2010-05-26 13:41:04 +08:00
//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2009-07-19 04:20:21 +08:00
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
2012-12-04 17:13:33 +08:00
# include "clang/AST/RecordLayout.h"
2012-07-05 02:45:14 +08:00
# include "clang/AST/ASTContext.h"
2009-07-19 04:20:21 +08:00
# include "clang/AST/Attr.h"
2010-11-25 06:55:48 +08:00
# include "clang/AST/CXXInheritance.h"
2009-07-19 04:20:21 +08:00
# include "clang/AST/Decl.h"
2009-07-19 08:18:47 +08:00
# include "clang/AST/DeclCXX.h"
2009-07-19 04:50:59 +08:00
# include "clang/AST/DeclObjC.h"
2009-07-19 04:20:21 +08:00
# include "clang/AST/Expr.h"
# include "clang/Basic/TargetInfo.h"
2010-09-22 22:32:24 +08:00
# include "clang/Sema/SemaDiagnostic.h"
2010-04-08 10:59:49 +08:00
# include "llvm/ADT/SmallSet.h"
2011-03-19 09:00:36 +08:00
# include "llvm/Support/CrashRecoveryContext.h"
2012-12-04 17:13:33 +08:00
# include "llvm/Support/Format.h"
# include "llvm/Support/MathExtras.h"
2009-07-19 04:20:21 +08:00
using namespace clang ;
2010-05-26 17:58:31 +08:00
namespace {
2010-05-26 23:32:58 +08:00
2010-05-29 05:24:37 +08:00
/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
/// For a class hierarchy like
///
/// class A { };
/// class B : A { };
/// class C : A, B { };
///
/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
/// instances, one for B and two for A.
///
/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
struct BaseSubobjectInfo {
/// Class - The class for this base info.
2010-05-29 05:13:31 +08:00
const CXXRecordDecl * Class ;
2010-05-29 05:24:37 +08:00
/// IsVirtual - Whether the BaseInfo represents a virtual base or not.
2010-05-29 05:13:31 +08:00
bool IsVirtual ;
2010-05-29 05:24:37 +08:00
/// Bases - Information about the base subobjects.
2011-07-23 18:55:15 +08:00
SmallVector < BaseSubobjectInfo * , 4 > Bases ;
2010-05-29 05:24:37 +08:00
2010-05-30 01:35:14 +08:00
/// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
/// of this base info (if one exists).
BaseSubobjectInfo * PrimaryVirtualBaseInfo ;
2010-05-29 05:24:37 +08:00
// FIXME: Document.
const BaseSubobjectInfo * Derived ;
2010-05-29 05:13:31 +08:00
} ;
2010-05-26 23:32:58 +08:00
/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
/// offsets while laying out a C++ class.
class EmptySubobjectMap {
2011-01-12 17:06:06 +08:00
const ASTContext & Context ;
2010-11-01 05:54:55 +08:00
uint64_t CharWidth ;
2010-05-26 23:32:58 +08:00
/// Class - The class whose empty entries we're keeping track of.
const CXXRecordDecl * Class ;
2010-05-27 10:25:46 +08:00
2010-05-27 13:41:06 +08:00
/// EmptyClassOffsets - A map from offsets to empty record decls.
2011-07-23 18:55:15 +08:00
typedef SmallVector < const CXXRecordDecl * , 1 > ClassVectorTy ;
2010-11-01 05:22:43 +08:00
typedef llvm : : DenseMap < CharUnits , ClassVectorTy > EmptyClassOffsetsMapTy ;
2010-05-27 13:41:06 +08:00
EmptyClassOffsetsMapTy EmptyClassOffsets ;
2010-06-08 23:56:03 +08:00
/// MaxEmptyClassOffset - The highest offset known to contain an empty
/// base subobject.
