llvm-project/llvm/lib/ObjectYAML/ELFYAML.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1433 lines
45 KiB
C++
Raw Normal View History

//===- ELFYAML.cpp - ELF YAMLIO implementation ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines classes for handling the YAML representation of ELF.
//
//===----------------------------------------------------------------------===//
#include "llvm/ObjectYAML/ELFYAML.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MipsABIFlags.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/WithColor.h"
#include <cassert>
#include <cstdint>
namespace llvm {
ELFYAML::Section::~Section() = default;
namespace yaml {
void ScalarEnumerationTraits<ELFYAML::ELF_ET>::enumeration(
IO &IO, ELFYAML::ELF_ET &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
ECase(ET_NONE);
ECase(ET_REL);
ECase(ET_EXEC);
ECase(ET_DYN);
ECase(ET_CORE);
#undef ECase
IO.enumFallback<Hex16>(Value);
}
void ScalarEnumerationTraits<ELFYAML::ELF_PT>::enumeration(
IO &IO, ELFYAML::ELF_PT &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
ECase(PT_NULL);
ECase(PT_LOAD);
ECase(PT_DYNAMIC);
ECase(PT_INTERP);
ECase(PT_NOTE);
ECase(PT_SHLIB);
ECase(PT_PHDR);
ECase(PT_TLS);
ECase(PT_GNU_EH_FRAME);
ECase(PT_GNU_STACK);
ECase(PT_GNU_RELRO);
#undef ECase
IO.enumFallback<Hex32>(Value);
}
void ScalarEnumerationTraits<ELFYAML::ELF_EM>::enumeration(
IO &IO, ELFYAML::ELF_EM &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
ECase(EM_NONE);
ECase(EM_M32);
ECase(EM_SPARC);
ECase(EM_386);
ECase(EM_68K);
ECase(EM_88K);
ECase(EM_IAMCU);
ECase(EM_860);
ECase(EM_MIPS);
ECase(EM_S370);
ECase(EM_MIPS_RS3_LE);
ECase(EM_PARISC);
ECase(EM_VPP500);
ECase(EM_SPARC32PLUS);
ECase(EM_960);
ECase(EM_PPC);
ECase(EM_PPC64);
ECase(EM_S390);
ECase(EM_SPU);
ECase(EM_V800);
ECase(EM_FR20);
ECase(EM_RH32);
ECase(EM_RCE);
ECase(EM_ARM);
ECase(EM_ALPHA);
ECase(EM_SH);
ECase(EM_SPARCV9);
ECase(EM_TRICORE);
ECase(EM_ARC);
ECase(EM_H8_300);
ECase(EM_H8_300H);
ECase(EM_H8S);
ECase(EM_H8_500);
ECase(EM_IA_64);
ECase(EM_MIPS_X);
ECase(EM_COLDFIRE);
ECase(EM_68HC12);
ECase(EM_MMA);
ECase(EM_PCP);
ECase(EM_NCPU);
ECase(EM_NDR1);
ECase(EM_STARCORE);
ECase(EM_ME16);
ECase(EM_ST100);
ECase(EM_TINYJ);
ECase(EM_X86_64);
ECase(EM_PDSP);
ECase(EM_PDP10);
ECase(EM_PDP11);
ECase(EM_FX66);
ECase(EM_ST9PLUS);
ECase(EM_ST7);
ECase(EM_68HC16);
ECase(EM_68HC11);
ECase(EM_68HC08);
ECase(EM_68HC05);
ECase(EM_SVX);
ECase(EM_ST19);
ECase(EM_VAX);
ECase(EM_CRIS);
ECase(EM_JAVELIN);
ECase(EM_FIREPATH);
ECase(EM_ZSP);
ECase(EM_MMIX);
ECase(EM_HUANY);
ECase(EM_PRISM);
ECase(EM_AVR);
ECase(EM_FR30);
ECase(EM_D10V);
ECase(EM_D30V);
ECase(EM_V850);
ECase(EM_M32R);
ECase(EM_MN10300);
ECase(EM_MN10200);
ECase(EM_PJ);
ECase(EM_OPENRISC);
ECase(EM_ARC_COMPACT);
ECase(EM_XTENSA);
ECase(EM_VIDEOCORE);
ECase(EM_TMM_GPP);
ECase(EM_NS32K);
ECase(EM_TPC);
ECase(EM_SNP1K);
ECase(EM_ST200);
ECase(EM_IP2K);
ECase(EM_MAX);
ECase(EM_CR);
ECase(EM_F2MC16);
ECase(EM_MSP430);
ECase(EM_BLACKFIN);
ECase(EM_SE_C33);
ECase(EM_SEP);
ECase(EM_ARCA);
ECase(EM_UNICORE);
ECase(EM_EXCESS);
ECase(EM_DXP);
ECase(EM_ALTERA_NIOS2);
ECase(EM_CRX);
ECase(EM_XGATE);
ECase(EM_C166);
ECase(EM_M16C);
ECase(EM_DSPIC30F);
ECase(EM_CE);
ECase(EM_M32C);
ECase(EM_TSK3000);
ECase(EM_RS08);
ECase(EM_SHARC);
ECase(EM_ECOG2);
ECase(EM_SCORE7);
ECase(EM_DSP24);
ECase(EM_VIDEOCORE3);
ECase(EM_LATTICEMICO32);
ECase(EM_SE_C17);
ECase(EM_TI_C6000);
ECase(EM_TI_C2000);
ECase(EM_TI_C5500);
ECase(EM_MMDSP_PLUS);
ECase(EM_CYPRESS_M8C);
ECase(EM_R32C);
ECase(EM_TRIMEDIA);
ECase(EM_HEXAGON);
ECase(EM_8051);
ECase(EM_STXP7X);
ECase(EM_NDS32);
ECase(EM_ECOG1);
ECase(EM_ECOG1X);
ECase(EM_MAXQ30);
ECase(EM_XIMO16);
ECase(EM_MANIK);
ECase(EM_CRAYNV2);
ECase(EM_RX);
ECase(EM_METAG);
ECase(EM_MCST_ELBRUS);
ECase(EM_ECOG16);
ECase(EM_CR16);
ECase(EM_ETPU);
ECase(EM_SLE9X);
ECase(EM_L10M);
ECase(EM_K10M);
ECase(EM_AARCH64);
ECase(EM_AVR32);
ECase(EM_STM8);
ECase(EM_TILE64);
ECase(EM_TILEPRO);
ECase(EM_CUDA);
ECase(EM_TILEGX);
ECase(EM_CLOUDSHIELD);
ECase(EM_COREA_1ST);
ECase(EM_COREA_2ND);
ECase(EM_ARC_COMPACT2);
ECase(EM_OPEN8);
ECase(EM_RL78);
ECase(EM_VIDEOCORE5);
ECase(EM_78KOR);
ECase(EM_56800EX);
ECase(EM_AMDGPU);
ECase(EM_RISCV);
ECase(EM_LANAI);
ECase(EM_BPF);
#undef ECase
IO.enumFallback<Hex16>(Value);
}
void ScalarEnumerationTraits<ELFYAML::ELF_ELFCLASS>::enumeration(
IO &IO, ELFYAML::ELF_ELFCLASS &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
// Since the semantics of ELFCLASSNONE is "invalid", just don't accept it
// here.
