2020-02-25 23:11:52 +08:00
|
|
|
//===-- lib/Semantics/tools.cpp -------------------------------------------===//
|
2019-03-05 02:13:12 +08:00
|
|
|
//
|
2019-12-21 04:52:07 +08:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
2019-03-05 02:13:12 +08:00
|
|
|
//
|
2020-01-11 04:12:03 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2019-03-05 02:13:12 +08:00
|
|
|
|
2020-02-25 23:11:52 +08:00
|
|
|
#include "flang/Parser/tools.h"
|
|
|
|
#include "flang/Common/Fortran.h"
|
|
|
|
#include "flang/Common/indirection.h"
|
|
|
|
#include "flang/Parser/dump-parse-tree.h"
|
|
|
|
#include "flang/Parser/message.h"
|
|
|
|
#include "flang/Parser/parse-tree.h"
|
|
|
|
#include "flang/Semantics/scope.h"
|
|
|
|
#include "flang/Semantics/semantics.h"
|
|
|
|
#include "flang/Semantics/symbol.h"
|
|
|
|
#include "flang/Semantics/tools.h"
|
|
|
|
#include "flang/Semantics/type.h"
|
2020-02-28 23:11:03 +08:00
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2019-03-05 02:13:12 +08:00
|
|
|
#include <algorithm>
|
|
|
|
#include <set>
|
|
|
|
#include <variant>
|
|
|
|
|
|
|
|
namespace Fortran::semantics {
|
|
|
|
|
2020-03-03 08:43:01 +08:00
|
|
|
// Find this or containing scope that matches predicate
|
|
|
|
static const Scope *FindScopeContaining(
|
|
|
|
const Scope &start, std::function<bool(const Scope &)> predicate) {
|
|
|
|
for (const Scope *scope{&start};; scope = &scope->parent()) {
|
|
|
|
if (predicate(*scope)) {
|
|
|
|
return scope;
|
|
|
|
}
|
|
|
|
if (scope->IsGlobal()) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-12-03 02:28:48 +08:00
|
|
|
const Scope &GetTopLevelUnitContaining(const Scope &start) {
|
|
|
|
CHECK(!start.IsGlobal());
|
|
|
|
return DEREF(FindScopeContaining(
|
|
|
|
start, [](const Scope &scope) { return scope.parent().IsGlobal(); }));
|
|
|
|
}
|
|
|
|
|
|
|
|
const Scope &GetTopLevelUnitContaining(const Symbol &symbol) {
|
|
|
|
return GetTopLevelUnitContaining(symbol.owner());
|
|
|
|
}
|
|
|
|
|
2020-03-03 08:43:01 +08:00
|
|
|
const Scope *FindModuleContaining(const Scope &start) {
|
|
|
|
return FindScopeContaining(
|
|
|
|
start, [](const Scope &scope) { return scope.IsModule(); });
|
|
|
|
}
|
|
|
|
|
2021-01-16 03:52:10 +08:00
|
|
|
const Scope *FindModuleFileContaining(const Scope &start) {
|
|
|
|
return FindScopeContaining(
|
|
|
|
start, [](const Scope &scope) { return scope.IsModuleFile(); });
|
|
|
|
}
|
|
|
|
|
2020-12-03 02:28:48 +08:00
|
|
|
const Scope &GetProgramUnitContaining(const Scope &start) {
|
|
|
|
CHECK(!start.IsGlobal());
|
|
|
|
return DEREF(FindScopeContaining(start, [](const Scope &scope) {
|
2020-03-03 08:43:01 +08:00
|
|
|
switch (scope.kind()) {
|
2019-03-05 02:13:12 +08:00
|
|
|
case Scope::Kind::Module:
|
|
|
|
case Scope::Kind::MainProgram:
|
2020-01-10 09:12:46 +08:00
|
|
|
case Scope::Kind::Subprogram:
|
2020-03-28 05:17:25 +08:00
|
|
|
case Scope::Kind::BlockData:
|
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
return false;
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
2020-12-03 02:28:48 +08:00
|
|
|
}));
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
2020-12-03 02:28:48 +08:00
|
|
|
const Scope &GetProgramUnitContaining(const Symbol &symbol) {
|
|
|
|
return GetProgramUnitContaining(symbol.owner());
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
2019-11-20 11:10:02 +08:00
|
|
|
const Scope *FindPureProcedureContaining(const Scope &start) {
|
|
|
|
// N.B. We only need to examine the innermost containing program unit
|
2019-12-24 09:12:53 +08:00
|
|
|
// because an internal subprogram of a pure subprogram must also
|
|
|
|
// be pure (C1592).
|
2021-06-03 07:54:42 +08:00
|
|
|
if (start.IsGlobal()) {
|
|
|
|
return nullptr;
|
|
|
|
} else {
|
|
|
|
const Scope &scope{GetProgramUnitContaining(start)};
|
|
|
|
return IsPureProcedure(scope) ? &scope : nullptr;
|
|
|
|
}
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
2021-04-21 01:11:03 +08:00
|
|
|
static bool MightHaveCompatibleDerivedtypes(
|
|
|
|
const std::optional<evaluate::DynamicType> &lhsType,
|
|
|
|
const std::optional<evaluate::DynamicType> &rhsType) {
|
|
|
|
const DerivedTypeSpec *lhsDerived{evaluate::GetDerivedTypeSpec(lhsType)};
|
|
|
|
const DerivedTypeSpec *rhsDerived{evaluate::GetDerivedTypeSpec(rhsType)};
|
|
|
|
if (!lhsDerived || !rhsDerived) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return *lhsDerived == *rhsDerived ||
|
|
|
|
lhsDerived->MightBeAssignmentCompatibleWith(*rhsDerived);
|
|
|
|
}
|
|
|
|
|
2019-11-23 08:46:11 +08:00
|
|
|
Tristate IsDefinedAssignment(
|
|
|
|
const std::optional<evaluate::DynamicType> &lhsType, int lhsRank,
|
|
|
|
const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) {
|
|
|
|
if (!lhsType || !rhsType) {
|
2020-03-28 05:17:25 +08:00
|
|
|
return Tristate::No; // error or rhs is untyped
|
2019-11-23 08:46:11 +08:00
|
|
|
}
|
|
|
|
TypeCategory lhsCat{lhsType->category()};
|
|
|
|
TypeCategory rhsCat{rhsType->category()};
|
|
|
|
if (rhsRank > 0 && lhsRank != rhsRank) {
|
|
|
|
return Tristate::Yes;
|
|
|
|
} else if (lhsCat != TypeCategory::Derived) {
|
|
|
|
return ToTristate(lhsCat != rhsCat &&
|
|
|
|
(!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat)));
|
2021-04-21 01:11:03 +08:00
|
|
|
} else if (MightHaveCompatibleDerivedtypes(lhsType, rhsType)) {
|
|
|
|
return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic
|
2019-11-23 08:46:11 +08:00
|
|
|
} else {
|
2021-04-21 01:11:03 +08:00
|
|
|
return Tristate::Yes;
|
2019-11-23 08:46:11 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-12-03 00:55:44 +08:00
|
|
|
bool IsIntrinsicRelational(common::RelationalOperator opr,
|
|
|
|
const evaluate::DynamicType &type0, int rank0,
|
|
|
|
const evaluate::DynamicType &type1, int rank1) {
|
|
|
|
if (!evaluate::AreConformable(rank0, rank1)) {
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
auto cat0{type0.category()};
|
|
|
|
auto cat1{type1.category()};
|
|
|
|
if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) {
|
|
|
|
// numeric types: EQ/NE always ok, others ok for non-complex
|
|
|
|
return opr == common::RelationalOperator::EQ ||
|
|
|
|
opr == common::RelationalOperator::NE ||
|
|
|
|
(cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex);
|
|
|
|
} else {
|
|
|
|
// not both numeric: only Character is ok
|
|
|
|
return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) {
|
|
|
|
return IsNumericTypeCategory(type0.category());
|
|
|
|
}
|
|
|
|
bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0,
|
|
|
|
const evaluate::DynamicType &type1, int rank1) {
|
|
|
|
return evaluate::AreConformable(rank0, rank1) &&
|
|
|
|
IsNumericTypeCategory(type0.category()) &&
|
|
|
|
IsNumericTypeCategory(type1.category());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsIntrinsicLogical(const evaluate::DynamicType &type0) {
|
|
|
|
return type0.category() == TypeCategory::Logical;
|
|
|
|
}
|
|
|
|
bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0,
|
|
|
|
const evaluate::DynamicType &type1, int rank1) {
|
|
|
|
return evaluate::AreConformable(rank0, rank1) &&
|
|
|
|
type0.category() == TypeCategory::Logical &&
|
|
|
|
type1.category() == TypeCategory::Logical;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0,
|
|
|
|
const evaluate::DynamicType &type1, int rank1) {
|
|
|
|
return evaluate::AreConformable(rank0, rank1) &&
|
|
|
|
type0.category() == TypeCategory::Character &&
|
|
|
|
type1.category() == TypeCategory::Character &&
|
|
|
|
type0.kind() == type1.kind();
|
|
|
|
}
|
|
|
|
|
2019-10-23 00:31:33 +08:00
|
|
|
bool IsGenericDefinedOp(const Symbol &symbol) {
|
2020-01-03 01:55:03 +08:00
|
|
|
const Symbol &ultimate{symbol.GetUltimate()};
|
|
|
|
if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
|
|
|
|
return generic->kind().IsDefinedOperator();
|
|
|
|
} else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) {
|
|
|
|
return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
2019-10-23 00:31:33 +08:00
|
|
|
}
|
|
|
|
|
2020-09-10 22:22:52 +08:00
|
|
|
bool IsDefinedOperator(SourceName name) {
|
|
|
|
const char *begin{name.begin()};
|
|
|
|
const char *end{name.end()};
|
|
|
|
return begin != end && begin[0] == '.' && end[-1] == '.';
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string MakeOpName(SourceName name) {
|
|
|
|
std::string result{name.ToString()};
|
|
|
|
return IsDefinedOperator(name) ? "OPERATOR(" + result + ")"
|
|
|
|
: result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result)
|
|
|
|
: result;
|
|
|
|
}
|
|
|
|
|
2019-03-05 02:13:12 +08:00
|
|
|
bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) {
|
|
|
|
const auto &objects{block.get<CommonBlockDetails>().objects()};
|
2019-11-05 03:08:13 +08:00
|
|
|
auto found{std::find(objects.begin(), objects.end(), object)};