2010-11-01 05:39:24 +08:00
CharUnits MaxEmptyClassOffset ;
2010-06-08 23:56:03 +08:00
2010-05-27 10:25:46 +08:00
/// ComputeEmptySubobjectSizes - Compute the size of the largest base or
2010-05-26 23:54:25 +08:00
/// member subobject that is empty.
void ComputeEmptySubobjectSizes ( ) ;
2010-05-27 13:41:06 +08:00
2010-11-01 05:39:24 +08:00
void AddSubobjectAtOffset ( const CXXRecordDecl * RD , CharUnits Offset ) ;
2010-05-28 02:20:57 +08:00
2010-05-29 05:24:37 +08:00
void UpdateEmptyBaseSubobjects ( const BaseSubobjectInfo * Info ,
2010-11-01 06:13:23 +08:00
CharUnits Offset , bool PlacingEmptyBase ) ;
2010-05-27 13:41:06 +08:00
2010-05-28 02:20:57 +08:00
void UpdateEmptyFieldSubobjects ( const CXXRecordDecl * RD ,
const CXXRecordDecl * Class ,
2010-11-01 06:13:23 +08:00
CharUnits Offset ) ;
void UpdateEmptyFieldSubobjects ( const FieldDecl * FD , CharUnits Offset ) ;
2010-05-28 02:20:57 +08:00
2010-06-08 23:56:03 +08:00
/// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
/// subobjects beyond the given offset.
2010-11-01 05:39:24 +08:00
bool AnyEmptySubobjectsBeyondOffset ( CharUnits Offset ) const {
2010-06-08 23:56:03 +08:00
return Offset < = MaxEmptyClassOffset ;
}
2010-11-01 05:54:55 +08:00
CharUnits
getFieldOffset ( const ASTRecordLayout & Layout , unsigned FieldNo ) const {
uint64_t FieldOffset = Layout . getFieldOffset ( FieldNo ) ;
assert ( FieldOffset % CharWidth = = 0 & &
" Field offset not at char boundary! " ) ;
2011-01-24 09:28:50 +08:00
return Context . toCharUnitsFromBits ( FieldOffset ) ;
2010-11-01 05:22:43 +08:00
}
2010-08-19 08:55:19 +08:00
protected :
2010-11-01 05:39:24 +08:00
bool CanPlaceSubobjectAtOffset ( const CXXRecordDecl * RD ,
CharUnits Offset ) const ;
2010-08-19 08:55:19 +08:00
bool CanPlaceBaseSubobjectAtOffset ( const BaseSubobjectInfo * Info ,
2010-11-01 06:13:23 +08:00
CharUnits Offset ) ;
2010-08-19 08:55:19 +08:00
bool CanPlaceFieldSubobjectAtOffset ( const CXXRecordDecl * RD ,
const CXXRecordDecl * Class ,
2010-11-01 06:13:23 +08:00
CharUnits Offset ) const ;
2010-08-19 08:55:19 +08:00
bool CanPlaceFieldSubobjectAtOffset ( const FieldDecl * FD ,
2010-11-01 05:54:55 +08:00
CharUnits Offset ) const ;
2010-08-19 08:55:19 +08:00
2010-05-26 23:32:58 +08:00
public :
2010-05-26 23:54:25 +08:00
/// This holds the size of the largest empty subobject (either a base
2010-05-27 10:25:46 +08:00
/// or a member). Will be zero if the record being built doesn't contain
2010-05-26 23:54:25 +08:00
/// any empty classes.
2010-11-01 06:13:23 +08:00
CharUnits SizeOfLargestEmptySubobject ;
2010-05-27 10:25:46 +08:00
2011-01-12 17:06:06 +08:00
EmptySubobjectMap ( const ASTContext & Context , const CXXRecordDecl * Class )
2010-11-01 06:13:23 +08:00
: Context ( Context ) , CharWidth ( Context . getCharWidth ( ) ) , Class ( Class ) {
2010-05-27 08:07:01 +08:00
ComputeEmptySubobjectSizes ( ) ;
}
/// CanPlaceBaseAtOffset - Return whether the given base class can be placed
/// at the given offset.