ECase(ELFCLASS32);
ECase(ELFCLASS64);
#undef ECase
}
void ScalarEnumerationTraits<ELFYAML::ELF_ELFDATA>::enumeration(
IO &IO, ELFYAML::ELF_ELFDATA &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
// ELFDATANONE is an invalid data encoding, but we accept it because
// we want to be able to produce invalid binaries for the tests.
ECase(ELFDATANONE);
ECase(ELFDATA2LSB);
ECase(ELFDATA2MSB);
#undef ECase
}
void ScalarEnumerationTraits<ELFYAML::ELF_ELFOSABI>::enumeration(
IO &IO, ELFYAML::ELF_ELFOSABI &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
ECase(ELFOSABI_NONE);
ECase(ELFOSABI_HPUX);
ECase(ELFOSABI_NETBSD);
ECase(ELFOSABI_GNU);
ECase(ELFOSABI_HURD);
ECase(ELFOSABI_SOLARIS);
ECase(ELFOSABI_AIX);
ECase(ELFOSABI_IRIX);
ECase(ELFOSABI_FREEBSD);
ECase(ELFOSABI_TRU64);
ECase(ELFOSABI_MODESTO);
ECase(ELFOSABI_OPENBSD);
ECase(ELFOSABI_OPENVMS);
ECase(ELFOSABI_NSK);
ECase(ELFOSABI_AROS);
ECase(ELFOSABI_FENIXOS);
ECase(ELFOSABI_CLOUDABI);
ECase(ELFOSABI_AMDGPU_HSA);
ECase(ELFOSABI_AMDGPU_PAL);
ECase(ELFOSABI_AMDGPU_MESA3D);
ECase(ELFOSABI_ARM);
ECase(ELFOSABI_C6000_ELFABI);
ECase(ELFOSABI_C6000_LINUX);
ECase(ELFOSABI_STANDALONE);
#undef ECase
}
void ScalarBitSetTraits<ELFYAML::ELF_EF>::bitset(IO &IO,
ELFYAML::ELF_EF &Value) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
assert(Object && "The IO context is not initialized");
#define BCase(X) IO.bitSetCase(Value, #X, ELF::X)
#define BCaseMask(X, M) IO.maskedBitSetCase(Value, #X, ELF::X, ELF::M)
switch (Object->Header.Machine) {
case ELF::EM_ARM:
BCase(EF_ARM_SOFT_FLOAT);
BCase(EF_ARM_VFP_FLOAT);
BCaseMask(EF_ARM_EABI_UNKNOWN, EF_ARM_EABIMASK);
BCaseMask(EF_ARM_EABI_VER1, EF_ARM_EABIMASK);
BCaseMask(EF_ARM_EABI_VER2, EF_ARM_EABIMASK);
BCaseMask(EF_ARM_EABI_VER3, EF_ARM_EABIMASK);
BCaseMask(EF_ARM_EABI_VER4, EF_ARM_EABIMASK);
BCaseMask(EF_ARM_EABI_VER5, EF_ARM_EABIMASK);
break;
case ELF::EM_MIPS:
BCase(EF_MIPS_NOREORDER);
BCase(EF_MIPS_PIC);
BCase(EF_MIPS_CPIC);
BCase(EF_MIPS_ABI2);
BCase(EF_MIPS_32BITMODE);
BCase(EF_MIPS_FP64);
BCase(EF_MIPS_NAN2008);
BCase(EF_MIPS_MICROMIPS);
BCase(EF_MIPS_ARCH_ASE_M16);
BCase(EF_MIPS_ARCH_ASE_MDMX);
BCaseMask(EF_MIPS_ABI_O32, EF_MIPS_ABI);
BCaseMask(EF_MIPS_ABI_O64, EF_MIPS_ABI);
BCaseMask(EF_MIPS_ABI_EABI32, EF_MIPS_ABI);
BCaseMask(EF_MIPS_ABI_EABI64, EF_MIPS_ABI);
BCaseMask(EF_MIPS_MACH_3900, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_4010, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_4100, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_4650, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_4120, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_4111, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_SB1, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_OCTEON, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_XLR, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_OCTEON2, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_OCTEON3, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_5400, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_5900, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_5500, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_9000, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_LS2E, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_LS2F, EF_MIPS_MACH);
BCaseMask(EF_MIPS_MACH_LS3A, EF_MIPS_MACH);
BCaseMask(EF_MIPS_ARCH_1, EF_MIPS_ARCH);
BCaseMask(EF_MIPS_ARCH_2, EF_MIPS_ARCH);
BCaseMask(EF_MIPS_ARCH_3, EF_MIPS_ARCH);
BCaseMask(EF_MIPS_ARCH_4, EF_MIPS_ARCH);
BCaseMask(EF_MIPS_ARCH_5, EF_MIPS_ARCH);
BCaseMask(EF_MIPS_ARCH_32, EF_MIPS_ARCH);
BCaseMask(EF_MIPS_ARCH_64, EF_MIPS_ARCH);
BCaseMask(EF_MIPS_ARCH_32R2, EF_MIPS_ARCH);
BCaseMask(EF_MIPS_ARCH_64R2, EF_MIPS_ARCH);
BCaseMask(EF_MIPS_ARCH_32R6, EF_MIPS_ARCH);
BCaseMask(EF_MIPS_ARCH_64R6, EF_MIPS_ARCH);
break;
case ELF::EM_HEXAGON:
BCase(EF_HEXAGON_MACH_V2);
BCase(EF_HEXAGON_MACH_V3);
BCase(EF_HEXAGON_MACH_V4);
BCase(EF_HEXAGON_MACH_V5);
BCase(EF_HEXAGON_MACH_V55);
BCase(EF_HEXAGON_MACH_V60);
BCase(EF_HEXAGON_MACH_V62);
BCase(EF_HEXAGON_MACH_V65);
BCase(EF_HEXAGON_ISA_V2);
BCase(EF_HEXAGON_ISA_V3);
BCase(EF_HEXAGON_ISA_V4);
BCase(EF_HEXAGON_ISA_V5);
BCase(EF_HEXAGON_ISA_V55);
BCase(EF_HEXAGON_ISA_V60);
BCase(EF_HEXAGON_ISA_V62);
BCase(EF_HEXAGON_ISA_V65);
break;
case ELF::EM_AVR:
BCase(EF_AVR_ARCH_AVR1);
BCase(EF_AVR_ARCH_AVR2);
BCase(EF_AVR_ARCH_AVR25);
BCase(EF_AVR_ARCH_AVR3);
BCase(EF_AVR_ARCH_AVR31);
BCase(EF_AVR_ARCH_AVR35);
BCase(EF_AVR_ARCH_AVR4);
BCase(EF_AVR_ARCH_AVR51);
BCase(EF_AVR_ARCH_AVR6);
BCase(EF_AVR_ARCH_AVRTINY);
BCase(EF_AVR_ARCH_XMEGA1);
BCase(EF_AVR_ARCH_XMEGA2);
BCase(EF_AVR_ARCH_XMEGA3);
BCase(EF_AVR_ARCH_XMEGA4);
BCase(EF_AVR_ARCH_XMEGA5);
BCase(EF_AVR_ARCH_XMEGA6);
BCase(EF_AVR_ARCH_XMEGA7);
break;
case ELF::EM_RISCV:
BCase(EF_RISCV_RVC);
BCaseMask(EF_RISCV_FLOAT_ABI_SOFT, EF_RISCV_FLOAT_ABI);
BCaseMask(EF_RISCV_FLOAT_ABI_SINGLE, EF_RISCV_FLOAT_ABI);
BCaseMask(EF_RISCV_FLOAT_ABI_DOUBLE, EF_RISCV_FLOAT_ABI);
BCaseMask(EF_RISCV_FLOAT_ABI_QUAD, EF_RISCV_FLOAT_ABI);
BCase(EF_RISCV_RVE);
break;
case ELF::EM_AMDGPU:
BCaseMask(EF_AMDGPU_MACH_NONE, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_R600, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_R630, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_RS880, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_RV670, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_RV710, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_RV730, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_RV770, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_CEDAR, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_CYPRESS, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_JUNIPER, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_REDWOOD, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_SUMO, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_BARTS, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_CAICOS, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_CAYMAN, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_R600_TURKS, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX600, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX601, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX700, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX701, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX702, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX703, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX704, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX801, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX802, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX803, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX810, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX900, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX902, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX904, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX906, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX908, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX909, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1010, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1011, EF_AMDGPU_MACH);
BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1012, EF_AMDGPU_MACH);
BCase(EF_AMDGPU_XNACK);
BCase(EF_AMDGPU_SRAM_ECC);
break;
case ELF::EM_X86_64:
break;
default:
llvm_unreachable("Unsupported architecture");
}
#undef BCase
#undef BCaseMask
}
void ScalarEnumerationTraits<ELFYAML::ELF_SHT>::enumeration(
IO &IO, ELFYAML::ELF_SHT &Value) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
assert(Object && "The IO context is not initialized");
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
ECase(SHT_NULL);
ECase(SHT_PROGBITS);
ECase(SHT_SYMTAB);
// FIXME: Issue a diagnostic with this information.