|
2019-03-05 02:13:12 +08:00
|
|
|
return found != objects.end();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsUseAssociated(const Symbol &symbol, const Scope &scope) {
|
2020-12-03 02:28:48 +08:00
|
|
|
const Scope &owner{GetProgramUnitContaining(symbol.GetUltimate().owner())};
|
|
|
|
return owner.kind() == Scope::Kind::Module &&
|
|
|
|
owner != GetProgramUnitContaining(scope);
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
2019-03-26 15:33:03 +08:00
|
|
|
bool DoesScopeContain(
|
|
|
|
const Scope *maybeAncestor, const Scope &maybeDescendent) {
|
2020-03-03 08:43:01 +08:00
|
|
|
return maybeAncestor && !maybeDescendent.IsGlobal() &&
|
|
|
|
FindScopeContaining(maybeDescendent.parent(),
|
|
|
|
[&](const Scope &scope) { return &scope == maybeAncestor; });
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
2019-03-06 05:11:57 +08:00
|
|
|
bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) {
|
|
|
|
return DoesScopeContain(maybeAncestor, symbol.owner());
|
|
|
|
}
|
|
|
|
|
2020-07-30 22:12:24 +08:00
|
|
|
static const Symbol &FollowHostAssoc(const Symbol &symbol) {
|
|
|
|
for (const Symbol *s{&symbol};;) {
|
|
|
|
const auto *details{s->detailsIf<HostAssocDetails>()};
|
|
|
|
if (!details) {
|
|
|
|
return *s;
|
|
|
|
}
|
|
|
|
s = &details->symbol();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-03-05 02:13:12 +08:00
|
|
|
bool IsHostAssociated(const Symbol &symbol, const Scope &scope) {
|
2020-12-03 02:28:48 +08:00
|
|
|
const Scope &subprogram{GetProgramUnitContaining(scope)};
|
|
|
|
return DoesScopeContain(
|
|
|
|
&GetProgramUnitContaining(FollowHostAssoc(symbol)), subprogram);
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
2020-02-27 12:19:48 +08:00
|
|
|
bool IsInStmtFunction(const Symbol &symbol) {
|
|
|
|
if (const Symbol * function{symbol.owner().symbol()}) {
|
|
|
|
return IsStmtFunction(*function);
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsStmtFunctionDummy(const Symbol &symbol) {
|
|
|
|
return IsDummy(symbol) && IsInStmtFunction(symbol);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsStmtFunctionResult(const Symbol &symbol) {
|
|
|
|
return IsFunctionResult(symbol) && IsInStmtFunction(symbol);
|
|
|
|
}
|
|
|
|
|
2019-03-05 02:13:12 +08:00
|
|
|
bool IsPointerDummy(const Symbol &symbol) {
|
2019-04-08 02:29:48 +08:00
|
|
|
return IsPointer(symbol) && IsDummy(symbol);
|
|
|
|
}
|
|
|
|
|
|
|
|
// proc-name
|
|
|
|
bool IsProcName(const Symbol &symbol) {
|
2019-06-11 04:30:29 +08:00
|
|
|
return symbol.GetUltimate().has<ProcEntityDetails>();
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
2019-10-30 03:46:25 +08:00
|
|
|
bool IsBindCProcedure(const Symbol &symbol) {
|
|
|
|
if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
|
|
|
|
if (const Symbol * procInterface{procDetails->interface().symbol()}) {
|
|
|
|
// procedure component with a BIND(C) interface
|
|
|
|
return IsBindCProcedure(*procInterface);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsBindCProcedure(const Scope &scope) {
|
|
|
|
if (const Symbol * symbol{scope.GetSymbol()}) {
|
|
|
|
return IsBindCProcedure(*symbol);
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-03-05 08:28:35 +08:00
|
|
|
static const Symbol *FindPointerComponent(
|
2019-03-05 02:13:12 +08:00
|
|
|
const Scope &scope, std::set<const Scope *> &visited) {
|
2019-07-12 00:27:25 +08:00
|
|
|
if (!scope.IsDerivedType()) {
|
2019-03-05 08:28:35 +08:00
|
|
|
return nullptr;
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
if (!visited.insert(&scope).second) {
|
2019-03-05 08:28:35 +08:00
|
|
|
return nullptr;
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
2019-03-05 08:28:35 +08:00
|
|
|
// If there's a top-level pointer component, return it for clearer error
|
|
|
|
// messaging.
|
2019-03-05 02:13:12 +08:00
|
|
|
for (const auto &pair : scope) {
|
|
|
|
const Symbol &symbol{*pair.second};
|
2019-04-19 06:07:40 +08:00
|
|
|
if (IsPointer(symbol)) {
|
2019-03-05 08:28:35 +08:00
|
|
|
return &symbol;
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
2019-03-05 08:28:35 +08:00
|
|
|
}
|
|
|
|
for (const auto &pair : scope) {
|
|
|
|
const Symbol &symbol{*pair.second};
|
2019-03-05 02:13:12 +08:00
|
|
|
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
|
|
|
|
if (const DeclTypeSpec * type{details->type()}) {
|
|
|
|
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
|
|
|
|
if (const Scope * nested{derived->scope()}) {
|
2019-03-05 08:28:35 +08:00
|
|
|
if (const Symbol *
|
|
|
|
pointer{FindPointerComponent(*nested, visited)}) {
|
|
|
|
return pointer;
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2019-03-05 08:28:35 +08:00
|
|
|
return nullptr;
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
2019-03-05 08:28:35 +08:00
|
|
|
const Symbol *FindPointerComponent(const Scope &scope) {
|
2019-03-05 02:13:12 +08:00
|
|
|
std::set<const Scope *> visited;
|
2019-03-05 08:28:35 +08:00
|
|
|
return FindPointerComponent(scope, visited);
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
2019-03-05 08:28:35 +08:00
|
|
|
const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) {
|
2019-03-05 02:13:12 +08:00
|
|
|
if (const Scope * scope{derived.scope()}) {
|
2019-03-05 08:28:35 +08:00
|
|
|
return FindPointerComponent(*scope);
|
2019-03-05 02:13:12 +08:00
|
|
|
} else {
|
2019-03-05 08:28:35 +08:00
|
|
|
return nullptr;
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-03-05 08:28:35 +08:00
|
|
|
const Symbol *FindPointerComponent(const DeclTypeSpec &type) {
|
2019-03-05 02:13:12 +08:00
|
|
|
if (const DerivedTypeSpec * derived{type.AsDerived()}) {
|
2019-03-05 08:28:35 +08:00
|
|
|
return FindPointerComponent(*derived);
|
2019-03-05 02:13:12 +08:00
|
|
|
} else {
|
2019-03-05 08:28:35 +08:00
|
|
|
return nullptr;
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-03-05 08:28:35 +08:00
|
|
|
const Symbol *FindPointerComponent(const DeclTypeSpec *type) {
|
|
|
|
return type ? FindPointerComponent(*type) : nullptr;
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
2019-03-05 08:28:35 +08:00
|
|
|
const Symbol *FindPointerComponent(const Symbol &symbol) {
|
2019-04-19 06:07:40 +08:00
|
|
|
return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType());
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// C1594 specifies several ways by which an object might be globally visible.
|
2019-03-05 08:28:35 +08:00
|
|
|
const Symbol *FindExternallyVisibleObject(
|
|
|
|
const Symbol &object, const Scope &scope) {
|
|
|
|
// TODO: Storage association with any object for which this predicate holds,
|
|
|
|
// once EQUIVALENCE is supported.
|
2021-01-20 09:14:41 +08:00
|
|
|
const Symbol &ultimate{GetAssociationRoot(object)};
|
|
|
|
if (IsDummy(ultimate)) {
|
|
|
|
if (IsIntentIn(ultimate)) {
|
|
|
|
return &ultimate;
|
|
|
|
}
|
|
|
|
if (IsPointer(ultimate) && IsPureProcedure(ultimate.owner()) &&
|
|
|
|
IsFunction(ultimate.owner())) {
|
|
|
|
return &ultimate;
|
|
|
|
}
|
|
|
|
} else if (&GetProgramUnitContaining(ultimate) !=
|
|
|
|
&GetProgramUnitContaining(scope)) {
|
2019-03-05 08:28:35 +08:00
|
|
|
return &object;
|
2021-01-20 09:14:41 +08:00
|
|
|
} else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) {
|
2019-03-05 08:28:35 +08:00
|
|
|
return block;
|
|
|
|
}
|
2021-01-20 09:14:41 +08:00
|
|
|
return nullptr;
|
2019-03-05 02:13:12 +08:00
|
|
|
}
|
2019-03-26 15:33:03 +08:00
|
|
|
|
2021-06-26 01:35:03 +08:00
|
|
|
const Symbol &BypassGeneric(const Symbol &symbol) {
|
|
|
|
const Symbol &ultimate{symbol.GetUltimate()};
|
|
|
|
if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
|
|
|
|
if (const Symbol * specific{generic->specific()}) {
|
|
|
|
return *specific;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return symbol;
|
|
|
|
}
|
|
|
|
|
2019-04-19 23:22:28 +08:00
|
|
|
bool ExprHasTypeCategory(
|
|
|
|
const SomeExpr &expr, const common::TypeCategory &type) {
|
|
|
|
auto dynamicType{expr.GetType()};
|
2019-11-10 01:29:31 +08:00
|
|
|
return dynamicType && dynamicType->category() == type;
|
2019-03-26 15:33:03 +08:00
|
|
|
}
|
2019-03-19 00:19:41 +08:00
|
|
|
|
2019-04-12 04:25:45 +08:00
|
|
|
bool ExprTypeKindIsDefault(
|
2019-04-19 23:22:28 +08:00
|
|
|
const SomeExpr &expr, const SemanticsContext &context) {
|
|
|
|
auto dynamicType{expr.GetType()};
|
2019-11-10 01:29:31 +08:00
|
|
|
return dynamicType &&
|
2019-05-14 00:33:18 +08:00
|
|
|
dynamicType->category() != common::TypeCategory::Derived &&
|
2019-06-12 09:26:48 +08:00
|
|
|
dynamicType->kind() == context.GetDefaultKind(dynamicType->category());
|
2019-04-12 04:25:45 +08:00
|
|
|
}
|
2019-04-19 06:07:40 +08:00
|
|
|
|
2020-01-15 09:39:29 +08:00
|
|
|
// If an analyzed expr or assignment is missing, dump the node and die.