2010-05-27 10:25:46 +08:00
/// Returns false if placing the record will result in two components
2010-05-27 08:07:01 +08:00
/// (direct or indirect) of the same type having the same offset.
2010-06-08 23:56:03 +08:00
bool CanPlaceBaseAtOffset ( const BaseSubobjectInfo * Info ,
2010-11-01 06:13:23 +08:00
CharUnits Offset ) ;
2010-05-28 02:20:57 +08:00
/// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
/// offset.
2010-11-01 06:13:23 +08:00
bool CanPlaceFieldAtOffset ( const FieldDecl * FD , CharUnits Offset ) ;
2010-05-26 23:32:58 +08:00
} ;
2010-05-26 23:54:25 +08:00
void EmptySubobjectMap : : ComputeEmptySubobjectSizes ( ) {
// Check the bases.
for ( CXXRecordDecl : : base_class_const_iterator I = Class - > bases_begin ( ) ,
E = Class - > bases_end ( ) ; I ! = E ; + + I ) {
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
2010-11-01 06:13:23 +08:00
CharUnits EmptySize ;
2010-05-26 23:54:25 +08:00
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( BaseDecl ) ;
if ( BaseDecl - > isEmpty ( ) ) {
// If the class decl is empty, get its size.
2011-02-09 09:59:34 +08:00
EmptySize = Layout . getSize ( ) ;
2010-05-26 23:54:25 +08:00
} else {
// Otherwise, we get the largest empty subobject for the decl.
EmptySize = Layout . getSizeOfLargestEmptySubobject ( ) ;
}
2010-05-27 10:25:46 +08:00
2010-11-01 06:13:23 +08:00
if ( EmptySize > SizeOfLargestEmptySubobject )
SizeOfLargestEmptySubobject = EmptySize ;
2010-05-26 23:54:25 +08:00
}
2010-05-27 10:25:46 +08:00
2010-05-26 23:54:25 +08:00
// Check the fields.
for ( CXXRecordDecl : : field_iterator I = Class - > field_begin ( ) ,
E = Class - > field_end ( ) ; I ! = E ; + + I ) {
2010-05-27 10:25:46 +08:00
const RecordType * RT =
2012-06-07 04:45:41 +08:00
Context . getBaseElementType ( I - > getType ( ) ) - > getAs < RecordType > ( ) ;
2010-05-27 10:25:46 +08:00
2010-05-26 23:54:25 +08:00
// We only care about record types.
if ( ! RT )
continue ;
2010-11-01 06:13:23 +08:00
CharUnits EmptySize ;
2010-05-26 23:54:25 +08:00
const CXXRecordDecl * MemberDecl = cast < CXXRecordDecl > ( RT - > getDecl ( ) ) ;
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( MemberDecl ) ;
if ( MemberDecl - > isEmpty ( ) ) {
// If the class decl is empty, get its size.
2011-02-09 09:59:34 +08:00
EmptySize = Layout . getSize ( ) ;
2010-05-26 23:54:25 +08:00
} else {
// Otherwise, we get the largest empty subobject for the decl.
EmptySize = Layout . getSizeOfLargestEmptySubobject ( ) ;
}
2010-05-27 10:25:46 +08:00
2010-11-01 06:13:23 +08:00
if ( EmptySize > SizeOfLargestEmptySubobject )
SizeOfLargestEmptySubobject = EmptySize ;
2010-05-26 23:54:25 +08:00
}
}
2010-05-28 02:20:57 +08:00
bool
EmptySubobjectMap : : CanPlaceSubobjectAtOffset ( const CXXRecordDecl * RD ,
2010-11-01 05:39:24 +08:00
CharUnits Offset ) const {
2010-05-28 02:20:57 +08:00
// We only need to check empty bases.
if ( ! RD - > isEmpty ( ) )
return true ;
2010-11-01 05:39:24 +08:00
EmptyClassOffsetsMapTy : : const_iterator I = EmptyClassOffsets . find ( Offset ) ;
2010-05-28 02:20:57 +08:00
if ( I = = EmptyClassOffsets . end ( ) )
return true ;
const ClassVectorTy & Classes = I - > second ;
if ( std : : find ( Classes . begin ( ) , Classes . end ( ) , RD ) = = Classes . end ( ) )
return true ;
// There is already an empty class of the same type at this offset.