ECase(SHT_STRTAB);
ECase(SHT_RELA);
ECase(SHT_HASH);
ECase(SHT_DYNAMIC);
ECase(SHT_NOTE);
ECase(SHT_NOBITS);
ECase(SHT_REL);
ECase(SHT_SHLIB);
ECase(SHT_DYNSYM);
ECase(SHT_INIT_ARRAY);
ECase(SHT_FINI_ARRAY);
ECase(SHT_PREINIT_ARRAY);
ECase(SHT_GROUP);
ECase(SHT_SYMTAB_SHNDX);
ECase(SHT_RELR);
ECase(SHT_ANDROID_REL);
ECase(SHT_ANDROID_RELA);
ECase(SHT_ANDROID_RELR);
ECase(SHT_LLVM_ODRTAB);
ECase(SHT_LLVM_LINKER_OPTIONS);
ECase(SHT_LLVM_CALL_GRAPH_PROFILE);
ECase(SHT_LLVM_ADDRSIG);
[ELF] Implement Dependent Libraries Feature This patch implements a limited form of autolinking primarily designed to allow either the --dependent-library compiler option, or "comment lib" pragmas ( https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically add the specified library to the link when processing the input file generated by the compiler. Currently this extension is unique to LLVM and LLD. However, care has been taken to design this feature so that it could be supported by other ELF linkers. The design goals were to provide: - A simple linking model for developers to reason about. - The ability to to override autolinking from the linker command line. - Source code compatibility, where possible, with "comment lib" pragmas in other environments (MSVC in particular). Dependent library support is implemented differently for ELF platforms than on the other platforms. Primarily this difference is that on ELF we pass the dependent library specifiers directly to the linker without manipulating them. This is in contrast to other platforms where they are mapped to a specific linker option by the compiler. This difference is a result of the greater variety of ELF linkers and the fact that ELF linkers tend to handle libraries in a more complicated fashion than on other platforms. This forces us to defer handling the specifiers to the linker. In order to achieve a level of source code compatibility with other platforms we have restricted this feature to work with libraries that meet the following "reasonable" requirements: 1. There are no competing defined symbols in a given set of libraries, or if they exist, the program owner doesn't care which is linked to their program. 2. There may be circular dependencies between libraries. The binary representation is a mergeable string section (SHF_MERGE, SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES (0x6fff4c04). The compiler forms this section by concatenating the arguments of the "comment lib" pragmas and --dependent-library options in the order they are encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs sections with the normal mergeable string section rules. As an example, #pragma comment(lib, "foo") would result in: .section ".deplibs","MS",@llvm_dependent_libraries,1 .asciz "foo" For LTO, equivalent information to the contents of a the .deplibs section can be retrieved by the LLD for bitcode input files. LLD processes the dependent library specifiers in the following way: 1. Dependent libraries which are found from the specifiers in .deplibs sections of relocatable object files are added when the linker decides to include that file (which could itself be in a library) in the link. Dependent libraries behave as if they were appended to the command line after all other options. As a consequence the set of dependent libraries are searched last to resolve symbols. 2. It is an error if a file cannot be found for a given specifier. 3. Any command line options in effect at the end of the command line parsing apply to the dependent libraries, e.g. --whole-archive. 4. The linker tries to add a library or relocatable object file from each of the strings in a .deplibs section by; first, handling the string as if it was specified on the command line; second, by looking for the string in each of the library search paths in turn; third, by looking for a lib<string>.a or lib<string>.so (depending on the current mode of the linker) in each of the library search paths. 5. A new command line option --no-dependent-libraries tells LLD to ignore the dependent libraries. Rationale for the above points: 1. Adding the dependent libraries last makes the process simple to understand from a developers perspective. All linkers are able to implement this scheme. 2. Error-ing for libraries that are not found seems like better behavior than failing the link during symbol resolution. 3. It seems useful for the user to be able to apply command line options which will affect all of the dependent libraries. There is a potential problem of surprise for developers, who might not realize that these options would apply to these "invisible" input files; however, despite the potential for surprise, this is easy for developers to reason about and gives developers the control that they may require. 4. This algorithm takes into account all of the different ways that ELF linkers find input files. The different search methods are tried by the linker in most obvious to least obvious order. 5. I considered adding finer grained control over which dependent libraries were ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this is not necessary: if finer control is required developers can fall back to using the command line directly. RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html. Differential Revision: https://reviews.llvm.org/D60274 llvm-svn: 360984
2019-05-17 11:44:15 +08:00
ECase(SHT_LLVM_DEPENDENT_LIBRARIES);
ECase(SHT_LLVM_SYMPART);
ECase(SHT_LLVM_PART_EHDR);
ECase(SHT_LLVM_PART_PHDR);
ECase(SHT_GNU_ATTRIBUTES);
ECase(SHT_GNU_HASH);
ECase(SHT_GNU_verdef);
ECase(SHT_GNU_verneed);
ECase(SHT_GNU_versym);
switch (Object->Header.Machine) {
case ELF::EM_ARM:
ECase(SHT_ARM_EXIDX);
ECase(SHT_ARM_PREEMPTMAP);
ECase(SHT_ARM_ATTRIBUTES);
ECase(SHT_ARM_DEBUGOVERLAY);
ECase(SHT_ARM_OVERLAYSECTION);
break;
case ELF::EM_HEXAGON:
ECase(SHT_HEX_ORDERED);
break;
case ELF::EM_X86_64:
ECase(SHT_X86_64_UNWIND);
break;
case ELF::EM_MIPS:
ECase(SHT_MIPS_REGINFO);
ECase(SHT_MIPS_OPTIONS);
ECase(SHT_MIPS_DWARF);
ECase(SHT_MIPS_ABIFLAGS);
break;
default:
// Nothing to do.