|
2020-03-28 05:17:25 +08:00
|
|
|
template <typename T>
|
|
|
|
static void CheckMissingAnalysis(bool absent, const T &x) {
|
2020-01-15 09:39:29 +08:00
|
|
|
if (absent) {
|
2020-02-28 23:11:03 +08:00
|
|
|
std::string buf;
|
|
|
|
llvm::raw_string_ostream ss{buf};
|
2020-01-15 09:39:29 +08:00
|
|
|
ss << "node has not been analyzed:\n";
|
|
|
|
parser::DumpTree(ss, x);
|
|
|
|
common::die(ss.str().c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-16 16:47:35 +08:00
|
|
|
template <typename T> static const SomeExpr *GetTypedExpr(const T &x) {
|
2020-01-15 09:39:29 +08:00
|
|
|
CheckMissingAnalysis(!x.typedExpr, x);
|
|
|
|
return common::GetPtrFromOptional(x.typedExpr->v);
|
|
|
|
}
|
2021-03-16 16:47:35 +08:00
|
|
|
const SomeExpr *GetExprHelper::Get(const parser::Expr &x) {
|
|
|
|
return GetTypedExpr(x);
|
|
|
|
}
|
2020-01-15 09:39:29 +08:00
|
|
|
const SomeExpr *GetExprHelper::Get(const parser::Variable &x) {
|
2021-03-16 16:47:35 +08:00
|
|
|
return GetTypedExpr(x);
|
2020-01-15 09:39:29 +08:00
|
|
|
}
|
2020-06-19 08:17:04 +08:00
|
|
|
const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) {
|
2021-03-16 16:47:35 +08:00
|
|
|
return GetTypedExpr(x);
|
|
|
|
}
|
|
|
|
const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) {
|
|
|
|
return GetTypedExpr(x);
|
|
|
|
}
|
|
|
|
const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) {
|
|
|
|
return GetTypedExpr(x);
|
2020-06-19 08:17:04 +08:00
|
|
|
}
|
2020-01-15 09:39:29 +08:00
|
|
|
|
2019-11-23 08:04:56 +08:00
|
|
|
const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) {
|
2020-01-15 09:39:29 +08:00
|
|
|
CheckMissingAnalysis(!x.typedAssignment, x);
|
|
|
|
return common::GetPtrFromOptional(x.typedAssignment->v);
|
2019-11-23 08:04:56 +08:00
|
|
|
}
|
2020-01-04 02:38:51 +08:00
|
|
|
const evaluate::Assignment *GetAssignment(
|
|
|
|
const parser::PointerAssignmentStmt &x) {
|
2020-01-15 09:39:29 +08:00
|
|
|
CheckMissingAnalysis(!x.typedAssignment, x);
|
|
|
|
return common::GetPtrFromOptional(x.typedAssignment->v);
|
2020-01-04 02:38:51 +08:00
|
|
|
}
|
2019-11-23 08:04:56 +08:00
|
|
|
|
2019-07-17 05:37:56 +08:00
|
|
|
const Symbol *FindInterface(const Symbol &symbol) {
|
|
|
|
return std::visit(
|
|
|
|
common::visitors{
|
|
|
|
[](const ProcEntityDetails &details) {
|
|
|
|
return details.interface().symbol();
|
|
|
|
},
|
|
|
|
[](const ProcBindingDetails &details) { return &details.symbol(); },
|
|
|
|
[](const auto &) -> const Symbol * { return nullptr; },
|
|
|
|
},
|
|
|
|
symbol.details());
|
|
|
|
}
|
|
|
|
|
|
|
|
const Symbol *FindSubprogram(const Symbol &symbol) {
|
|
|
|
return std::visit(
|
|
|
|
common::visitors{
|
|
|
|
[&](const ProcEntityDetails &details) -> const Symbol * {
|
|
|
|
if (const Symbol * interface{details.interface().symbol()}) {
|
|
|
|
return FindSubprogram(*interface);
|
|
|
|
} else {
|
|
|
|
return &symbol;
|
|
|
|
}
|
|
|
|
},
|
|
|
|
[](const ProcBindingDetails &details) {
|
|
|
|
return FindSubprogram(details.symbol());
|
|
|
|
},
|
|
|
|
[&](const SubprogramDetails &) { return &symbol; },
|
|
|
|
[](const UseDetails &details) {
|
|
|
|
return FindSubprogram(details.symbol());
|
|
|
|
},
|
|
|
|
[](const HostAssocDetails &details) {
|
|
|
|
return FindSubprogram(details.symbol());
|
|
|
|
},
|
|
|
|
[](const auto &) -> const Symbol * { return nullptr; },
|
|
|
|
},
|
|
|
|
symbol.details());
|
|
|
|
}
|
|
|
|
|
2019-11-16 06:26:10 +08:00
|
|
|
const Symbol *FindOverriddenBinding(const Symbol &symbol) {
|
|
|
|
if (symbol.has<ProcBindingDetails>()) {
|
|
|
|
if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) {
|
|
|
|
if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) {
|
|
|
|
if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) {
|
|
|
|
return parentScope->FindComponent(symbol.name());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) {
|
|
|
|
return FindParentTypeSpec(derived.typeSymbol());
|
|
|
|
}
|
|
|
|
|
|
|
|
const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) {
|
|
|
|
if (const DerivedTypeSpec * derived{decl.AsDerived()}) {
|
|
|
|
return FindParentTypeSpec(*derived);
|
|
|
|
} else {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) {
|
|
|
|
if (scope.kind() == Scope::Kind::DerivedType) {
|
|
|
|
if (const auto *symbol{scope.symbol()}) {
|
|
|
|
return FindParentTypeSpec(*symbol);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) {
|
|
|
|
if (const Scope * scope{symbol.scope()}) {
|
|
|
|
if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) {
|
|
|
|
if (const Symbol * parent{details->GetParentComponent(*scope)}) {
|
|
|
|
return parent->GetType();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2019-06-24 01:59:32 +08:00
|
|
|
bool IsExtensibleType(const DerivedTypeSpec *derived) {
|
|
|
|
return derived && !IsIsoCType(derived) &&
|
|
|
|
!derived->typeSymbol().attrs().test(Attr::BIND_C) &&
|
|
|
|
!derived->typeSymbol().get<DerivedTypeDetails>().sequence();
|
|
|
|
}
|
|
|
|
|
2019-12-26 04:29:50 +08:00
|
|
|
bool IsBuiltinDerivedType(const DerivedTypeSpec *derived, const char *name) {
|
[flang] Allocate semantic checks (second part)
Implement semantic checks and realted tests for constraints:
C937, C938, C939, C940, C941, C942, C945 (second part),
C946, C947, C948, C949 and C950.
Original-commit: flang-compiler/f18@b4965d272b1749d554e3d1388c0a7856591741e8
Tree-same-pre-rewrite: false
2019-04-26 16:10:04 +08:00
|
|
|
if (!derived) {
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
const auto &symbol{derived->typeSymbol()};
|
2019-12-26 04:29:50 +08:00
|
|
|
return symbol.owner().IsModule() &&
|
2020-12-08 06:46:24 +08:00
|
|
|
(symbol.owner().GetName().value() == "__fortran_builtins" ||
|
|
|
|
symbol.owner().GetName().value() == "__fortran_type_info") &&
|
2019-12-26 04:29:50 +08:00
|
|
|
symbol.name() == "__builtin_"s + name;
|
[flang] Allocate semantic checks (second part)
Implement semantic checks and realted tests for constraints:
C937, C938, C939, C940, C941, C942, C945 (second part),
C946, C947, C948, C949 and C950.
Original-commit: flang-compiler/f18@b4965d272b1749d554e3d1388c0a7856591741e8
Tree-same-pre-rewrite: false
2019-04-26 16:10:04 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-06-22 08:32:11 +08:00
|
|
|
bool IsIsoCType(const DerivedTypeSpec *derived) {
|
2019-12-26 04:29:50 +08:00
|
|
|
return IsBuiltinDerivedType(derived, "c_ptr") ||
|
|
|
|
IsBuiltinDerivedType(derived, "c_funptr");
|
2019-06-22 08:32:11 +08:00
|
|
|
}
|
|
|
|
|
[flang] Allocate semantic checks (second part)
Implement semantic checks and realted tests for constraints:
C937, C938, C939, C940, C941, C942, C945 (second part),
C946, C947, C948, C949 and C950.
Original-commit: flang-compiler/f18@b4965d272b1749d554e3d1388c0a7856591741e8
Tree-same-pre-rewrite: false
2019-04-26 16:10:04 +08:00
|
|
|
bool IsTeamType(const DerivedTypeSpec *derived) {
|
2019-12-26 04:29:50 +08:00
|
|
|
return IsBuiltinDerivedType(derived, "team_type");
|
[flang] Allocate semantic checks (second part)
Implement semantic checks and realted tests for constraints:
C937, C938, C939, C940, C941, C942, C945 (second part),
C946, C947, C948, C949 and C950.
Original-commit: flang-compiler/f18@b4965d272b1749d554e3d1388c0a7856591741e8
Tree-same-pre-rewrite: false
2019-04-26 16:10:04 +08:00
|
|
|
}
|
|
|
|
|
2019-08-16 02:54:51 +08:00
|
|
|
bool IsEventTypeOrLockType(const DerivedTypeSpec *derivedTypeSpec) {
|
2019-12-26 04:29:50 +08:00
|
|
|
return IsBuiltinDerivedType(derivedTypeSpec, "event_type") ||
|
|
|
|
IsBuiltinDerivedType(derivedTypeSpec, "lock_type");
|
[flang] Allocate semantic checks (second part)
Implement semantic checks and realted tests for constraints:
C937, C938, C939, C940, C941, C942, C945 (second part),
C946, C947, C948, C949 and C950.
Original-commit: flang-compiler/f18@b4965d272b1749d554e3d1388c0a7856591741e8
Tree-same-pre-rewrite: false
2019-04-26 16:10:04 +08:00
|
|
|
}
|
|
|
|
|
[flang] Fix classification of shape inquiries in specification exprs
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
2021-01-13 07:36:45 +08:00
|
|
|
bool IsOrContainsEventOrLockComponent(const Symbol &original) {
|
|
|
|
const Symbol &symbol{ResolveAssociations(original)};
|
|
|
|
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
|
|
|
|
if (const DeclTypeSpec * type{details->type()}) {
|
|
|
|
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
|
|
|
|
return IsEventTypeOrLockType(derived) ||
|
|
|
|
FindEventOrLockPotentialComponent(*derived);
|
2019-07-20 06:17:14 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2019-08-09 06:06:51 +08:00
|
|
|
// Check this symbol suitable as a type-bound procedure - C769
|
|
|
|
bool CanBeTypeBoundProc(const Symbol *symbol) {
|
2019-11-10 01:29:31 +08:00
|
|
|
if (!symbol || IsDummy(*symbol) || IsProcedurePointer(*symbol)) {
|
2019-08-09 06:06:51 +08:00
|
|
|
return false;
|
|
|
|
} else if (symbol->has<SubprogramNameDetails>()) {
|
|
|
|
return symbol->owner().kind() == Scope::Kind::Module;
|
|
|
|
} else if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
|
|
|
|
return symbol->owner().kind() == Scope::Kind::Module ||
|
|
|
|
details->isInterface();
|
|
|
|
} else if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) {
|
|
|
|
return !symbol->attrs().test(Attr::INTRINSIC) &&
|
|
|
|
proc->HasExplicitInterface();
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
[flang] Fix classification of shape inquiries in specification exprs
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
2021-01-13 07:36:45 +08:00
|
|
|
bool IsStaticallyInitialized(const Symbol &symbol, bool ignoreDATAstatements) {
|
2020-06-19 08:17:04 +08:00
|
|
|
if (!ignoreDATAstatements && symbol.test(Symbol::Flag::InDataStmt)) {
|
2020-01-10 09:12:46 +08:00
|
|
|
return true;
|
|
|
|
} else if (IsNamedConstant(symbol)) {
|
|
|
|
return false;
|
|
|
|
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
|
[flang] Fix classification of shape inquiries in specification exprs
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
2021-01-13 07:36:45 +08:00
|
|
|
return object->init().has_value();
|
2020-01-10 09:12:46 +08:00
|
|
|
} else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
|
|
|
|
return proc->init().has_value();
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
[flang] Fix classification of shape inquiries in specification exprs
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
2021-01-13 07:36:45 +08:00
|
|
|
bool IsInitialized(const Symbol &symbol, bool ignoreDATAstatements,
|
|
|
|
const Symbol *derivedTypeSymbol) {
|
|
|
|
if (IsStaticallyInitialized(symbol, ignoreDATAstatements) ||
|
|
|
|
IsAllocatable(symbol)) {
|
|
|
|
return true;
|
|
|
|
} else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) ||
|
|
|
|
IsPointer(symbol)) {
|
|
|
|
return false;
|
|
|
|
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
|
|
|
|
if (!object->isDummy() && object->type()) {
|
|
|
|
const auto *derived{object->type()->AsDerived()};
|
|
|
|
// error recovery: avoid infinite recursion on invalid
|
|
|
|
// recursive usage of a derived type
|
|
|
|
return derived && &derived->typeSymbol() != derivedTypeSymbol &&
|
|
|
|
derived->HasDefaultInitialization();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-07-20 02:53:20 +08:00
|
|
|
bool IsDestructible(const Symbol &symbol, const Symbol *derivedTypeSymbol) {
|
|
|
|
if (IsAllocatable(symbol) || IsAutomatic(symbol)) {
|
|
|
|
return true;
|
|
|
|
} else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) ||
|
|
|
|
IsPointer(symbol)) {
|
|
|
|
return false;
|
|
|
|
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
|
|
|
|
if (!object->isDummy() && object->type()) {
|
|
|
|
if (const auto *derived{object->type()->AsDerived()}) {
|
|
|
|
return &derived->typeSymbol() != derivedTypeSymbol &&
|
|
|
|
derived->HasDestruction();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-03-20 11:07:01 +08:00
|
|
|
bool HasIntrinsicTypeName(const Symbol &symbol) {
|
|
|
|
std::string name{symbol.name().ToString()};
|
|
|
|
if (name == "doubleprecision") {
|
|
|
|
return true;
|
|
|
|
} else if (name == "derived") {
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
for (int i{0}; i != common::TypeCategory_enumSize; ++i) {
|
|
|
|
if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-03-20 07:31:10 +08:00
|
|
|
bool IsSeparateModuleProcedureInterface(const Symbol *symbol) {
|
|
|
|
if (symbol && symbol->attrs().test(Attr::MODULE)) {
|
|
|
|
if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
|
|
|
|
return details->isInterface();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-06-19 08:17:04 +08:00
|
|
|
// 3.11 automatic data object
|
|
|
|
bool IsAutomatic(const Symbol &symbol) {
|
|
|
|
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
|
|
|
|
if (!object->isDummy() && !IsAllocatable(symbol) && !IsPointer(symbol)) {
|
|
|
|
if (const DeclTypeSpec * type{symbol.GetType()}) {
|
|
|
|
// If a type parameter value is not a constant expression, the
|
|
|
|
// object is automatic.