return false ;
}
void EmptySubobjectMap : : AddSubobjectAtOffset ( const CXXRecordDecl * RD ,
2010-11-01 05:39:24 +08:00
CharUnits Offset ) {
2010-05-28 02:20:57 +08:00
// We only care about empty bases.
if ( ! RD - > isEmpty ( ) )
return ;
2013-05-15 04:30:42 +08:00
// If we have empty structures inside a union, we can assign both
2010-12-30 07:02:58 +08:00
// the same offset. Just avoid pushing them twice in the list.
2010-11-01 05:39:24 +08:00
ClassVectorTy & Classes = EmptyClassOffsets [ Offset ] ;
2010-12-30 07:02:58 +08:00
if ( std : : find ( Classes . begin ( ) , Classes . end ( ) , RD ) ! = Classes . end ( ) )
return ;
2010-05-28 02:20:57 +08:00
Classes . push_back ( RD ) ;
2010-06-08 23:56:03 +08:00
// Update the empty class offset.
2010-11-01 05:39:24 +08:00
if ( Offset > MaxEmptyClassOffset )
MaxEmptyClassOffset = Offset ;
2010-05-28 02:20:57 +08:00
}
2010-05-27 10:25:46 +08:00
bool
2010-11-01 06:13:23 +08:00
EmptySubobjectMap : : CanPlaceBaseSubobjectAtOffset ( const BaseSubobjectInfo * Info ,
CharUnits Offset ) {
2010-06-09 00:20:35 +08:00
// We don't have to keep looking past the maximum offset that's known to
// contain an empty class.
2010-11-01 06:13:23 +08:00
if ( ! AnyEmptySubobjectsBeyondOffset ( Offset ) )
2010-06-09 00:20:35 +08:00
return true ;
2010-11-01 06:13:23 +08:00
if ( ! CanPlaceSubobjectAtOffset ( Info - > Class , Offset ) )
2010-05-28 02:20:57 +08:00
return false ;
2010-05-27 13:41:06 +08:00
// Traverse all non-virtual bases.
2010-05-30 05:10:24 +08:00
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( Info - > Class ) ;
2010-05-27 13:41:06 +08:00
for ( unsigned I = 0 , E = Info - > Bases . size ( ) ; I ! = E ; + + I ) {
2010-05-29 05:24:37 +08:00
BaseSubobjectInfo * Base = Info - > Bases [ I ] ;
2010-05-27 13:41:06 +08:00
if ( Base - > IsVirtual )
continue ;
2010-11-01 08:21:58 +08:00
CharUnits BaseOffset = Offset + Layout . getBaseClassOffset ( Base - > Class ) ;
2010-05-27 13:41:06 +08:00
if ( ! CanPlaceBaseSubobjectAtOffset ( Base , BaseOffset ) )
return false ;
}
2010-05-30 01:35:14 +08:00
if ( Info - > PrimaryVirtualBaseInfo ) {
BaseSubobjectInfo * PrimaryVirtualBaseInfo = Info - > PrimaryVirtualBaseInfo ;
2010-05-27 13:41:06 +08:00
if ( Info = = PrimaryVirtualBaseInfo - > Derived ) {
if ( ! CanPlaceBaseSubobjectAtOffset ( PrimaryVirtualBaseInfo , Offset ) )
return false ;
}
}
2010-05-28 02:20:57 +08:00
// Traverse all member variables.
