
2006-01-27 10:10:10 +08:00
void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
}
2010-04-05 02:16:38 +08:00
void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
if (Offset > 0)
OS << '+' << Offset;
else if (Offset < 0)
OS << Offset;
}
//===----------------------------------------------------------------------===//
// Symbol Lowering Routines.
//===----------------------------------------------------------------------===//
MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
return OutContext.createTempSymbol(Name, true);
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
return MMI->getAddrLabelSymbol(BA->getBasicBlock());
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
return MMI->getAddrLabelSymbol(BB);
}
/// GetCPISymbol - Return the symbol for the specified constant pool entry.
MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
const DataLayout &DL = getDataLayout();
return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
"CPI" + Twine(getFunctionNumber()) + "_" +
Twine(CPID));
}
/// GetJTISymbol - Return the symbol for the specified jump table entry.
MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
}
/// GetJTSetSymbol - Return the symbol for the specified jump table .set
/// FIXME: privatize to AsmPrinter.
MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
const DataLayout &DL = getDataLayout();
return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
Twine(getFunctionNumber()) + "_" +
Twine(UID) + "_set_" + Twine(MBBID));
}
MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
StringRef Suffix) const {
return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2010-01-16 07:25:11 +08:00
}
/// Return the MCSymbol for the specified ExternalSymbol.
MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
SmallString<60> NameStr;
Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
return OutContext.getOrCreateSymbol(NameStr);
}
/// PrintParentLoopComment - Print comments about parent loops of this one.
static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
unsigned FunctionNumber) {
2014-04-24 14:44:33 +08:00
if (!Loop) return;
PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
OS.indent(Loop->getLoopDepth()*2)
<< "Parent Loop BB" << FunctionNumber << "_"
<< Loop->getHeader()->getNumber()
<< " Depth=" << Loop->getLoopDepth() << '\n';
}
/// PrintChildLoopComment - Print comments about child loops within
/// the loop for this basic block, with nesting.
static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
unsigned FunctionNumber) {
// Add child loop information
for (const MachineLoop *CL : *Loop) {
OS.indent(CL->getLoopDepth()*2)
<< "Child Loop BB" << FunctionNumber << "_"
<< CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
<< '\n';
PrintChildLoopComment(OS, CL, FunctionNumber);
}
}
/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2010-04-05 02:16:38 +08:00
const MachineLoopInfo *LI,
const AsmPrinter &AP) {
// Add loop depth information
const MachineLoop *Loop = LI->getLoopFor(&MBB);
2014-04-24 14:44:33 +08:00
if (!Loop) return;
MachineBasicBlock *Header = Loop->getHeader();
assert(Header && "No header for loop");
// If this block is not a loop header, just print out what is the loop header
// and return.
if (Header != &MBB) {
AP.OutStreamer->AddComment(" in Loop: Header=BB" +
Twine(AP.getFunctionNumber())+"_" +
Twine(Loop->getHeader()->getNumber())+
" Depth="+Twine(Loop->getLoopDepth()));
return;
}
// Otherwise, it is a loop header. Print out information about child and
// parent loops.
raw_ostream &OS = AP.OutStreamer->GetCommentOS();
PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
OS << "=>";
OS.indent(Loop->getLoopDepth()*2-2);
OS << "This ";
if (Loop->empty())
OS << "Inner ";
OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
}
/// EmitBasicBlockStart - This method prints the label for the specified
/// MachineBasicBlock, an alignment (if present) and a comment describing
/// it if appropriate.
void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
// End the previous funclet and start a new one.
if (MBB.isEHFuncletEntry()) {
for (const HandlerInfo &HI : Handlers) {
HI.Handler->endFunclet();
HI.Handler->beginFunclet(MBB);
}
}
2009-10-30 09:34:35 +08:00
// Emit an alignment directive for this block, if needed.
if (unsigned Align = MBB.getAlignment())
EmitAlignment(Align);
// If the block has its address taken, emit any labels that were used to
// reference the block. It is possible that there is more than one label
// here, because multiple LLVM BB's may have been RAUW'd to this block after
// the references were generated.
if (MBB.hasAddressTaken()) {
const BasicBlock *BB = MBB.getBasicBlock();
if (isVerbose())
OutStreamer->AddComment("Block address taken");
// MBBs can have their address taken as part of CodeGen without having
// their corresponding BB's address taken in IR
if (BB->hasAddressTaken())
for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
OutStreamer->EmitLabel(Sym);
}
// Print some verbose block comments.
if (isVerbose()) {
if (const BasicBlock *BB = MBB.getBasicBlock()) {
if (BB->hasName()) {
BB->printAsOperand(OutStreamer->GetCommentOS(),
/*PrintType=*/false, BB->getModule());
OutStreamer->GetCommentOS() << '\n';
}
}
emitBasicBlockLoopComments(MBB, LI, *this);
}
2009-10-30 09:34:35 +08:00
// Print the main label for the block.
if (MBB.pred_empty() ||
(isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
if (isVerbose()) {
// NOTE: Want this comment at start of line, don't emit with AddComment.
OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
}
} else {
OutStreamer->EmitLabel(MBB.getSymbol());
}
}
void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
bool IsDefinition) const {
MCSymbolAttr Attr = MCSA_Invalid;
switch (Visibility) {
default: break;
case GlobalValue::HiddenVisibility:
if (IsDefinition)
Attr = MAI->getHiddenVisibilityAttr();
else
Attr = MAI->getHiddenDeclarationVisibilityAttr();
break;
case GlobalValue::ProtectedVisibility:
Attr = MAI->getProtectedVisibilityAttr();
break;
}
if (Attr != MCSA_Invalid)
OutStreamer->EmitSymbolAttribute(Sym, Attr);
}
/// isBlockOnlyReachableByFallthough - Return true if the basic block has
/// exactly one predecessor and the control transfer mechanism between
/// the predecessor and this block is a fall-through.
bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
// If this is a landing pad, it isn't a fall through. If it has no preds,
// then nothing falls through to it.
if (MBB->isEHPad() || MBB->pred_empty())
return false;
// If there isn't exactly one predecessor, it can't be a fall through.
if (MBB->pred_size() > 1)
return false;
// The predecessor has to be immediately before this block.
MachineBasicBlock *Pred = *MBB->pred_begin();
if (!Pred->isLayoutSuccessor(MBB))
return false;
// If the block is completely empty, then it definitely does fall through.
if (Pred->empty())
return true;
// Check the terminators in the previous blocks
for (const auto &MI : Pred->terminators()) {
// If it is not a simple branch, we are in a table somewhere.
if (!MI.isBranch() || MI.isIndirectBranch())
return false;
// If we are the operands of one of the branches, this is not a fall
// through. Note that targets with delay slots will usually bundle
// terminators with the delay slot instruction.
for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
if (OP->isJTI())
return false;
if (OP->isMBB() && OP->getMBB() == MBB)
return false;
}
}
return true;
}
GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
if (!S.usesMetadata())
2014-04-24 14:44:33 +08:00
return nullptr;
assert(!S.useStatepoints() && "statepoints do not currently support custom"
" stackmap formats, please see the documentation for a description of"
" the default format. If you really need a custom serialized format,"
" please file a bug");
gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
gcp_map_type::iterator GCPI = GCMap.find(&S);
if (GCPI != GCMap.end())
return GCPI->second.get();
auto Name = S.getName();
for (GCMetadataPrinterRegistry::iterator
I = GCMetadataPrinterRegistry::begin(),
E = GCMetadataPrinterRegistry::end(); I != E; ++I)
if (Name == I->getName()) {
std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
GMP->S = &S;
auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
return IterBool.first->second.get();
}
report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
}
/// Pin vtable to this file.
AsmPrinterHandler::~AsmPrinterHandler() = default;
void AsmPrinterHandler::markFunctionEnd() {}
// In the binary's "xray_instr_map" section, an array of these function entries
// describes each instrumentation point. When XRay patches your code, the index
// into this table will be given to your handler as a patch point identifier.
void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
const MCSymbol *CurrentFnSym) const {
Out->EmitSymbolValue(Sled, Bytes);
Out->EmitSymbolValue(CurrentFnSym, Bytes);
auto Kind8 = static_cast<uint8_t>(Kind);
Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
Out->EmitBytes(
StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
Out->EmitZeros(2 * Bytes - 2); // Pad the previous two entries
}
void AsmPrinter::emitXRayTable() {
if (Sleds.empty())
return;
auto PrevSection = OutStreamer->getCurrentSectionOnly();
auto Fn = MF->getFunction();
MCSection *Section = nullptr;
if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
if (Fn->hasComdat()) {
Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
ELF::SHF_ALLOC | ELF::SHF_GROUP, 0,
Fn->getComdat()->getName());
} else {
Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
ELF::SHF_ALLOC);
}
} else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
Section = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
SectionKind::getReadOnlyWithRel());
} else {
llvm_unreachable("Unsupported target");
}
// Before we switch over, we force a reference to a label inside the
// xray_instr_map section. Since this function is always called just
// before the function's end, we assume that this is happening after
// the last return instruction.
auto WordSizeBytes = MAI->getCodePointerSize();
MCSymbol *Tmp = OutContext.createTempSymbol("xray_synthetic_", true);
OutStreamer->EmitCodeAlignment(16);
OutStreamer->EmitSymbolValue(Tmp, WordSizeBytes, false);
OutStreamer->SwitchSection(Section);
OutStreamer->EmitLabel(Tmp);
for (const auto &Sled : Sleds)
Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
OutStreamer->SwitchSection(PrevSection);
Sleds.clear();
}
void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
SledKind Kind) {
auto Fn = MI.getParent()->getParent()->getFunction();
auto Attr = Fn->getFnAttribute("function-instrument");
bool LogArgs = Fn->hasFnAttribute("xray-log-args");
bool AlwaysInstrument =
Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
Kind = SledKind::LOG_ARGS_ENTER;
Sleds.emplace_back(
XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn });
}
uint16_t AsmPrinter::getDwarfVersion() const {
return OutStreamer->getContext().getDwarfVersion();
}
void AsmPrinter::setDwarfVersion(uint16_t Version) {
OutStreamer->getContext().setDwarfVersion(Version);
}