break;
}
#undef ECase
IO.enumFallback<Hex32>(Value);
}
void ScalarBitSetTraits<ELFYAML::ELF_PF>::bitset(IO &IO,
ELFYAML::ELF_PF &Value) {
#define BCase(X) IO.bitSetCase(Value, #X, ELF::X)
BCase(PF_X);
BCase(PF_W);
BCase(PF_R);
}
void ScalarBitSetTraits<ELFYAML::ELF_SHF>::bitset(IO &IO,
ELFYAML::ELF_SHF &Value) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
#define BCase(X) IO.bitSetCase(Value, #X, ELF::X)
BCase(SHF_WRITE);
BCase(SHF_ALLOC);
BCase(SHF_EXCLUDE);
BCase(SHF_EXECINSTR);
BCase(SHF_MERGE);
BCase(SHF_STRINGS);
BCase(SHF_INFO_LINK);
BCase(SHF_LINK_ORDER);
BCase(SHF_OS_NONCONFORMING);
BCase(SHF_GROUP);
BCase(SHF_TLS);
BCase(SHF_COMPRESSED);
switch (Object->Header.Machine) {
case ELF::EM_ARM:
BCase(SHF_ARM_PURECODE);
break;
case ELF::EM_HEXAGON:
BCase(SHF_HEX_GPREL);
break;
case ELF::EM_MIPS:
BCase(SHF_MIPS_NODUPES);
BCase(SHF_MIPS_NAMES);
BCase(SHF_MIPS_LOCAL);
BCase(SHF_MIPS_NOSTRIP);
BCase(SHF_MIPS_GPREL);
BCase(SHF_MIPS_MERGE);
BCase(SHF_MIPS_ADDR);
BCase(SHF_MIPS_STRING);
break;
case ELF::EM_X86_64:
BCase(SHF_X86_64_LARGE);
break;
default:
// Nothing to do.
break;
}
#undef BCase
}
void ScalarEnumerationTraits<ELFYAML::ELF_SHN>::enumeration(
IO &IO, ELFYAML::ELF_SHN &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
ECase(SHN_UNDEF);
ECase(SHN_LORESERVE);
ECase(SHN_LOPROC);
ECase(SHN_HIPROC);
ECase(SHN_LOOS);
ECase(SHN_HIOS);
ECase(SHN_ABS);
ECase(SHN_COMMON);
ECase(SHN_XINDEX);
ECase(SHN_HIRESERVE);
AMDGPU/MC: Add .amdgpu_lds directive Summary: The directive defines a symbol as an group/local memory (LDS) symbol. LDS symbols behave similar to common symbols for the purposes of ELF, using the processor-specific SHN_AMDGPU_LDS as section index. It is the linker and/or runtime loader's job to "instantiate" LDS symbols and resolve relocations that reference them. It is not possible to initialize LDS memory (not even zero-initialize as for .bss). We want to be able to link together objects -- starting with relocatable objects, but possible expanding to shared objects in the future -- that access LDS memory in a flexible way. LDS memory is in an address space that is entirely separate from the address space that contains the program image (code and normal data), so having program segments for it doesn't really make sense. Furthermore, we want to be able to compile multiple kernels in a compilation unit which have disjoint use of LDS memory. In that case, we may want to place LDS symbols differently for different kernels to save memory (LDS memory is very limited and physically private to each kernel invocation), so we can't simply place LDS symbols in a .lds section. Hence this solution where LDS symbols always stay undefined. Change-Id: I08cbc37a7c0c32f53f7b6123aa0afc91dbc1748f Reviewers: arsenm, rampitec, t-tye, b-sumner, jsjodin Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, rupprecht, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D61493 llvm-svn: 364296
2019-06-25 19:51:35 +08:00
ECase(SHN_AMDGPU_LDS);
ECase(SHN_HEXAGON_SCOMMON);
ECase(SHN_HEXAGON_SCOMMON_1);
ECase(SHN_HEXAGON_SCOMMON_2);
ECase(SHN_HEXAGON_SCOMMON_4);
ECase(SHN_HEXAGON_SCOMMON_8);
#undef ECase
IO.enumFallback<Hex16>(Value);
}
void ScalarEnumerationTraits<ELFYAML::ELF_STB>::enumeration(
IO &IO, ELFYAML::ELF_STB &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
ECase(STB_LOCAL);
ECase(STB_GLOBAL);
ECase(STB_WEAK);
ECase(STB_GNU_UNIQUE);
#undef ECase
IO.enumFallback<Hex8>(Value);
}
void ScalarEnumerationTraits<ELFYAML::ELF_STT>::enumeration(
IO &IO, ELFYAML::ELF_STT &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
ECase(STT_NOTYPE);
ECase(STT_OBJECT);
ECase(STT_FUNC);
ECase(STT_SECTION);
ECase(STT_FILE);
ECase(STT_COMMON);
ECase(STT_TLS);
ECase(STT_GNU_IFUNC);
#undef ECase
IO.enumFallback<Hex8>(Value);
}
void ScalarEnumerationTraits<ELFYAML::ELF_RSS>::enumeration(
IO &IO, ELFYAML::ELF_RSS &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X)
ECase(RSS_UNDEF);
ECase(RSS_GP);
ECase(RSS_GP0);
ECase(RSS_LOC);
#undef ECase
}
void ScalarEnumerationTraits<ELFYAML::ELF_REL>::enumeration(
IO &IO, ELFYAML::ELF_REL &Value) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
assert(Object && "The IO context is not initialized");
#define ELF_RELOC(X, Y) IO.enumCase(Value, #X, ELF::X);
switch (Object->Header.Machine) {
case ELF::EM_X86_64:
#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
break;
case ELF::EM_MIPS:
#include "llvm/BinaryFormat/ELFRelocs/Mips.def"
break;
case ELF::EM_HEXAGON:
#include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
break;
case ELF::EM_386:
case ELF::EM_IAMCU:
#include "llvm/BinaryFormat/ELFRelocs/i386.def"
break;
case ELF::EM_AARCH64:
#include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
break;
case ELF::EM_ARM:
#include "llvm/BinaryFormat/ELFRelocs/ARM.def"
break;
case ELF::EM_ARC:
#include "llvm/BinaryFormat/ELFRelocs/ARC.def"
break;
case ELF::EM_RISCV:
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
break;
case ELF::EM_LANAI:
#include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
break;
case ELF::EM_AMDGPU:
#include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
break;
case ELF::EM_BPF:
#include "llvm/BinaryFormat/ELFRelocs/BPF.def"
break;
case ELF::EM_PPC64:
#include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
break;
default:
// Nothing to do.
break;
}
#undef ELF_RELOC
IO.enumFallback<Hex32>(Value);
}
void ScalarEnumerationTraits<ELFYAML::ELF_DYNTAG>::enumeration(
IO &IO, ELFYAML::ELF_DYNTAG &Value) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
assert(Object && "The IO context is not initialized");
// Disable architecture specific tags by default. We might enable them below.