unsigned FieldNo = 0 ;
for ( CXXRecordDecl : : field_iterator I = Info - > Class - > field_begin ( ) ,
E = Info - > Class - > field_end ( ) ; I ! = E ; + + I , + + FieldNo ) {
2012-06-07 04:45:41 +08:00
if ( I - > isBitField ( ) )
2010-11-01 05:54:55 +08:00
continue ;
2010-11-01 06:13:23 +08:00
CharUnits FieldOffset = Offset + getFieldOffset ( Layout , FieldNo ) ;
2012-06-07 04:45:41 +08:00
if ( ! CanPlaceFieldSubobjectAtOffset ( * I , FieldOffset ) )
2010-05-28 02:20:57 +08:00
return false ;
}
2010-05-27 13:41:06 +08:00
return true ;
}
2010-05-29 05:24:37 +08:00
void EmptySubobjectMap : : UpdateEmptyBaseSubobjects ( const BaseSubobjectInfo * Info ,
2010-11-01 06:13:23 +08:00
CharUnits Offset ,
2010-06-14 02:00:18 +08:00
bool PlacingEmptyBase ) {
if ( ! PlacingEmptyBase & & Offset > = SizeOfLargestEmptySubobject ) {
// We know that the only empty subobjects that can conflict with empty
// subobject of non-empty bases, are empty bases that can be placed at
// offset zero. Because of this, we only need to keep track of empty base
// subobjects with offsets less than the size of the largest empty
// subobject for our class.
return ;
}
2010-11-01 06:13:23 +08:00
AddSubobjectAtOffset ( Info - > Class , Offset ) ;
2010-05-30 05:10:24 +08:00
2010-05-27 13:41:06 +08:00
// Traverse all non-virtual bases.
2010-05-30 05:10:24 +08:00
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( Info - > Class ) ;
2010-05-27 13:41:06 +08:00
for ( unsigned I = 0 , E = Info - > Bases . size ( ) ; I ! = E ; + + I ) {
2010-05-29 05:24:37 +08:00
BaseSubobjectInfo * Base = Info - > Bases [ I ] ;
2010-05-27 13:41:06 +08:00
if ( Base - > IsVirtual )
continue ;
2010-05-30 05:10:24 +08:00
2010-11-01 08:21:58 +08:00
CharUnits BaseOffset = Offset + Layout . getBaseClassOffset ( Base - > Class ) ;
2010-06-14 02:00:18 +08:00
UpdateEmptyBaseSubobjects ( Base , BaseOffset , PlacingEmptyBase ) ;
2010-05-27 13:41:06 +08:00
}
2010-05-30 01:35:14 +08:00
if ( Info - > PrimaryVirtualBaseInfo ) {
BaseSubobjectInfo * PrimaryVirtualBaseInfo = Info - > PrimaryVirtualBaseInfo ;
2010-05-27 13:41:06 +08:00
if ( Info = = PrimaryVirtualBaseInfo - > Derived )
2010-06-14 02:00:18 +08:00
UpdateEmptyBaseSubobjects ( PrimaryVirtualBaseInfo , Offset ,
PlacingEmptyBase ) ;
2010-05-27 13:41:06 +08:00
}
2010-05-28 02:20:57 +08:00
// Traverse all member variables.
unsigned FieldNo = 0 ;
for ( CXXRecordDecl : : field_iterator I = Info - > Class - > field_begin ( ) ,
E = Info - > Class - > field_end ( ) ; I ! = E ; + + I , + + FieldNo ) {
2012-06-07 04:45:41 +08:00
if ( I - > isBitField ( ) )
2010-11-01 05:54:55 +08:00
continue ;
2010-05-30 05:10:24 +08:00
2010-11-01 06:13:23 +08:00
CharUnits FieldOffset = Offset + getFieldOffset ( Layout , FieldNo ) ;
2012-06-07 04:45:41 +08:00
UpdateEmptyFieldSubobjects ( * I , FieldOffset ) ;
2010-05-28 02:20:57 +08:00
}
2010-05-27 13:41:06 +08:00
}
2010-05-30 04:49:49 +08:00
bool EmptySubobjectMap : : CanPlaceBaseAtOffset ( const BaseSubobjectInfo * Info ,
2010-11-01 06:13:23 +08:00
CharUnits Offset ) {
2010-05-27 08:07:01 +08:00
// If we know this class doesn't have any empty subobjects we don't need to
// bother checking.