|
|
|
|
if (type->category() == DeclTypeSpec::Character) {
|
|
|
|
if (const auto &length{
|
|
|
|
type->characterTypeSpec().length().GetExplicit()}) {
|
|
|
|
if (!evaluate::IsConstantExpr(*length)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
|
|
|
|
for (const auto &pair : derived->parameters()) {
|
|
|
|
if (const auto &value{pair.second.GetExplicit()}) {
|
|
|
|
if (!evaluate::IsConstantExpr(*value)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// If an array bound is not a constant expression, the object is
|
|
|
|
// automatic.
|
|
|
|
for (const ShapeSpec &dim : object->shape()) {
|
|
|
|
if (const auto &lb{dim.lbound().GetExplicit()}) {
|
|
|
|
if (!evaluate::IsConstantExpr(*lb)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (const auto &ub{dim.ubound().GetExplicit()}) {
|
|
|
|
if (!evaluate::IsConstantExpr(*ub)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2019-07-03 03:10:09 +08:00
|
|
|
bool IsFinalizable(const Symbol &symbol) {
|
2020-12-08 06:46:24 +08:00
|
|
|
if (IsPointer(symbol)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
|
|
|
|
if (object->isDummy() && !IsIntentOut(symbol)) {
|
|
|
|
return false;
|
2019-07-03 03:10:09 +08:00
|
|
|
}
|
2020-12-08 06:46:24 +08:00
|
|
|
const DeclTypeSpec *type{object->type()};
|
|
|
|
const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr};
|
|
|
|
return derived && IsFinalizable(*derived);
|
2019-07-03 03:10:09 +08:00
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2019-11-13 07:43:09 +08:00
|
|
|
bool IsFinalizable(const DerivedTypeSpec &derived) {
|
2020-10-01 04:34:23 +08:00
|
|
|
if (!derived.typeSymbol().get<DerivedTypeDetails>().finals().empty()) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
DirectComponentIterator components{derived};
|
|
|
|
return bool{std::find_if(components.begin(), components.end(),
|
|
|
|
[](const Symbol &component) { return IsFinalizable(component); })};
|
2019-11-13 07:43:09 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
bool HasImpureFinal(const DerivedTypeSpec &derived) {
|
2020-10-01 04:34:23 +08:00
|
|
|
if (const auto *details{
|
|
|
|
derived.typeSymbol().detailsIf<DerivedTypeDetails>()}) {
|
|
|
|
const auto &finals{details->finals()};
|
|
|
|
return std::any_of(finals.begin(), finals.end(),
|
|
|
|
[](const auto &x) { return !x.second->attrs().test(Attr::PURE); });
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
2019-11-13 07:43:09 +08:00
|
|
|
}
|
|
|
|
|
2019-07-11 09:20:27 +08:00
|
|
|
bool IsCoarray(const Symbol &symbol) { return symbol.Corank() > 0; }
|
2019-07-03 03:10:09 +08:00
|
|
|
|
2020-06-03 12:56:10 +08:00
|
|
|
bool IsAutomaticObject(const Symbol &symbol) {
|
|
|
|
if (IsDummy(symbol) || IsPointer(symbol) || IsAllocatable(symbol)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (const DeclTypeSpec * type{symbol.GetType()}) {
|
|
|
|
if (type->category() == DeclTypeSpec::Character) {
|
|
|
|
ParamValue length{type->characterTypeSpec().length()};
|
|
|
|
if (length.isExplicit()) {
|
|
|
|
if (MaybeIntExpr lengthExpr{length.GetExplicit()}) {
|
|
|
|
if (!ToInt64(lengthExpr)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (symbol.IsObjectArray()) {
|
|
|
|
for (const ShapeSpec &spec : symbol.get<ObjectEntityDetails>().shape()) {
|
|
|
|
auto &lbound{spec.lbound().GetExplicit()};
|
|
|
|
auto &ubound{spec.ubound().GetExplicit()};
|
|
|
|
if ((lbound && !evaluate::ToInt64(*lbound)) ||
|
|
|
|
(ubound && !evaluate::ToInt64(*ubound))) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2019-09-10 08:01:06 +08:00
|
|
|
bool IsAssumedLengthCharacter(const Symbol &symbol) {
|
|
|
|
if (const DeclTypeSpec * type{symbol.GetType()}) {
|
|
|
|
return type->category() == DeclTypeSpec::Character &&
|
|
|
|
type->characterTypeSpec().length().isAssumed();
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-06-03 12:56:10 +08:00
|
|
|
bool IsInBlankCommon(const Symbol &symbol) {
|
2020-06-19 08:17:04 +08:00
|
|
|
const Symbol *block{FindCommonBlockContaining(symbol)};
|
|
|
|
return block && block->name().empty();
|
2020-06-03 12:56:10 +08:00
|
|
|
}
|
|
|
|
|
2020-02-27 12:19:48 +08:00
|
|
|
// C722 and C723: For a function to be assumed length, it must be external and
|
|
|
|
// of CHARACTER type
|
2020-03-20 07:31:10 +08:00
|
|
|
bool IsExternal(const Symbol &symbol) {
|
2020-10-01 04:34:23 +08:00
|
|
|
return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External;
|
2019-09-10 08:01:06 +08:00
|
|
|
}
|
|
|
|
|
2020-10-01 04:34:23 +08:00
|
|
|
bool IsModuleProcedure(const Symbol &symbol) {
|
|
|
|
return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module;
|
|
|
|
}
|
2019-11-13 07:43:09 +08:00
|
|
|
const Symbol *IsExternalInPureContext(
|
|
|
|
const Symbol &symbol, const Scope &scope) {
|
2020-03-03 08:43:01 +08:00
|
|
|
if (const auto *pureProc{FindPureProcedureContaining(scope)}) {
|
[flang] Fix classification of shape inquiries in specification exprs
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
2021-01-13 07:36:45 +08:00
|
|
|
return FindExternallyVisibleObject(symbol.GetUltimate(), *pureProc);
|
2019-07-20 06:17:14 +08:00
|
|
|
}
|
2019-11-13 07:43:09 +08:00
|
|
|
return nullptr;
|
2019-07-20 06:17:14 +08:00
|
|
|
}
|
|
|
|
|
[flang] Changes to check for constraint C1140
This constraint prohibits deallocation of polymorphic entities in a DO
CONCURRENT.
Section 9.7.3.2 specifies the situations that might cause deallocation
of a polymorphic entity. The ones that are applicable to a DO CONCURRENT
are exiting from a block that declares such variables, intrinsic
assignment, and an actual DEALLOCATE statement. This section also
specifies (paragraph 8) that deallocation of a derived type causes
deallocation of all of its allocatable subobjects.
Section 10.2.1.3 specifies what happens during intrinsic assignment.
Paragraph 3 states If the variable is an allocated allocatable variable,
it is deallocated if expr is an array of different shape, any
corresponding length type parameter values of the variable and expr
differ, or the variable is polymorphic and the dynamic type or any
corresponding kind type parameter values of the variable and expr
differ." Thus, an allocatable polymorphic variable on the left hand side
of an assignment statement gets deallocated. Paragraph 13 states that
"For a noncoarray allocatable component the following sequence of
operations is applied.
(1) If the component of the variable is allocated, it is deallocated."
Thus, a variable on the left-hand side of an assignment statement might have noncorray allocatable components. Such components will be deallocated.
Deallocation can be caused by exiting from a block where the entity is
declared, from an assignment, and from direct deallocation.
Original-commit: flang-compiler/f18@7d1932d344308d8266503268a7534532cebe6087
Reviewed-on: https://github.com/flang-compiler/f18/pull/814
2019-11-06 02:18:33 +08:00
|
|
|
PotentialComponentIterator::const_iterator FindPolymorphicPotentialComponent(
|
|
|
|
const DerivedTypeSpec &derived) {
|
|
|
|
PotentialComponentIterator potentials{derived};
|
|
|
|
return std::find_if(
|
|
|
|
potentials.begin(), potentials.end(), [](const Symbol &component) {
|
|
|
|
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
|
|
|
|
const DeclTypeSpec *type{details->type()};
|
|
|
|
return type && type->IsPolymorphic();
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
[flang] Fix classification of shape inquiries in specification exprs
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
2021-01-13 07:36:45 +08:00
|
|
|
bool IsOrContainsPolymorphicComponent(const Symbol &original) {
|
|
|
|
const Symbol &symbol{ResolveAssociations(original)};
|
|
|
|
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
|
|
|
|
if (const DeclTypeSpec * type{details->type()}) {
|
|
|
|
if (type->IsPolymorphic()) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
|
|
|
|
return (bool)FindPolymorphicPotentialComponent(*derived);
|
[flang] Changes to check for constraint C1140
This constraint prohibits deallocation of polymorphic entities in a DO
CONCURRENT.
Section 9.7.3.2 specifies the situations that might cause deallocation
of a polymorphic entity. The ones that are applicable to a DO CONCURRENT
are exiting from a block that declares such variables, intrinsic
assignment, and an actual DEALLOCATE statement. This section also
specifies (paragraph 8) that deallocation of a derived type causes
deallocation of all of its allocatable subobjects.
Section 10.2.1.3 specifies what happens during intrinsic assignment.