#define AARCH64_DYNAMIC_TAG(name, value)
#define MIPS_DYNAMIC_TAG(name, value)
#define HEXAGON_DYNAMIC_TAG(name, value)
#define PPC_DYNAMIC_TAG(name, value)
#define PPC64_DYNAMIC_TAG(name, value)
// Ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
#define DYNAMIC_TAG_MARKER(name, value)
#define STRINGIFY(X) (#X)
#define DYNAMIC_TAG(X, Y) IO.enumCase(Value, STRINGIFY(DT_##X), ELF::DT_##X);
switch (Object->Header.Machine) {
case ELF::EM_AARCH64:
#undef AARCH64_DYNAMIC_TAG
#define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef AARCH64_DYNAMIC_TAG
#define AARCH64_DYNAMIC_TAG(name, value)
break;
case ELF::EM_MIPS:
#undef MIPS_DYNAMIC_TAG
#define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef MIPS_DYNAMIC_TAG
#define MIPS_DYNAMIC_TAG(name, value)
break;
case ELF::EM_HEXAGON:
#undef HEXAGON_DYNAMIC_TAG
#define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef HEXAGON_DYNAMIC_TAG
#define HEXAGON_DYNAMIC_TAG(name, value)
break;
case ELF::EM_PPC:
#undef PPC_DYNAMIC_TAG
#define PPC_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef PPC_DYNAMIC_TAG
#define PPC_DYNAMIC_TAG(name, value)
break;
case ELF::EM_PPC64:
#undef PPC64_DYNAMIC_TAG
#define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef PPC64_DYNAMIC_TAG
#define PPC64_DYNAMIC_TAG(name, value)
break;
default:
#include "llvm/BinaryFormat/DynamicTags.def"
break;
}
#undef AARCH64_DYNAMIC_TAG
#undef MIPS_DYNAMIC_TAG
#undef HEXAGON_DYNAMIC_TAG
#undef PPC_DYNAMIC_TAG
#undef PPC64_DYNAMIC_TAG
#undef DYNAMIC_TAG_MARKER
#undef STRINGIFY
#undef DYNAMIC_TAG
IO.enumFallback<Hex64>(Value);
}
void ScalarEnumerationTraits<ELFYAML::MIPS_AFL_REG>::enumeration(
IO &IO, ELFYAML::MIPS_AFL_REG &Value) {
#define ECase(X) IO.enumCase(Value, #X, Mips::AFL_##X)
ECase(REG_NONE);
ECase(REG_32);
ECase(REG_64);
ECase(REG_128);
#undef ECase
}
void ScalarEnumerationTraits<ELFYAML::MIPS_ABI_FP>::enumeration(
IO &IO, ELFYAML::MIPS_ABI_FP &Value) {
#define ECase(X) IO.enumCase(Value, #X, Mips::Val_GNU_MIPS_ABI_##X)
ECase(FP_ANY);
ECase(FP_DOUBLE);
ECase(FP_SINGLE);
ECase(FP_SOFT);
ECase(FP_OLD_64);
ECase(FP_XX);
ECase(FP_64);
ECase(FP_64A);
#undef ECase
}
void ScalarEnumerationTraits<ELFYAML::MIPS_AFL_EXT>::enumeration(
IO &IO, ELFYAML::MIPS_AFL_EXT &Value) {
#define ECase(X) IO.enumCase(Value, #X, Mips::AFL_##X)
ECase(EXT_NONE);
ECase(EXT_XLR);
ECase(EXT_OCTEON2);
ECase(EXT_OCTEONP);
ECase(EXT_LOONGSON_3A);
ECase(EXT_OCTEON);
ECase(EXT_5900);
ECase(EXT_4650);
ECase(EXT_4010);
ECase(EXT_4100);
ECase(EXT_3900);
ECase(EXT_10000);
ECase(EXT_SB1);
ECase(EXT_4111);
ECase(EXT_4120);
ECase(EXT_5400);
ECase(EXT_5500);
ECase(EXT_LOONGSON_2E);
ECase(EXT_LOONGSON_2F);
ECase(EXT_OCTEON3);
#undef ECase
}
void ScalarEnumerationTraits<ELFYAML::MIPS_ISA>::enumeration(
IO &IO, ELFYAML::MIPS_ISA &Value) {
IO.enumCase(Value, "MIPS1", 1);
IO.enumCase(Value, "MIPS2", 2);
IO.enumCase(Value, "MIPS3", 3);
IO.enumCase(Value, "MIPS4", 4);
IO.enumCase(Value, "MIPS5", 5);
IO.enumCase(Value, "MIPS32", 32);
IO.enumCase(Value, "MIPS64", 64);
}
void ScalarBitSetTraits<ELFYAML::MIPS_AFL_ASE>::bitset(
IO &IO, ELFYAML::MIPS_AFL_ASE &Value) {
#define BCase(X) IO.bitSetCase(Value, #X, Mips::AFL_ASE_##X)
BCase(DSP);
BCase(DSPR2);
BCase(EVA);
BCase(MCU);
BCase(MDMX);
BCase(MIPS3D);
BCase(MT);
BCase(SMARTMIPS);
BCase(VIRT);
BCase(MSA);
BCase(MIPS16);
BCase(MICROMIPS);
BCase(XPA);
#undef BCase
}
void ScalarBitSetTraits<ELFYAML::MIPS_AFL_FLAGS1>::bitset(
IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value) {
#define BCase(X) IO.bitSetCase(Value, #X, Mips::AFL_FLAGS1_##X)
BCase(ODDSPREG);
#undef BCase
}
void MappingTraits<ELFYAML::FileHeader>::mapping(IO &IO,
ELFYAML::FileHeader &FileHdr) {
IO.mapRequired("Class", FileHdr.Class);
IO.mapRequired("Data", FileHdr.Data);
IO.mapOptional("OSABI", FileHdr.OSABI, ELFYAML::ELF_ELFOSABI(0));
IO.mapOptional("ABIVersion", FileHdr.ABIVersion, Hex8(0));
IO.mapRequired("Type", FileHdr.Type);
IO.mapRequired("Machine", FileHdr.Machine);
IO.mapOptional("Flags", FileHdr.Flags, ELFYAML::ELF_EF(0));
IO.mapOptional("Entry", FileHdr.Entry, Hex64(0));
IO.mapOptional("SHEntSize", FileHdr.SHEntSize);
IO.mapOptional("SHOff", FileHdr.SHOff);
IO.mapOptional("SHNum", FileHdr.SHNum);
IO.mapOptional("SHStrNdx", FileHdr.SHStrNdx);
}
void MappingTraits<ELFYAML::ProgramHeader>::mapping(
IO &IO, ELFYAML::ProgramHeader &Phdr) {
IO.mapRequired("Type", Phdr.Type);
IO.mapOptional("Flags", Phdr.Flags, ELFYAML::ELF_PF(0));
IO.mapOptional("Sections", Phdr.Sections);
IO.mapOptional("VAddr", Phdr.VAddr, Hex64(0));
IO.mapOptional("PAddr", Phdr.PAddr, Hex64(0));
IO.mapOptional("Align", Phdr.Align);
IO.mapOptional("FileSize", Phdr.FileSize);
IO.mapOptional("MemSize", Phdr.MemSize);
IO.mapOptional("Offset", Phdr.Offset);
}
LLVM_YAML_STRONG_TYPEDEF(StringRef, StOtherPiece)
template <> struct ScalarTraits<StOtherPiece> {
static void output(const StOtherPiece &Val, void *, raw_ostream &Out) {
Out << Val;
}
static StringRef input(StringRef Scalar, void *, StOtherPiece &Val) {
Val = Scalar;
return {};
}
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template <> struct SequenceElementTraits<StOtherPiece> {
static const bool flow = true;
};
namespace {
struct NormalizedOther {
NormalizedOther(IO &IO) : YamlIO(IO) {}
NormalizedOther(IO &IO, Optional<uint8_t> Original) : YamlIO(IO) {
assert(Original && "This constructor is only used for outputting YAML and "
"assumes a non-empty Original");
std::vector<StOtherPiece> Ret;
const auto *Object = static_cast<ELFYAML::Object *>(YamlIO.getContext());
for (std::pair<StringRef, uint8_t> &P :
getFlags(Object->Header.Machine).takeVector()) {
uint8_t FlagValue = P.second;
if ((*Original & FlagValue) != FlagValue)
continue;
*Original &= ~FlagValue;
Ret.push_back({P.first});
}
if (*Original != 0) {
UnknownFlagsHolder = std::to_string(*Original);
Ret.push_back({UnknownFlagsHolder});
}
if (!Ret.empty())
Other = std::move(Ret);
}
uint8_t toValue(StringRef Name) {
const auto *Object = static_cast<ELFYAML::Object *>(YamlIO.getContext());
MapVector<StringRef, uint8_t> Flags = getFlags(Object->Header.Machine);
auto It = Flags.find(Name);
if (It != Flags.end())
return It->second;
uint8_t Val;
if (to_integer(Name, Val))
return Val;
YamlIO.setError("an unknown value is used for symbol's 'Other' field: " +
Name);
return 0;
}
Optional<uint8_t> denormalize(IO &) {
if (!Other)
return None;
uint8_t Ret = 0;
for (StOtherPiece &Val : *Other)
Ret |= toValue(Val);
return Ret;
}
// st_other field is used to encode symbol visibility and platform-dependent
// flags and values. This method returns a name to value map that is used for
// parsing and encoding this field.