2010-11-01 06:13:23 +08:00
if ( SizeOfLargestEmptySubobject . isZero ( ) )
2010-05-27 08:07:01 +08:00
return true ;
2010-05-27 13:41:06 +08:00
if ( ! CanPlaceBaseSubobjectAtOffset ( Info , Offset ) )
return false ;
2010-05-28 02:20:57 +08:00
// We are able to place the base at this offset. Make sure to update the
// empty base subobject map.
2010-06-14 02:00:18 +08:00
UpdateEmptyBaseSubobjects ( Info , Offset , Info - > Class - > isEmpty ( ) ) ;
2010-05-27 08:07:01 +08:00
return true ;
}
2010-05-28 02:20:57 +08:00
bool
EmptySubobjectMap : : CanPlaceFieldSubobjectAtOffset ( const CXXRecordDecl * RD ,
const CXXRecordDecl * Class ,
2010-11-01 06:13:23 +08:00
CharUnits Offset ) const {
2010-06-09 00:20:35 +08:00
// We don't have to keep looking past the maximum offset that's known to
// contain an empty class.
2010-11-01 06:13:23 +08:00
if ( ! AnyEmptySubobjectsBeyondOffset ( Offset ) )
2010-06-09 00:20:35 +08:00
return true ;
2010-11-01 06:13:23 +08:00
if ( ! CanPlaceSubobjectAtOffset ( RD , Offset ) )
2010-05-28 02:20:57 +08:00
return false ;
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( RD ) ;
// Traverse all non-virtual bases.
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > bases_begin ( ) ,
E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
if ( I - > isVirtual ( ) )
continue ;
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
2010-11-01 08:21:58 +08:00
CharUnits BaseOffset = Offset + Layout . getBaseClassOffset ( BaseDecl ) ;
2010-05-28 02:20:57 +08:00
if ( ! CanPlaceFieldSubobjectAtOffset ( BaseDecl , Class , BaseOffset ) )
return false ;
}
2010-06-09 03:09:24 +08:00
if ( RD = = Class ) {
// This is the most derived class, traverse virtual bases as well.
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > vbases_begin ( ) ,
E = RD - > vbases_end ( ) ; I ! = E ; + + I ) {
const CXXRecordDecl * VBaseDecl =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
2010-11-01 07:45:59 +08:00
CharUnits VBaseOffset = Offset + Layout . getVBaseClassOffset ( VBaseDecl ) ;
2010-06-09 03:09:24 +08:00
if ( ! CanPlaceFieldSubobjectAtOffset ( VBaseDecl , Class , VBaseOffset ) )
return false ;
}
}
2010-05-28 02:20:57 +08:00
// Traverse all member variables.
unsigned FieldNo = 0 ;
for ( CXXRecordDecl : : field_iterator I = RD - > field_begin ( ) , E = RD - > field_end ( ) ;
I ! = E ; + + I , + + FieldNo ) {
2012-06-07 04:45:41 +08:00
if ( I - > isBitField ( ) )
2010-11-01 05:54:55 +08:00
continue ;
2010-11-01 06:13:23 +08:00
CharUnits FieldOffset = Offset + getFieldOffset ( Layout , FieldNo ) ;
2010-05-28 02:20:57 +08:00
2012-06-07 04:45:41 +08:00
if ( ! CanPlaceFieldSubobjectAtOffset ( * I , FieldOffset ) )
2010-05-28 02:20:57 +08:00
return false ;
}
return true ;
}
2010-11-01 05:54:55 +08:00
bool
EmptySubobjectMap : : CanPlaceFieldSubobjectAtOffset ( const FieldDecl * FD ,
CharUnits Offset ) const {
2010-06-09 00:20:35 +08:00
// We don't have to keep looking past the maximum offset that's known to
// contain an empty class.