Paragraph 3 states If the variable is an allocated allocatable variable,
it is deallocated if expr is an array of different shape, any
corresponding length type parameter values of the variable and expr
differ, or the variable is polymorphic and the dynamic type or any
corresponding kind type parameter values of the variable and expr
differ." Thus, an allocatable polymorphic variable on the left hand side
of an assignment statement gets deallocated. Paragraph 13 states that
"For a noncoarray allocatable component the following sequence of
operations is applied.
(1) If the component of the variable is allocated, it is deallocated."
Thus, a variable on the left-hand side of an assignment statement might have noncorray allocatable components. Such components will be deallocated.
Deallocation can be caused by exiting from a block where the entity is
declared, from an assignment, and from direct deallocation.
Original-commit: flang-compiler/f18@7d1932d344308d8266503268a7534532cebe6087
Reviewed-on: https://github.com/flang-compiler/f18/pull/814
2019-11-06 02:18:33 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2019-07-20 06:17:14 +08:00
|
|
|
bool InProtectedContext(const Symbol &symbol, const Scope ¤tScope) {
|
|
|
|
return IsProtected(symbol) && !IsHostAssociated(symbol, currentScope);
|
|
|
|
}
|
|
|
|
|
2019-07-26 03:54:11 +08:00
|
|
|
// C1101 and C1158
|
2021-01-16 08:59:52 +08:00
|
|
|
// Modifiability checks on the leftmost symbol ("base object")
|
|
|
|
// of a data-ref
|
|
|
|
std::optional<parser::MessageFixedText> WhyNotModifiableFirst(
|
|
|
|
const Symbol &symbol, const Scope &scope) {
|
[flang] Fix classification of shape inquiries in specification exprs
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
2021-01-13 07:36:45 +08:00
|
|
|
if (symbol.has<AssocEntityDetails>()) {
|
2019-07-24 07:34:55 +08:00
|
|
|
return "'%s' is construct associated with an expression"_en_US;
|
[flang] Fix classification of shape inquiries in specification exprs
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
2021-01-13 07:36:45 +08:00
|
|
|
} else if (IsExternalInPureContext(symbol, scope)) {
|
2019-12-24 09:12:53 +08:00
|
|
|
return "'%s' is externally visible and referenced in a pure"
|
2019-07-26 03:54:11 +08:00
|
|
|
" procedure"_en_US;
|
2021-01-16 08:59:52 +08:00
|
|
|
} else if (!IsVariableName(symbol)) {
|
|
|
|
return "'%s' is not a variable"_en_US;
|
|
|
|
} else {
|
|
|
|
return std::nullopt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modifiability checks on the rightmost symbol of a data-ref
|
|
|
|
std::optional<parser::MessageFixedText> WhyNotModifiableLast(
|
|
|
|
const Symbol &symbol, const Scope &scope) {
|
|
|
|
if (IsOrContainsEventOrLockComponent(symbol)) {
|
2019-07-24 07:34:55 +08:00
|
|
|
return "'%s' is an entity with either an EVENT_TYPE or LOCK_TYPE"_en_US;
|
2021-01-16 08:59:52 +08:00
|
|
|
} else {
|
|
|
|
return std::nullopt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modifiability checks on the leftmost (base) symbol of a data-ref
|
|
|
|
// that apply only when there are no pointer components or a base
|
|
|
|
// that is a pointer.
|
|
|
|
std::optional<parser::MessageFixedText> WhyNotModifiableIfNoPtr(
|
|
|
|
const Symbol &symbol, const Scope &scope) {
|
|
|
|
if (InProtectedContext(symbol, scope)) {
|
|
|
|
return "'%s' is protected in this scope"_en_US;
|
[flang] Fix classification of shape inquiries in specification exprs
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
2021-01-13 07:36:45 +08:00
|
|
|
} else if (IsIntentIn(symbol)) {
|
2019-07-24 07:34:55 +08:00
|
|
|
return "'%s' is an INTENT(IN) dummy argument"_en_US;
|
2019-07-20 06:17:14 +08:00
|
|
|
} else {
|
2019-07-24 07:34:55 +08:00
|
|
|
return std::nullopt;
|
2019-07-20 06:17:14 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-01-16 08:59:52 +08:00
|
|
|
// Apply all modifiability checks to a single symbol
|
|
|
|
std::optional<parser::MessageFixedText> WhyNotModifiable(
|
|
|
|
const Symbol &original, const Scope &scope) {
|
|
|
|
const Symbol &symbol{GetAssociationRoot(original)};
|
|
|
|
if (auto first{WhyNotModifiableFirst(symbol, scope)}) {
|
|
|
|
return first;
|
|
|
|
} else if (auto last{WhyNotModifiableLast(symbol, scope)}) {
|
|
|
|
return last;
|
|
|
|
} else if (!IsPointer(symbol)) {
|
|
|
|
return WhyNotModifiableIfNoPtr(symbol, scope);
|
|
|
|
} else {
|
|
|
|
return std::nullopt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Modifiability checks for a data-ref
|
2020-03-06 04:56:30 +08:00
|
|
|
std::optional<parser::Message> WhyNotModifiable(parser::CharBlock at,
|
2019-10-11 07:06:05 +08:00
|
|
|
const SomeExpr &expr, const Scope &scope, bool vectorSubscriptIsOk) {
|
2021-03-13 05:51:33 +08:00
|
|
|
if (auto dataRef{evaluate::ExtractDataRef(expr, true)}) {
|
2020-03-06 04:56:30 +08:00
|
|
|
if (!vectorSubscriptIsOk && evaluate::HasVectorSubscript(expr)) {
|
|
|
|
return parser::Message{at, "Variable has a vector subscript"_en_US};
|
|
|
|
}
|
2021-01-16 08:59:52 +08:00
|
|
|
const Symbol &first{GetAssociationRoot(dataRef->GetFirstSymbol())};
|
|
|
|
if (auto maybeWhyFirst{WhyNotModifiableFirst(first, scope)}) {
|
|
|
|
return parser::Message{first.name(),
|
|
|
|
parser::MessageFormattedText{
|
|
|
|
std::move(*maybeWhyFirst), first.name()}};
|
|
|
|
}
|
|
|
|
const Symbol &last{dataRef->GetLastSymbol()};
|
|
|
|
if (auto maybeWhyLast{WhyNotModifiableLast(last, scope)}) {
|
|
|
|
return parser::Message{last.name(),
|
|
|
|
parser::MessageFormattedText{std::move(*maybeWhyLast), last.name()}};
|
|
|
|
}
|
|
|
|
if (!GetLastPointerSymbol(*dataRef)) {
|
|
|
|
if (auto maybeWhyFirst{WhyNotModifiableIfNoPtr(first, scope)}) {
|
|
|
|
return parser::Message{first.name(),
|
|
|
|
parser::MessageFormattedText{
|
|
|
|
std::move(*maybeWhyFirst), first.name()}};
|
|
|
|
}
|
2019-10-11 04:09:35 +08:00
|
|
|
}
|
2021-03-13 05:51:33 +08:00
|
|
|
} else if (!evaluate::IsVariable(expr)) {
|
|
|
|
return parser::Message{
|
|
|
|
at, "'%s' is not a variable"_en_US, expr.AsFortran()};
|
2019-10-11 04:09:35 +08:00
|
|
|
} else {
|
2020-03-06 04:56:30 +08:00
|
|
|
// reference to function returning POINTER
|
2019-10-11 04:09:35 +08:00
|
|
|
}
|
2020-03-06 04:56:30 +08:00
|
|
|
return std::nullopt;
|
2019-10-11 04:09:35 +08:00
|
|
|
}
|
|
|
|
|
2019-11-13 07:43:09 +08:00
|
|
|
class ImageControlStmtHelper {
|
2019-10-12 05:39:33 +08:00
|
|
|
using ImageControlStmts = std::variant<parser::ChangeTeamConstruct,
|
|
|
|
parser::CriticalConstruct, parser::EventPostStmt, parser::EventWaitStmt,
|
|
|
|
parser::FormTeamStmt, parser::LockStmt, parser::StopStmt,
|
|
|
|
parser::SyncAllStmt, parser::SyncImagesStmt, parser::SyncMemoryStmt,
|
|
|
|
parser::SyncTeamStmt, parser::UnlockStmt>;
|
2019-11-13 07:43:09 +08:00
|
|
|
|
|
|
|
public:
|
2020-03-28 05:17:25 +08:00
|
|
|
template <typename T> bool operator()(const T &) {
|
2019-10-12 05:39:33 +08:00
|
|
|
return common::HasMember<T, ImageControlStmts>;
|
|
|
|
}
|
2020-03-28 05:17:25 +08:00
|
|
|
template <typename T> bool operator()(const common::Indirection<T> &x) {
|
2019-10-12 05:39:33 +08:00
|
|
|
return (*this)(x.value());
|
|
|
|
}
|
|
|
|
bool operator()(const parser::AllocateStmt &stmt) {
|
|
|
|
const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)};
|
|
|
|
for (const auto &allocation : allocationList) {
|
|
|
|
const auto &allocateObject{
|
|
|
|
std::get<parser::AllocateObject>(allocation.t)};
|
|
|
|
if (IsCoarrayObject(allocateObject)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
bool operator()(const parser::DeallocateStmt &stmt) {
|
|
|
|
const auto &allocateObjectList{
|
|
|
|
std::get<std::list<parser::AllocateObject>>(stmt.t)};
|
|
|
|
for (const auto &allocateObject : allocateObjectList) {
|
|
|
|
if (IsCoarrayObject(allocateObject)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
bool operator()(const parser::CallStmt &stmt) {
|
|
|
|
const auto &procedureDesignator{
|
|
|
|
std::get<parser::ProcedureDesignator>(stmt.v.t)};
|
|
|
|
if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) {
|
|
|
|
// TODO: also ensure that the procedure is, in fact, an intrinsic
|
|
|
|
if (name->source == "move_alloc") {
|
|
|
|
const auto &args{std::get<std::list<parser::ActualArgSpec>>(stmt.v.t)};
|
|
|
|
if (!args.empty()) {
|
|
|
|
const parser::ActualArg &actualArg{
|
|
|
|
std::get<parser::ActualArg>(args.front().t)};
|
|
|
|
if (const auto *argExpr{
|
|
|
|
std::get_if<common::Indirection<parser::Expr>>(
|
|
|
|
&actualArg.u)}) {
|
|
|
|
return HasCoarray(argExpr->value());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
bool operator()(const parser::Statement<parser::ActionStmt> &stmt) {
|
|
|
|
return std::visit(*this, stmt.statement.u);
|
|
|
|
}
|
2019-11-13 07:43:09 +08:00
|
|
|
|
|
|
|
private:
|
|
|
|
bool IsCoarrayObject(const parser::AllocateObject &allocateObject) {
|
|
|
|
const parser::Name &name{GetLastName(allocateObject)};
|
|
|
|
return name.symbol && IsCoarray(*name.symbol);
|
|
|
|
}
|
2019-10-12 05:39:33 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
bool IsImageControlStmt(const parser::ExecutableConstruct &construct) {
|
|
|
|
return std::visit(ImageControlStmtHelper{}, construct.u);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg(
|
|
|
|
const parser::ExecutableConstruct &construct) {
|
|
|
|
if (const auto *actionStmt{
|
|
|
|
std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) {
|
|
|
|
return std::visit(
|
|
|
|
common::visitors{
|
|
|
|
[](const common::Indirection<parser::AllocateStmt> &)
|
|
|
|
-> std::optional<parser::MessageFixedText> {
|
|
|
|
return "ALLOCATE of a coarray is an image control"
|
|
|
|
" statement"_en_US;
|
|
|
|
},
|
|
|
|
[](const common::Indirection<parser::DeallocateStmt> &)
|
|
|
|
-> std::optional<parser::MessageFixedText> {
|
|
|
|
return "DEALLOCATE of a coarray is an image control"
|
|
|
|
" statement"_en_US;
|
|
|
|
},
|
|
|
|
[](const common::Indirection<parser::CallStmt> &)
|
|
|
|
-> std::optional<parser::MessageFixedText> {
|
|
|
|
return "MOVE_ALLOC of a coarray is an image control"
|
|
|
|
" statement "_en_US;
|
|
|
|
},
|
|
|
|
[](const auto &) -> std::optional<parser::MessageFixedText> {
|
|
|
|
return std::nullopt;
|
|
|
|
},
|
|
|
|
},
|
|
|
|
actionStmt->statement.u);
|
|
|
|
}
|
|
|
|
return std::nullopt;
|
|
|
|
}
|
|
|
|
|
2019-11-13 07:43:09 +08:00
|
|
|
parser::CharBlock GetImageControlStmtLocation(
|
2019-10-12 05:39:33 +08:00
|
|
|
const parser::ExecutableConstruct &executableConstruct) {
|
|
|
|
return std::visit(
|
|
|
|
common::visitors{
|
|
|
|
[](const common::Indirection<parser::ChangeTeamConstruct>
|
|
|
|
&construct) {
|
|
|
|
return std::get<parser::Statement<parser::ChangeTeamStmt>>(
|
|
|
|
construct.value().t)
|
|
|
|
.source;
|
|
|
|
},
|
|
|
|
[](const common::Indirection<parser::CriticalConstruct> &construct) {
|
|
|
|
return std::get<parser::Statement<parser::CriticalStmt>>(
|
|
|
|
construct.value().t)
|
|
|
|
.source;
|
|
|
|
},
|
|
|
|
[](const parser::Statement<parser::ActionStmt> &actionStmt) {
|
|
|
|
return actionStmt.source;
|
|
|
|
},
|
|
|
|
[](const auto &) { return parser::CharBlock{}; },
|
|
|
|
},
|
|
|
|
executableConstruct.u);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool HasCoarray(const parser::Expr &expression) {
|
|
|
|
if (const auto *expr{GetExpr(expression)}) {
|
2019-10-23 07:53:29 +08:00
|
|
|
for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) {
|
[flang] Fix classification of shape inquiries in specification exprs
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
2021-01-13 07:36:45 +08:00
|
|
|
if (IsCoarray(GetAssociationRoot(symbol))) {
|
|
|
|
return true;
|
2019-10-12 05:39:33 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
[flang] Changes to check for constraint C1140
This constraint prohibits deallocation of polymorphic entities in a DO
CONCURRENT.