MapVector<StringRef, uint8_t> getFlags(unsigned EMachine) {
MapVector<StringRef, uint8_t> Map;
// STV_* values are just enumeration values. We add them in a reversed order
// because when we convert the st_other to named constants when printing
// YAML we want to use a maximum number of bits on each step:
// when we have st_other == 3, we want to print it as STV_PROTECTED (3), but
// not as STV_HIDDEN (2) + STV_INTERNAL (1).
Map["STV_PROTECTED"] = ELF::STV_PROTECTED;
Map["STV_HIDDEN"] = ELF::STV_HIDDEN;
Map["STV_INTERNAL"] = ELF::STV_INTERNAL;
// STV_DEFAULT is used to represent the default visibility and has a value
// 0. We want to be able to read it from YAML documents, but there is no
// reason to print it.
if (!YamlIO.outputting())
Map["STV_DEFAULT"] = ELF::STV_DEFAULT;
// MIPS is not consistent. All of the STO_MIPS_* values are bit flags,
// except STO_MIPS_MIPS16 which overlaps them. It should be checked and
// consumed first when we print the output, because we do not want to print
// any other flags that have the same bits instead.
if (EMachine == ELF::EM_MIPS) {
Map["STO_MIPS_MIPS16"] = ELF::STO_MIPS_MIPS16;
Map["STO_MIPS_MICROMIPS"] = ELF::STO_MIPS_MICROMIPS;
Map["STO_MIPS_PIC"] = ELF::STO_MIPS_PIC;
Map["STO_MIPS_PLT"] = ELF::STO_MIPS_PLT;
Map["STO_MIPS_OPTIONAL"] = ELF::STO_MIPS_OPTIONAL;
}
return Map;
}
IO &YamlIO;
Optional<std::vector<StOtherPiece>> Other;
std::string UnknownFlagsHolder;
};
} // end anonymous namespace
void MappingTraits<ELFYAML::Symbol>::mapping(IO &IO, ELFYAML::Symbol &Symbol) {
IO.mapOptional("Name", Symbol.Name, StringRef());
IO.mapOptional("NameIndex", Symbol.NameIndex);
IO.mapOptional("Type", Symbol.Type, ELFYAML::ELF_STT(0));
IO.mapOptional("Section", Symbol.Section, StringRef());
IO.mapOptional("Index", Symbol.Index);
IO.mapOptional("Binding", Symbol.Binding, ELFYAML::ELF_STB(0));
IO.mapOptional("Value", Symbol.Value, Hex64(0));
IO.mapOptional("Size", Symbol.Size, Hex64(0));
// Symbol's Other field is a bit special. It is usually a field that
// represents st_other and holds the symbol visibility. However, on some
// platforms, it can contain bit fields and regular values, or even sometimes a
// crazy mix of them (see comments for NormalizedOther). Because of this, we
// need special handling.
MappingNormalization<NormalizedOther, Optional<uint8_t>> Keys(IO,
Symbol.Other);
IO.mapOptional("Other", Keys->Other);
}
StringRef MappingTraits<ELFYAML::Symbol>::validate(IO &IO,
ELFYAML::Symbol &Symbol) {
if (Symbol.Index && Symbol.Section.data())
return "Index and Section cannot both be specified for Symbol";
if (Symbol.NameIndex && !Symbol.Name.empty())
return "Name and NameIndex cannot both be specified for Symbol";
return StringRef();
}
static void commonSectionMapping(IO &IO, ELFYAML::Section &Section) {
IO.mapOptional("Name", Section.Name, StringRef());
IO.mapRequired("Type", Section.Type);
IO.mapOptional("Flags", Section.Flags);
IO.mapOptional("Address", Section.Address, Hex64(0));
IO.mapOptional("Link", Section.Link, StringRef());
IO.mapOptional("AddressAlign", Section.AddressAlign, Hex64(0));
IO.mapOptional("EntSize", Section.EntSize);
// obj2yaml does not dump these fields. They are expected to be empty when we
// are producing YAML, because yaml2obj sets appropriate values for them
// automatically when they are not explicitly defined.