2010-11-01 05:54:55 +08:00
if ( ! AnyEmptySubobjectsBeyondOffset ( Offset ) )
2010-06-09 00:20:35 +08:00
return true ;
2010-05-28 02:20:57 +08:00
QualType T = FD - > getType ( ) ;
if ( const RecordType * RT = T - > getAs < RecordType > ( ) ) {
const CXXRecordDecl * RD = cast < CXXRecordDecl > ( RT - > getDecl ( ) ) ;
2010-11-01 06:13:23 +08:00
return CanPlaceFieldSubobjectAtOffset ( RD , RD , Offset ) ;
2010-05-28 02:20:57 +08:00
}
// If we have an array type we need to look at every element.
if ( const ConstantArrayType * AT = Context . getAsConstantArrayType ( T ) ) {
QualType ElemTy = Context . getBaseElementType ( AT ) ;
const RecordType * RT = ElemTy - > getAs < RecordType > ( ) ;
if ( ! RT )
return true ;
const CXXRecordDecl * RD = cast < CXXRecordDecl > ( RT - > getDecl ( ) ) ;
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( RD ) ;
uint64_t NumElements = Context . getConstantArrayElementCount ( AT ) ;
2010-11-01 05:54:55 +08:00
CharUnits ElementOffset = Offset ;
2010-05-28 02:20:57 +08:00
for ( uint64_t I = 0 ; I ! = NumElements ; + + I ) {
2010-06-09 00:20:35 +08:00
// We don't have to keep looking past the maximum offset that's known to
// contain an empty class.
2010-11-01 05:54:55 +08:00
if ( ! AnyEmptySubobjectsBeyondOffset ( ElementOffset ) )
2010-06-09 00:20:35 +08:00
return true ;
2010-11-01 06:13:23 +08:00
if ( ! CanPlaceFieldSubobjectAtOffset ( RD , RD , ElementOffset ) )
2010-05-28 02:20:57 +08:00
return false ;
2011-02-09 09:59:34 +08:00
ElementOffset + = Layout . getSize ( ) ;
2010-05-28 02:20:57 +08:00
}
}
return true ;
}
bool
2010-11-01 06:13:23 +08:00
EmptySubobjectMap : : CanPlaceFieldAtOffset ( const FieldDecl * FD ,
CharUnits Offset ) {
if ( ! CanPlaceFieldSubobjectAtOffset ( FD , Offset ) )
2010-05-28 02:20:57 +08:00
return false ;
// We are able to place the member variable at this offset.
// Make sure to update the empty base subobject map.
UpdateEmptyFieldSubobjects ( FD , Offset ) ;
return true ;
}
void EmptySubobjectMap : : UpdateEmptyFieldSubobjects ( const CXXRecordDecl * RD ,
const CXXRecordDecl * Class ,
2010-11-01 06:13:23 +08:00
CharUnits Offset ) {
2010-06-14 01:49:16 +08:00
// We know that the only empty subobjects that can conflict with empty
2010-06-14 02:00:18 +08:00
// field subobjects are subobjects of empty bases that can be placed at offset
2010-06-14 01:49:16 +08:00
// zero. Because of this, we only need to keep track of empty field
// subobjects with offsets less than the size of the largest empty
// subobject for our class.
if ( Offset > = SizeOfLargestEmptySubobject )
return ;
2010-11-01 06:13:23 +08:00
AddSubobjectAtOffset ( RD , Offset ) ;
2010-05-28 02:20:57 +08:00
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( RD ) ;
// Traverse all non-virtual bases.
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > bases_begin ( ) ,
E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
if ( I - > isVirtual ( ) )
continue ;
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
2010-11-01 08:21:58 +08:00
CharUnits BaseOffset = Offset + Layout . getBaseClassOffset ( BaseDecl ) ;
2010-05-28 02:20:57 +08:00
UpdateEmptyFieldSubobjects ( BaseDecl , Class , BaseOffset ) ;
}
2010-06-09 03:09:24 +08:00
if ( RD = = Class ) {
// This is the most derived class, traverse virtual bases as well.