Section 9.7.3.2 specifies the situations that might cause deallocation
of a polymorphic entity. The ones that are applicable to a DO CONCURRENT
are exiting from a block that declares such variables, intrinsic
assignment, and an actual DEALLOCATE statement. This section also
specifies (paragraph 8) that deallocation of a derived type causes
deallocation of all of its allocatable subobjects.
Section 10.2.1.3 specifies what happens during intrinsic assignment.
Paragraph 3 states If the variable is an allocated allocatable variable,
it is deallocated if expr is an array of different shape, any
corresponding length type parameter values of the variable and expr
differ, or the variable is polymorphic and the dynamic type or any
corresponding kind type parameter values of the variable and expr
differ." Thus, an allocatable polymorphic variable on the left hand side
of an assignment statement gets deallocated. Paragraph 13 states that
"For a noncoarray allocatable component the following sequence of
operations is applied.
(1) If the component of the variable is allocated, it is deallocated."
Thus, a variable on the left-hand side of an assignment statement might have noncorray allocatable components. Such components will be deallocated.
Deallocation can be caused by exiting from a block where the entity is
declared, from an assignment, and from direct deallocation.
Original-commit: flang-compiler/f18@7d1932d344308d8266503268a7534532cebe6087
Reviewed-on: https://github.com/flang-compiler/f18/pull/814
2019-11-06 02:18:33 +08:00
|
|
|
bool IsPolymorphic(const Symbol &symbol) {
|
|
|
|
if (const DeclTypeSpec * type{symbol.GetType()}) {
|
|
|
|
return type->IsPolymorphic();
|
2019-11-13 07:43:09 +08:00
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
[flang] Changes to check for constraint C1140
This constraint prohibits deallocation of polymorphic entities in a DO
CONCURRENT.
Section 9.7.3.2 specifies the situations that might cause deallocation
of a polymorphic entity. The ones that are applicable to a DO CONCURRENT
are exiting from a block that declares such variables, intrinsic
assignment, and an actual DEALLOCATE statement. This section also
specifies (paragraph 8) that deallocation of a derived type causes
deallocation of all of its allocatable subobjects.
Section 10.2.1.3 specifies what happens during intrinsic assignment.
Paragraph 3 states If the variable is an allocated allocatable variable,
it is deallocated if expr is an array of different shape, any
corresponding length type parameter values of the variable and expr
differ, or the variable is polymorphic and the dynamic type or any
corresponding kind type parameter values of the variable and expr
differ." Thus, an allocatable polymorphic variable on the left hand side
of an assignment statement gets deallocated. Paragraph 13 states that
"For a noncoarray allocatable component the following sequence of
operations is applied.
(1) If the component of the variable is allocated, it is deallocated."
Thus, a variable on the left-hand side of an assignment statement might have noncorray allocatable components. Such components will be deallocated.
Deallocation can be caused by exiting from a block where the entity is
declared, from an assignment, and from direct deallocation.
Original-commit: flang-compiler/f18@7d1932d344308d8266503268a7534532cebe6087
Reviewed-on: https://github.com/flang-compiler/f18/pull/814
2019-11-06 02:18:33 +08:00
|
|
|
bool IsPolymorphicAllocatable(const Symbol &symbol) {
|
|
|
|
return IsAllocatable(symbol) && IsPolymorphic(symbol);
|
|
|
|
}
|
|
|
|
|
2020-03-03 08:43:01 +08:00
|
|
|
std::optional<parser::MessageFormattedText> CheckAccessibleComponent(
|
|
|
|
const Scope &scope, const Symbol &symbol) {
|
2020-03-28 05:17:25 +08:00
|
|
|
CHECK(symbol.owner().IsDerivedType()); // symbol must be a component
|
2020-03-03 08:43:01 +08:00
|
|
|
if (symbol.attrs().test(Attr::PRIVATE)) {
|
2021-01-16 03:52:10 +08:00
|
|
|
if (FindModuleFileContaining(scope)) {
|
|
|
|
// Don't enforce component accessibility checks in module files;
|
|
|
|
// there may be forward-substituted named constants of derived type
|
|
|
|
// whose structure constructors reference private components.
|
|
|
|
} else if (const Scope *
|
|
|
|
moduleScope{FindModuleContaining(symbol.owner())}) {
|
2020-03-11 06:31:02 +08:00
|
|
|
if (!moduleScope->Contains(scope)) {
|
2020-03-03 08:43:01 +08:00
|
|
|
return parser::MessageFormattedText{
|
|
|
|
"PRIVATE component '%s' is only accessible within module '%s'"_err_en_US,
|
|
|
|
symbol.name(), moduleScope->GetName().value()};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return std::nullopt;
|
|
|
|
}
|
|
|
|
|
2019-07-11 21:29:31 +08:00
|
|
|
std::list<SourceName> OrderParameterNames(const Symbol &typeSymbol) {
|
|
|
|
std::list<SourceName> result;
|
|
|
|
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
|
|
|
|
result = OrderParameterNames(spec->typeSymbol());
|
|
|
|
}
|
|
|
|
const auto ¶mNames{typeSymbol.get<DerivedTypeDetails>().paramNames()};
|
|
|
|
result.insert(result.end(), paramNames.begin(), paramNames.end());
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) {
|
|
|
|
SymbolVector result;
|
|
|
|
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
|
|
|
|
result = OrderParameterDeclarations(spec->typeSymbol());
|
|
|
|
}
|
|
|
|
const auto ¶mDecls{typeSymbol.get<DerivedTypeDetails>().paramDecls()};
|
|
|
|
result.insert(result.end(), paramDecls.begin(), paramDecls.end());
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2021-04-08 04:17:39 +08:00
|
|
|
const DeclTypeSpec &FindOrInstantiateDerivedType(
|
|
|
|
Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) {
|
|
|
|
spec.EvaluateParameters(scope.context());
|
2019-07-11 09:20:27 +08:00
|
|
|
if (const DeclTypeSpec *
|
2019-11-23 00:15:02 +08:00
|
|
|
type{scope.FindInstantiatedDerivedType(spec, category)}) {
|
2019-07-11 09:20:27 +08:00
|
|
|
return *type;
|
|
|
|
}
|
|
|
|
// Create a new instantiation of this parameterized derived type
|
|
|
|
// for this particular distinct set of actual parameter values.