assert(!IO.outputting() ||
(!Section.ShOffset.hasValue() && !Section.ShSize.hasValue()));
IO.mapOptional("ShName", Section.ShName);
IO.mapOptional("ShOffset", Section.ShOffset);
IO.mapOptional("ShSize", Section.ShSize);
}
static void sectionMapping(IO &IO, ELFYAML::DynamicSection &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Entries", Section.Entries);
IO.mapOptional("Content", Section.Content);
}
static void sectionMapping(IO &IO, ELFYAML::RawContentSection &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Content", Section.Content);
IO.mapOptional("Size", Section.Size);
IO.mapOptional("Info", Section.Info);
}
static void sectionMapping(IO &IO, ELFYAML::StackSizesSection &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Content", Section.Content);
IO.mapOptional("Size", Section.Size);
IO.mapOptional("Entries", Section.Entries);
}
static void sectionMapping(IO &IO, ELFYAML::HashSection &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Content", Section.Content);
IO.mapOptional("Bucket", Section.Bucket);
IO.mapOptional("Chain", Section.Chain);
IO.mapOptional("Size", Section.Size);
}
static void sectionMapping(IO &IO, ELFYAML::NoteSection &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Content", Section.Content);
IO.mapOptional("Size", Section.Size);
IO.mapOptional("Notes", Section.Notes);
}
static void sectionMapping(IO &IO, ELFYAML::NoBitsSection &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Size", Section.Size, Hex64(0));
}
static void sectionMapping(IO &IO, ELFYAML::VerdefSection &Section) {
commonSectionMapping(IO, Section);
IO.mapRequired("Info", Section.Info);
IO.mapRequired("Entries", Section.Entries);
}
static void sectionMapping(IO &IO, ELFYAML::SymverSection &Section) {
commonSectionMapping(IO, Section);
IO.mapRequired("Entries", Section.Entries);
}
static void sectionMapping(IO &IO, ELFYAML::VerneedSection &Section) {
commonSectionMapping(IO, Section);
IO.mapRequired("Info", Section.Info);
IO.mapRequired("Dependencies", Section.VerneedV);
}
static void sectionMapping(IO &IO, ELFYAML::RelocationSection &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Info", Section.RelocatableSec, StringRef());
IO.mapOptional("Relocations", Section.Relocations);
}
static void groupSectionMapping(IO &IO, ELFYAML::Group &Group) {
commonSectionMapping(IO, Group);
IO.mapOptional("Info", Group.Signature, StringRef());
IO.mapRequired("Members", Group.Members);
}
static void sectionMapping(IO &IO, ELFYAML::SymtabShndxSection &Section) {
commonSectionMapping(IO, Section);
IO.mapRequired("Entries", Section.Entries);
}
static void sectionMapping(IO &IO, ELFYAML::AddrsigSection &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Content", Section.Content);
IO.mapOptional("Size", Section.Size);
IO.mapOptional("Symbols", Section.Symbols);
}
void MappingTraits<ELFYAML::SectionOrType>::mapping(
IO &IO, ELFYAML::SectionOrType &sectionOrType) {
IO.mapRequired("SectionOrType", sectionOrType.sectionNameOrType);
}
void MappingTraits<ELFYAML::SectionName>::mapping(
IO &IO, ELFYAML::SectionName &sectionName) {
IO.mapRequired("Section", sectionName.Section);
}
static void sectionMapping(IO &IO, ELFYAML::MipsABIFlags &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Version", Section.Version, Hex16(0));
IO.mapRequired("ISA", Section.ISALevel);
IO.mapOptional("ISARevision", Section.ISARevision, Hex8(0));
IO.mapOptional("ISAExtension", Section.ISAExtension,
ELFYAML::MIPS_AFL_EXT(Mips::AFL_EXT_NONE));
IO.mapOptional("ASEs", Section.ASEs, ELFYAML::MIPS_AFL_ASE(0));
IO.mapOptional("FpABI", Section.FpABI,
ELFYAML::MIPS_ABI_FP(Mips::Val_GNU_MIPS_ABI_FP_ANY));
IO.mapOptional("GPRSize", Section.GPRSize,
ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE));
IO.mapOptional("CPR1Size", Section.CPR1Size,
ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE));
IO.mapOptional("CPR2Size", Section.CPR2Size,
ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE));
IO.mapOptional("Flags1", Section.Flags1, ELFYAML::MIPS_AFL_FLAGS1(0));
IO.mapOptional("Flags2", Section.Flags2, Hex32(0));
}
void MappingTraits<std::unique_ptr<ELFYAML::Section>>::mapping(
IO &IO, std::unique_ptr<ELFYAML::Section> &Section) {
ELFYAML::ELF_SHT sectionType;
if (IO.outputting())
sectionType = Section->Type;
else
IO.mapRequired("Type", sectionType);
switch (sectionType) {
case ELF::SHT_DYNAMIC:
if (!IO.outputting())
Section.reset(new ELFYAML::DynamicSection());
sectionMapping(IO, *cast<ELFYAML::DynamicSection>(Section.get()));
break;
case ELF::SHT_REL:
case ELF::SHT_RELA:
if (!IO.outputting())
Section.reset(new ELFYAML::RelocationSection());
sectionMapping(IO, *cast<ELFYAML::RelocationSection>(Section.get()));
break;
case ELF::SHT_GROUP:
if (!IO.outputting())
Section.reset(new ELFYAML::Group());
groupSectionMapping(IO, *cast<ELFYAML::Group>(Section.get()));
break;
case ELF::SHT_NOBITS:
if (!IO.outputting())
Section.reset(new ELFYAML::NoBitsSection());
sectionMapping(IO, *cast<ELFYAML::NoBitsSection>(Section.get()));
break;
case ELF::SHT_HASH:
if (!IO.outputting())
Section.reset(new ELFYAML::HashSection());
sectionMapping(IO, *cast<ELFYAML::HashSection>(Section.get()));
break;
case ELF::SHT_NOTE:
if (!IO.outputting())
Section.reset(new ELFYAML::NoteSection());
sectionMapping(IO, *cast<ELFYAML::NoteSection>(Section.get()));
break;
case ELF::SHT_MIPS_ABIFLAGS:
if (!IO.outputting())
Section.reset(new ELFYAML::MipsABIFlags());
sectionMapping(IO, *cast<ELFYAML::MipsABIFlags>(Section.get()));
break;
case ELF::SHT_GNU_verdef:
if (!IO.outputting())
Section.reset(new ELFYAML::VerdefSection());
sectionMapping(IO, *cast<ELFYAML::VerdefSection>(Section.get()));
break;
case ELF::SHT_GNU_versym:
if (!IO.outputting())
Section.reset(new ELFYAML::SymverSection());
sectionMapping(IO, *cast<ELFYAML::SymverSection>(Section.get()));
break;
case ELF::SHT_GNU_verneed:
if (!IO.outputting())
Section.reset(new ELFYAML::VerneedSection());
sectionMapping(IO, *cast<ELFYAML::VerneedSection>(Section.get()));
break;
case ELF::SHT_SYMTAB_SHNDX:
if (!IO.outputting())
Section.reset(new ELFYAML::SymtabShndxSection());
sectionMapping(IO, *cast<ELFYAML::SymtabShndxSection>(Section.get()));
break;
case ELF::SHT_LLVM_ADDRSIG:
if (!IO.outputting())
Section.reset(new ELFYAML::AddrsigSection());
sectionMapping(IO, *cast<ELFYAML::AddrsigSection>(Section.get()));
break;
default:
if (!IO.outputting()) {
StringRef Name;
IO.mapOptional("Name", Name, StringRef());
Name = ELFYAML::dropUniqueSuffix(Name);
if (ELFYAML::StackSizesSection::nameMatches(Name))
Section = std::make_unique<ELFYAML::StackSizesSection>();
else
Section = std::make_unique<ELFYAML::RawContentSection>();
}
if (auto S = dyn_cast<ELFYAML::RawContentSection>(Section.get()))
sectionMapping(IO, *S);
else
sectionMapping(IO, *cast<ELFYAML::StackSizesSection>(Section.get()));
}
}
StringRef MappingTraits<std::unique_ptr<ELFYAML::Section>>::validate(
IO &io, std::unique_ptr<ELFYAML::Section> &Section) {
if (const auto *RawSection =
dyn_cast<ELFYAML::RawContentSection>(Section.get())) {
if (RawSection->Size && RawSection->Content &&
(uint64_t)(*RawSection->Size) < RawSection->Content->binary_size())
return "Section size must be greater than or equal to the content size";
return {};
}
if (const auto *SS = dyn_cast<ELFYAML::StackSizesSection>(Section.get())) {
if (!SS->Entries && !SS->Content && !SS->Size)
return ".stack_sizes: one of Content, Entries and Size must be specified";
if (SS->Size && SS->Content &&
(uint64_t)(*SS->Size) < SS->Content->binary_size())
return ".stack_sizes: Size must be greater than or equal to the content "
"size";
// We accept Content, Size or both together when there are no Entries.