|
2019-09-12 09:21:07 +08:00
|
|
|
DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))};
|
2021-04-08 04:17:39 +08:00
|
|
|
type.derivedTypeSpec().Instantiate(scope);
|
2019-07-11 09:20:27 +08:00
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
2020-03-20 07:31:10 +08:00
|
|
|
const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) {
|
|
|
|
if (proc) {
|
|
|
|
if (const Symbol * submodule{proc->owner().symbol()}) {
|
|
|
|
if (const auto *details{submodule->detailsIf<ModuleDetails>()}) {
|
|
|
|
if (const Scope * ancestor{details->ancestor()}) {
|
|
|
|
const Symbol *iface{ancestor->FindSymbol(proc->name())};
|
|
|
|
if (IsSeparateModuleProcedureInterface(iface)) {
|
|
|
|
return iface;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2020-10-01 04:34:23 +08:00
|
|
|
ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2
|
|
|
|
const Symbol &ultimate{symbol.GetUltimate()};
|
|
|
|
if (ultimate.attrs().test(Attr::INTRINSIC)) {
|
|
|
|
return ProcedureDefinitionClass::Intrinsic;
|
|
|
|
} else if (ultimate.attrs().test(Attr::EXTERNAL)) {
|
|
|
|
return ProcedureDefinitionClass::External;
|
|
|
|
} else if (const auto *procDetails{ultimate.detailsIf<ProcEntityDetails>()}) {
|
|
|
|
if (procDetails->isDummy()) {
|
|
|
|
return ProcedureDefinitionClass::Dummy;
|
|
|
|
} else if (IsPointer(ultimate)) {
|
|
|
|
return ProcedureDefinitionClass::Pointer;
|
|
|
|
}
|
|
|
|
} else if (const Symbol * subp{FindSubprogram(symbol)}) {
|
|
|
|
if (const auto *subpDetails{subp->detailsIf<SubprogramDetails>()}) {
|
|
|
|
if (subpDetails->stmtFunction()) {
|
|
|
|
return ProcedureDefinitionClass::StatementFunction;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
switch (ultimate.owner().kind()) {
|
|
|
|
case Scope::Kind::Global:
|
|
|
|
return ProcedureDefinitionClass::External;
|
|
|
|
case Scope::Kind::Module:
|
|
|
|
return ProcedureDefinitionClass::Module;
|
|
|
|
case Scope::Kind::MainProgram:
|
|
|
|
case Scope::Kind::Subprogram:
|
|
|
|
return ProcedureDefinitionClass::Internal;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ProcedureDefinitionClass::None;
|
|
|
|
}
|
|
|
|
|
2019-07-31 22:19:22 +08:00
|
|
|
// ComponentIterator implementation
|
|
|
|
|
2020-03-28 05:17:25 +08:00
|
|
|
template <ComponentKind componentKind>
|
2019-07-31 22:19:22 +08:00
|
|
|
typename ComponentIterator<componentKind>::const_iterator
|
|
|
|
ComponentIterator<componentKind>::const_iterator::Create(
|
|
|
|
const DerivedTypeSpec &derived) {
|
|
|
|
const_iterator it{};
|
2019-10-23 07:53:29 +08:00
|
|
|
it.componentPath_.emplace_back(derived);
|
2020-03-28 05:17:25 +08:00
|
|
|
it.Increment(); // cue up first relevant component, if any
|
2019-10-23 07:53:29 +08:00
|
|
|
return it;
|
2019-07-31 22:19:22 +08:00
|
|
|
}
|
2019-07-26 21:33:48 +08:00
|
|
|
|
2020-03-28 05:17:25 +08:00
|
|
|
template <ComponentKind componentKind>
|
2019-10-23 07:53:29 +08:00
|
|
|
const DerivedTypeSpec *
|
|
|
|
ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal(
|
|
|
|
const Symbol &component) const {
|
2019-07-31 22:19:22 +08:00
|
|
|
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
|
2019-10-23 07:53:29 +08:00
|
|
|
if (const DeclTypeSpec * type{details->type()}) {
|
|
|
|
if (const auto *derived{type->AsDerived()}) {
|
|
|
|
bool traverse{false};
|
|
|
|
if constexpr (componentKind == ComponentKind::Ordered) {
|
|
|
|
// Order Component (only visit parents)
|
|
|
|
traverse = component.test(Symbol::Flag::ParentComp);
|
|
|
|
} else if constexpr (componentKind == ComponentKind::Direct) {
|
|
|
|
traverse = !IsAllocatableOrPointer(component);
|
|
|
|
} else if constexpr (componentKind == ComponentKind::Ultimate) {
|
|
|
|
traverse = !IsAllocatableOrPointer(component);
|
|
|
|
} else if constexpr (componentKind == ComponentKind::Potential) {
|
|
|
|
traverse = !IsPointer(component);
|
2019-11-13 07:43:09 +08:00
|
|
|
} else if constexpr (componentKind == ComponentKind::Scope) {
|
|
|
|
traverse = !IsAllocatableOrPointer(component);
|
2019-10-23 07:53:29 +08:00
|
|
|
}
|
|
|
|
if (traverse) {
|
|
|
|
const Symbol &newTypeSymbol{derived->typeSymbol()};
|
|
|
|
// Avoid infinite loop if the type is already part of the types
|
|
|
|
// being visited. It is possible to have "loops in type" because
|
|
|
|
// C744 does not forbid to use not yet declared type for
|
|
|
|
// ALLOCATABLE or POINTER components.
|
|
|
|
for (const auto &node : componentPath_) {
|
|
|
|
if (&newTypeSymbol == &node.GetTypeSymbol()) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
2019-07-31 22:19:22 +08:00
|
|
|
}
|
2019-10-23 07:53:29 +08:00
|
|
|
return derived;
|
2019-07-31 22:19:22 +08:00
|
|
|
}
|
|
|
|
}
|
2020-03-28 05:17:25 +08:00
|
|
|
} // intrinsic & unlimited polymorphic not traversable
|
2019-07-26 21:33:48 +08:00
|
|
|
}
|
2019-10-23 07:53:29 +08:00
|
|
|
return nullptr;
|
2019-07-31 22:19:22 +08:00
|
|
|
}
|
2019-07-26 21:33:48 +08:00
|
|
|
|
2020-03-28 05:17:25 +08:00
|
|
|
template <ComponentKind componentKind>
|
2019-07-31 22:19:22 +08:00
|
|
|
static bool StopAtComponentPre(const Symbol &component) {
|
|
|
|
if constexpr (componentKind == ComponentKind::Ordered) {
|
|
|
|
// Parent components need to be iterated upon after their
|
|
|
|
// sub-components in structure constructor analysis.
|
|
|
|
return !component.test(Symbol::Flag::ParentComp);
|
|
|
|
} else if constexpr (componentKind == ComponentKind::Direct) {
|
|
|
|
return true;
|
|
|
|
} else if constexpr (componentKind == ComponentKind::Ultimate) {
|
|
|
|
return component.has<ProcEntityDetails>() ||
|
|
|
|
IsAllocatableOrPointer(component) ||
|
|
|
|
(component.get<ObjectEntityDetails>().type() &&
|
|
|
|
component.get<ObjectEntityDetails>().type()->AsIntrinsic());
|
|
|
|
} else if constexpr (componentKind == ComponentKind::Potential) {
|
|
|
|
return !IsPointer(component);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-03-28 05:17:25 +08:00
|
|
|
template <ComponentKind componentKind>
|
2019-07-31 22:19:22 +08:00
|
|
|
static bool StopAtComponentPost(const Symbol &component) {
|
2019-10-23 07:53:29 +08:00
|
|
|
return componentKind == ComponentKind::Ordered &&
|
|
|
|
component.test(Symbol::Flag::ParentComp);
|
2019-07-31 22:19:22 +08:00
|
|
|
}
|
2019-07-26 21:33:48 +08:00
|
|
|
|
2020-03-28 05:17:25 +08:00
|
|
|
template <ComponentKind componentKind>
|
2019-07-31 22:19:22 +08:00
|
|
|
void ComponentIterator<componentKind>::const_iterator::Increment() {
|
2019-10-23 07:53:29 +08:00
|
|
|
while (!componentPath_.empty()) {
|
|
|
|
ComponentPathNode &deepest{componentPath_.back()};
|
|
|
|
if (deepest.component()) {
|
|
|
|
if (!deepest.descended()) {
|
|
|
|
deepest.set_descended(true);
|
|
|
|
if (const DerivedTypeSpec *
|
|
|
|
derived{PlanComponentTraversal(*deepest.component())}) {
|
|
|
|
componentPath_.emplace_back(*derived);
|
|
|
|
continue;
|
2019-07-26 21:33:48 +08:00
|
|
|
}
|
2019-10-23 07:53:29 +08:00
|
|
|
} else if (!deepest.visited()) {
|
|
|
|
deepest.set_visited(true);
|
2020-03-28 05:17:25 +08:00
|
|
|
return; // this is the next component to visit, after descending
|
2019-07-31 22:19:22 +08:00
|
|
|
}
|
|
|
|
}
|
2019-10-23 07:53:29 +08:00
|
|
|
auto &nameIterator{deepest.nameIterator()};
|
|
|
|
if (nameIterator == deepest.nameEnd()) {
|
2019-07-31 22:19:22 +08:00
|
|
|
componentPath_.pop_back();
|
2019-11-13 07:43:09 +08:00
|
|
|
} else if constexpr (componentKind == ComponentKind::Scope) {
|
|
|
|
deepest.set_component(*nameIterator++->second);
|
|
|
|
deepest.set_descended(false);
|
|
|
|
deepest.set_visited(true);
|
2020-03-28 05:17:25 +08:00
|
|
|
return; // this is the next component to visit, before descending
|
2019-10-23 07:53:29 +08:00
|
|
|
} else {
|
|
|
|
const Scope &scope{deepest.GetScope()};
|
|
|
|
auto scopeIter{scope.find(*nameIterator++)};
|
|
|
|
if (scopeIter != scope.cend()) {
|
|
|
|
const Symbol &component{*scopeIter->second};
|
|
|
|
deepest.set_component(component);
|
|
|
|
deepest.set_descended(false);
|
|
|
|
if (StopAtComponentPre<componentKind>(component)) {
|
|
|
|
deepest.set_visited(true);
|
2020-03-28 05:17:25 +08:00
|
|
|
return; // this is the next component to visit, before descending
|
2019-10-23 07:53:29 +08:00
|
|
|
} else {
|
|
|
|
deepest.set_visited(!StopAtComponentPost<componentKind>(component));
|
|
|
|
}
|
|
|
|
}
|
2019-07-31 22:19:22 +08:00
|
|
|
}
|
|
|
|
}
|
2019-07-26 21:33:48 +08:00
|
|
|
}
|
|
|
|
|
2020-03-28 05:17:25 +08:00
|
|
|
template <ComponentKind componentKind>
|
2019-07-31 22:19:22 +08:00
|
|
|
std::string
|
|
|
|
ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName()
|
|
|
|
const {
|
|
|
|
std::string designator{""};
|
|
|
|
for (const auto &node : componentPath_) {
|
2019-10-23 07:53:29 +08:00
|
|
|
designator += "%" + DEREF(node.component()).name().ToString();
|
2019-07-31 22:19:22 +08:00
|
|
|
}
|
|
|
|
return designator;
|
2019-07-26 21:33:48 +08:00
|
|
|
}
|
|
|
|
|
2019-07-31 22:19:22 +08:00
|
|
|
template class ComponentIterator<ComponentKind::Ordered>;
|
|
|
|
template class ComponentIterator<ComponentKind::Direct>;
|
|
|
|
template class ComponentIterator<ComponentKind::Ultimate>;
|
|
|
|
template class ComponentIterator<ComponentKind::Potential>;
|
2019-11-13 07:43:09 +08:00
|
|
|
template class ComponentIterator<ComponentKind::Scope>;
|
2019-07-26 21:33:48 +08:00
|
|
|
|
2019-07-31 22:19:22 +08:00
|
|
|
UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent(
|
2019-07-26 23:11:59 +08:00
|
|
|
const DerivedTypeSpec &derived) {
|
2019-07-31 22:19:22 +08:00
|
|
|
UltimateComponentIterator ultimates{derived};
|
2019-11-13 07:43:09 +08:00
|
|
|
return std::find_if(ultimates.begin(), ultimates.end(), IsCoarray);
|
2019-07-26 23:11:59 +08:00
|
|
|
}
|
|
|
|
|
2019-09-14 03:32:43 +08:00
|
|
|
UltimateComponentIterator::const_iterator FindPointerUltimateComponent(
|
|
|
|
const DerivedTypeSpec &derived) {
|
|
|
|
UltimateComponentIterator ultimates{derived};
|
2019-11-13 07:43:09 +08:00
|
|
|
return std::find_if(ultimates.begin(), ultimates.end(), IsPointer);
|
2019-09-14 03:32:43 +08:00
|
|
|
}
|
|
|
|
|
2019-07-31 22:19:22 +08:00
|
|
|
PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent(
|
|
|
|
const DerivedTypeSpec &derived) {
|
|
|
|
PotentialComponentIterator potentials{derived};
|
|
|
|
return std::find_if(
|
2019-10-23 07:53:29 +08:00
|
|
|
potentials.begin(), potentials.end(), [](const Symbol &component) {
|
|
|
|
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
|
2019-07-31 22:19:22 +08:00
|
|
|
const DeclTypeSpec *type{details->type()};
|
|
|
|
return type && IsEventTypeOrLockType(type->AsDerived());
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
});
|
2019-07-26 21:33:48 +08:00
|
|
|
}
|
|
|
|
|
2019-11-13 07:43:09 +08:00
|
|
|
UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent(
|
|
|
|
const DerivedTypeSpec &derived) {
|
|
|
|
UltimateComponentIterator ultimates{derived};
|
|
|
|
return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable);
|
|
|
|
}
|
|
|
|
|
|
|
|
UltimateComponentIterator::const_iterator
|
|
|
|
FindPolymorphicAllocatableUltimateComponent(const DerivedTypeSpec &derived) {
|
|
|
|
UltimateComponentIterator ultimates{derived};
|
|
|
|
return std::find_if(
|
|
|
|
ultimates.begin(), ultimates.end(), IsPolymorphicAllocatable);
|
|
|
|
}
|
|
|
|
|
2019-11-16 06:26:10 +08:00
|
|
|
UltimateComponentIterator::const_iterator
|
|
|
|
FindPolymorphicAllocatableNonCoarrayUltimateComponent(
|
|
|
|
const DerivedTypeSpec &derived) {
|
|
|
|
UltimateComponentIterator ultimates{derived};
|
|
|
|
return std::find_if(ultimates.begin(), ultimates.end(), [](const Symbol &x) {
|
|
|
|
return IsPolymorphicAllocatable(x) && !IsCoarray(x);
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2019-07-26 23:11:59 +08:00
|
|
|
const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived,
|
2019-10-18 07:15:20 +08:00
|
|
|
const std::function<bool(const Symbol &)> &predicate) {
|
2019-07-31 22:19:22 +08:00
|
|
|
UltimateComponentIterator ultimates{derived};
|
|
|
|
if (auto it{std::find_if(ultimates.begin(), ultimates.end(),
|
2019-10-23 07:53:29 +08:00
|
|
|
[&predicate](const Symbol &component) -> bool {
|
|
|
|
return predicate(component);
|
2019-07-31 22:19:22 +08:00
|
|
|
})}) {
|
2019-10-23 07:53:29 +08:00
|
|
|
return &*it;
|
2019-07-31 22:19:22 +08:00
|
|
|
}
|
|
|
|
return nullptr;
|
2019-07-26 23:11:59 +08:00
|
|
|
}
|
|
|
|
|
2019-10-18 07:15:20 +08:00
|
|
|
const Symbol *FindUltimateComponent(const Symbol &symbol,
|
|
|
|
const std::function<bool(const Symbol &)> &predicate) {
|
|
|
|
if (predicate(symbol)) {
|
|
|
|
return &symbol;
|
|
|
|
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
|
|
|
|
if (const auto *type{object->type()}) {
|
|
|
|
if (const auto *derived{type->AsDerived()}) {
|
|
|
|
return FindUltimateComponent(*derived, predicate);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2019-10-18 06:29:26 +08:00
|
|
|
const Symbol *FindImmediateComponent(const DerivedTypeSpec &type,
|
|
|
|
const std::function<bool(const Symbol &)> &predicate) {
|
|
|
|
if (const Scope * scope{type.scope()}) {
|
|
|
|
const Symbol *parent{nullptr};
|
|
|
|
for (const auto &pair : *scope) {
|
2019-10-23 07:53:29 +08:00
|
|
|
const Symbol *symbol{&*pair.second};
|
|
|
|
if (predicate(*symbol)) {
|
|
|
|
return symbol;
|
|
|
|
}
|
|
|
|
if (symbol->test(Symbol::Flag::ParentComp)) {
|
|
|
|
parent = symbol;
|
2019-10-18 06:29:26 +08:00
|
|
|
}
|
|
|
|
}
|
2019-11-10 01:29:31 +08:00
|
|
|
if (parent) {
|
2019-10-18 06:29:26 +08:00
|
|
|
if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) {
|
|
|
|
if (const auto *type{object->type()}) {
|
|
|
|
if (const auto *derived{type->AsDerived()}) {
|
|
|
|
return FindImmediateComponent(*derived, predicate);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2019-08-08 18:46:14 +08:00
|
|
|
bool IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) {
|
|
|
|
if (IsFunctionResult(symbol)) {
|
2019-08-07 18:51:13 +08:00
|
|
|
if (const Symbol * function{symbol.owner().symbol()}) {
|
|
|
|
return symbol.name() == function->name();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
2019-12-26 13:18:47 +08:00
|
|
|
|
|
|
|
void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) {
|
|
|
|
checkLabelUse(gotoStmt.v);
|
|
|
|
}
|
|
|
|
void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) {
|
|
|
|
for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) {
|
|
|
|
checkLabelUse(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) {
|
|
|
|
checkLabelUse(std::get<1>(arithmeticIfStmt.t));
|
|
|
|
checkLabelUse(std::get<2>(arithmeticIfStmt.t));
|
|
|
|
checkLabelUse(std::get<3>(arithmeticIfStmt.t));
|
|
|
|
}
|
|
|
|
|
|
|
|
void LabelEnforce::Post(const parser::AssignStmt &assignStmt) {
|
|
|
|
checkLabelUse(std::get<parser::Label>(assignStmt.t));
|
|
|
|
}
|
|
|
|
|
|
|
|
void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) {
|
|
|
|
for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) {
|
|
|
|
checkLabelUse(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) {
|
|
|
|
checkLabelUse(altReturnSpec.v);
|
|
|
|
}
|
|
|
|
|
|
|
|
void LabelEnforce::Post(const parser::ErrLabel &errLabel) {
|
|
|
|
checkLabelUse(errLabel.v);
|
|
|
|
}
|
|
|
|
void LabelEnforce::Post(const parser::EndLabel &endLabel) {
|
|
|
|
checkLabelUse(endLabel.v);
|
|
|
|
}
|
|
|
|
void LabelEnforce::Post(const parser::EorLabel &eorLabel) {
|
|
|
|
checkLabelUse(eorLabel.v);
|
|
|
|
}
|
|
|
|
|
|
|
|
void LabelEnforce::checkLabelUse(const parser::Label &labelUsed) {
|
|
|
|
if (labels_.find(labelUsed) == labels_.end()) {
|
|
|
|
SayWithConstruct(context_, currentStatementSourcePosition_,
|
|
|
|
parser::MessageFormattedText{
|
|
|
|
"Control flow escapes from %s"_err_en_US, construct_},
|
|
|
|
constructSourcePosition_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() {
|
|
|
|
return {"Enclosing %s statement"_en_US, construct_};
|
|
|
|
}
|
|
|
|
|
|
|
|
void LabelEnforce::SayWithConstruct(SemanticsContext &context,
|
|
|
|
parser::CharBlock stmtLocation, parser::MessageFormattedText &&message,
|
|
|
|
parser::CharBlock constructLocation) {
|
|
|
|
context.Say(stmtLocation, message)
|
|
|
|
.Attach(constructLocation, GetEnclosingConstructMsg());
|
|
|
|
}
|
[flang] New implementation for checks for constraints C741 through C750
Summary:
Most of these checks were already implemented, and I just added references to
them to the code and tests. Also, much of this code was already
reviewed in the old flang/f18 GitHub repository, but I didn't get to
merge it before we switched repositories.
I implemented the check for C747 to not allow coarray components in derived
types that are of type C_PTR, C_FUNPTR, or type TEAM_TYPE.
I implemented the check for C748 that requires a data component whose type has
a coarray ultimate component to be a nonpointer, nonallocatable scalar and not
be a coarray.
I implemented the check for C750 that adds additional restrictions to the
bounds expressions of a derived type component that's an array.
These bounds expressions are sepcification expressions as defined in
10.1.11. There was already code in lib/Evaluate/check-expression.cpp to
check semantics for specification expressions, but it did not check for
the extra requirements of C750.
C750 prohibits specification functions, the intrinsic functions
ALLOCATED, ASSOCIATED, EXTENDS_TYPE_OF, PRESENT, and SAME_TYPE_AS. It
also requires every specification inquiry reference to be a constant
expression, and requires that the value of the bound not depend on the
value of a variable.
To implement these additional checks, I added code to the intrinsic proc
table to get the intrinsic class of a procedure. I also added an
enumeration to distinguish between specification expressions for
derived type component bounds versus for type parameters. I then
changed the code to pass an enumeration value to
"CheckSpecificationExpr()" to indicate that the expression was a bounds
expression and used this value to determine whether to emit an error
message when violations of C750 are found.
I changed the implementation of IsPureProcedure() to handle statement
functions and changed some references in the code that tested for the
PURE attribute to call IsPureProcedure().
I also fixed some unrelated tests that got new errors when I implemented these
new checks.
Reviewers: tskeith, DavidTruby, sscalpone
Subscribers: jfb, llvm-commits
Tags: #llvm, #flang
Differential Revision: https://reviews.llvm.org/D79263
2020-05-02 04:00:28 +08:00
|
|
|
|
2020-07-02 08:28:00 +08:00
|
|
|
bool HasAlternateReturns(const Symbol &subprogram) {
|
|
|
|
for (const auto *dummyArg : subprogram.get<SubprogramDetails>().dummyArgs()) {
|
|
|
|
if (!dummyArg) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-08-25 03:53:44 +08:00
|
|
|
bool InCommonBlock(const Symbol &symbol) {
|
|
|
|
const auto *details{symbol.detailsIf<ObjectEntityDetails>()};
|
|
|
|
return details && details->commonBlock();
|
|
|
|
}
|
|
|
|
|
2020-10-06 12:51:06 +08:00
|
|
|
const std::optional<parser::Name> &MaybeGetNodeName(
|
|
|
|
const ConstructNode &construct) {
|
|
|
|
return std::visit(
|
|
|
|
common::visitors{
|
|
|
|
[&](const parser::BlockConstruct *blockConstruct)
|
|
|
|
-> const std::optional<parser::Name> & {
|
|
|
|
return std::get<0>(blockConstruct->t).statement.v;
|
|
|
|
},
|
|
|
|
[&](const auto *a) -> const std::optional<parser::Name> & {
|
|
|
|
return std::get<0>(std::get<0>(a->t).statement.t);
|
|
|
|
},
|
|
|
|
},
|
|
|
|
construct);
|
|
|
|
}
|
|
|
|
|
2021-01-30 05:34:22 +08:00
|
|
|
std::optional<ArraySpec> ToArraySpec(
|
|
|
|
evaluate::FoldingContext &context, const evaluate::Shape &shape) {
|
|
|
|
if (auto extents{evaluate::AsConstantExtents(context, shape)}) {
|
|
|
|
ArraySpec result;
|
|
|
|
for (const auto &extent : *extents) {
|
|
|
|
result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent}));
|
|
|
|
}
|
|
|
|
return {std::move(result)};
|
|
|
|
} else {
|
|
|
|
return std::nullopt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::optional<ArraySpec> ToArraySpec(evaluate::FoldingContext &context,
|
|
|
|
const std::optional<evaluate::Shape> &shape) {
|
|
|
|
return shape ? ToArraySpec(context, *shape) : std::nullopt;
|
|
|
|
}
|
|
|
|
|
2020-03-28 05:17:25 +08:00
|
|
|
} // namespace Fortran::semantics
|