if (!SS->Entries)
return {};
if (SS->Size)
return ".stack_sizes: Size and Entries cannot be used together";
if (SS->Content)
return ".stack_sizes: Content and Entries cannot be used together";
return {};
}
if (const auto *HS = dyn_cast<ELFYAML::HashSection>(Section.get())) {
if (!HS->Content && !HS->Bucket && !HS->Chain && !HS->Size)
return "one of \"Content\", \"Size\", \"Bucket\" or \"Chain\" must be "
"specified";
if (HS->Content || HS->Size) {
if (HS->Size && HS->Content &&
(uint64_t)*HS->Size < HS->Content->binary_size())
return "\"Size\" must be greater than or equal to the content "
"size";
if (HS->Bucket)
return "\"Bucket\" cannot be used with \"Content\" or \"Size\"";
if (HS->Chain)
return "\"Chain\" cannot be used with \"Content\" or \"Size\"";
return {};
}
if ((HS->Bucket && !HS->Chain) || (!HS->Bucket && HS->Chain))
return "\"Bucket\" and \"Chain\" must be used together";
return {};
}
if (const auto *Sec = dyn_cast<ELFYAML::AddrsigSection>(Section.get())) {
if (!Sec->Symbols && !Sec->Content && !Sec->Size)
return "one of \"Content\", \"Size\" or \"Symbols\" must be specified";
if (Sec->Content || Sec->Size) {
if (Sec->Size && Sec->Content &&
(uint64_t)*Sec->Size < Sec->Content->binary_size())
return "\"Size\" must be greater than or equal to the content "
"size";
if (Sec->Symbols)
return "\"Symbols\" cannot be used with \"Content\" or \"Size\"";
return {};
}
if (!Sec->Symbols)
return {};
for (const ELFYAML::AddrsigSymbol &AS : *Sec->Symbols)
if (AS.Index && AS.Name)
return "\"Index\" and \"Name\" cannot be used together when defining a "
"symbol";
return {};
}
if (const auto *NS = dyn_cast<ELFYAML::NoteSection>(Section.get())) {
if (!NS->Content && !NS->Size && !NS->Notes)
return "one of \"Content\", \"Size\" or \"Notes\" must be "
"specified";
if (!NS->Content && !NS->Size)
return {};
if (NS->Size && NS->Content &&
(uint64_t)*NS->Size < NS->Content->binary_size())
return "\"Size\" must be greater than or equal to the content "
"size";
if (NS->Notes)
return "\"Notes\" cannot be used with \"Content\" or \"Size\"";
return {};
}
return {};
}
namespace {
struct NormalizedMips64RelType {
NormalizedMips64RelType(IO &)
: Type(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)),
Type2(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)),
Type3(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)),
SpecSym(ELFYAML::ELF_REL(ELF::RSS_UNDEF)) {}
NormalizedMips64RelType(IO &, ELFYAML::ELF_REL Original)
: Type(Original & 0xFF), Type2(Original >> 8 & 0xFF),
Type3(Original >> 16 & 0xFF), SpecSym(Original >> 24 & 0xFF) {}
ELFYAML::ELF_REL denormalize(IO &) {
ELFYAML::ELF_REL Res = Type | Type2 << 8 | Type3 << 16 | SpecSym << 24;
return Res;
}
ELFYAML::ELF_REL Type;
ELFYAML::ELF_REL Type2;
ELFYAML::ELF_REL Type3;
ELFYAML::ELF_RSS SpecSym;
};
} // end anonymous namespace
void MappingTraits<ELFYAML::StackSizeEntry>::mapping(
IO &IO, ELFYAML::StackSizeEntry &E) {
assert(IO.getContext() && "The IO context is not initialized");
IO.mapOptional("Address", E.Address, Hex64(0));
IO.mapRequired("Size", E.Size);
}
void MappingTraits<ELFYAML::DynamicEntry>::mapping(IO &IO,
ELFYAML::DynamicEntry &Rel) {
assert(IO.getContext() && "The IO context is not initialized");
IO.mapRequired("Tag", Rel.Tag);
IO.mapRequired("Value", Rel.Val);
}
void MappingTraits<ELFYAML::NoteEntry>::mapping(IO &IO, ELFYAML::NoteEntry &N) {
assert(IO.getContext() && "The IO context is not initialized");
IO.mapOptional("Name", N.Name);
IO.mapOptional("Desc", N.Desc);
IO.mapRequired("Type", N.Type);
}
void MappingTraits<ELFYAML::VerdefEntry>::mapping(IO &IO,
ELFYAML::VerdefEntry &E) {
assert(IO.getContext() && "The IO context is not initialized");
IO.mapRequired("Version", E.Version);
IO.mapRequired("Flags", E.Flags);
IO.mapRequired("VersionNdx", E.VersionNdx);
IO.mapRequired("Hash", E.Hash);
IO.mapRequired("Names", E.VerNames);
}
void MappingTraits<ELFYAML::VerneedEntry>::mapping(IO &IO,
ELFYAML::VerneedEntry &E) {
assert(IO.getContext() && "The IO context is not initialized");
IO.mapRequired("Version", E.Version);
IO.mapRequired("File", E.File);
IO.mapRequired("Entries", E.AuxV);
}
void MappingTraits<ELFYAML::VernauxEntry>::mapping(IO &IO,
ELFYAML::VernauxEntry &E) {
assert(IO.getContext() && "The IO context is not initialized");
IO.mapRequired("Name", E.Name);
IO.mapRequired("Hash", E.Hash);
IO.mapRequired("Flags", E.Flags);
IO.mapRequired("Other", E.Other);
}
void MappingTraits<ELFYAML::Relocation>::mapping(IO &IO,
ELFYAML::Relocation &Rel) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
assert(Object && "The IO context is not initialized");
IO.mapRequired("Offset", Rel.Offset);
IO.mapOptional("Symbol", Rel.Symbol);
if (Object->Header.Machine == ELFYAML::ELF_EM(ELF::EM_MIPS) &&
Object->Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64)) {
MappingNormalization<NormalizedMips64RelType, ELFYAML::ELF_REL> Key(
IO, Rel.Type);
IO.mapRequired("Type", Key->Type);
IO.mapOptional("Type2", Key->Type2, ELFYAML::ELF_REL(ELF::R_MIPS_NONE));
IO.mapOptional("Type3", Key->Type3, ELFYAML::ELF_REL(ELF::R_MIPS_NONE));
IO.mapOptional("SpecSym", Key->SpecSym, ELFYAML::ELF_RSS(ELF::RSS_UNDEF));
} else
IO.mapRequired("Type", Rel.Type);
IO.mapOptional("Addend", Rel.Addend, (int64_t)0);
}
void MappingTraits<ELFYAML::Object>::mapping(IO &IO, ELFYAML::Object &Object) {
assert(!IO.getContext() && "The IO context is initialized already");
IO.setContext(&Object);
IO.mapTag("!ELF", true);
IO.mapRequired("FileHeader", Object.Header);
IO.mapOptional("ProgramHeaders", Object.ProgramHeaders);
IO.mapOptional("Sections", Object.Sections);
IO.mapOptional("Symbols", Object.Symbols);
IO.mapOptional("DynamicSymbols", Object.DynamicSymbols);
IO.setContext(nullptr);
}
void MappingTraits<ELFYAML::AddrsigSymbol>::mapping(IO &IO, ELFYAML::AddrsigSymbol &Sym) {
assert(IO.getContext() && "The IO context is not initialized");
IO.mapOptional("Name", Sym.Name);
IO.mapOptional("Index", Sym.Index);
}
LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG)
LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1)
} // end namespace yaml
} // end namespace llvm