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > vbases_begin ( ) ,
E = RD - > vbases_end ( ) ; I ! = E ; + + I ) {
const CXXRecordDecl * VBaseDecl =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
2010-11-01 07:45:59 +08:00
CharUnits VBaseOffset = Offset + Layout . getVBaseClassOffset ( VBaseDecl ) ;
2010-06-09 03:09:24 +08:00
UpdateEmptyFieldSubobjects ( VBaseDecl , Class , VBaseOffset ) ;
}
}
2010-05-28 02:20:57 +08:00
// Traverse all member variables.
unsigned FieldNo = 0 ;
for ( CXXRecordDecl : : field_iterator I = RD - > field_begin ( ) , E = RD - > field_end ( ) ;
I ! = E ; + + I , + + FieldNo ) {
2012-06-07 04:45:41 +08:00
if ( I - > isBitField ( ) )
2010-11-01 23:14:51 +08:00
continue ;
2010-11-01 06:13:23 +08:00
CharUnits FieldOffset = Offset + getFieldOffset ( Layout , FieldNo ) ;
2010-05-28 02:20:57 +08:00
2012-06-07 04:45:41 +08:00
UpdateEmptyFieldSubobjects ( * I , FieldOffset ) ;
2010-05-28 02:20:57 +08:00
}
}
void EmptySubobjectMap : : UpdateEmptyFieldSubobjects ( const FieldDecl * FD ,
2010-11-01 06:13:23 +08:00
CharUnits Offset ) {
2010-05-28 02:20:57 +08:00
QualType T = FD - > getType ( ) ;
if ( const RecordType * RT = T - > getAs < RecordType > ( ) ) {
const CXXRecordDecl * RD = cast < CXXRecordDecl > ( RT - > getDecl ( ) ) ;
UpdateEmptyFieldSubobjects ( RD , RD , Offset ) ;
return ;
}
// If we have an array type we need to update every element.
if ( const ConstantArrayType * AT = Context . getAsConstantArrayType ( T ) ) {
QualType ElemTy = Context . getBaseElementType ( AT ) ;
const RecordType * RT = ElemTy - > getAs < RecordType > ( ) ;
if ( ! RT )
return ;
const CXXRecordDecl * RD = cast < CXXRecordDecl > ( RT - > getDecl ( ) ) ;
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( RD ) ;
uint64_t NumElements = Context . getConstantArrayElementCount ( AT ) ;
2010-11-01 06:13:23 +08:00
CharUnits ElementOffset = Offset ;
2010-05-28 02:20:57 +08:00
for ( uint64_t I = 0 ; I ! = NumElements ; + + I ) {
2010-06-14 01:49:16 +08:00
// We know that the only empty subobjects that can conflict with empty
2010-06-14 02:00:18 +08:00
// field subobjects are subobjects of empty bases that can be placed at
2010-06-14 01:49:16 +08:00
// offset zero. Because of this, we only need to keep track of empty field
// subobjects with offsets less than the size of the largest empty
// subobject for our class.
if ( ElementOffset > = SizeOfLargestEmptySubobject )
return ;
2010-05-28 02:20:57 +08:00
UpdateEmptyFieldSubobjects ( RD , RD , ElementOffset ) ;
2011-02-09 09:59:34 +08:00
ElementOffset + = Layout . getSize ( ) ;
2010-05-28 02:20:57 +08:00
}
}
}
2012-05-01 16:55:32 +08:00
typedef llvm : : SmallPtrSet < const CXXRecordDecl * , 4 > ClassSetTy ;
2010-05-26 13:58:59 +08:00
class RecordLayoutBuilder {
2010-08-19 08:55:19 +08:00
protected :
2010-05-26 13:41:04 +08:00
// FIXME: Remove this and make the appropriate fields public.
friend class clang : : ASTContext ;
2010-05-27 10:25:46 +08:00
2011-01-12 17:06:06 +08:00
const ASTContext & Context ;
2010-05-26 13:41:04 +08:00
2010-05-26 23:32:58 +08:00
EmptySubobjectMap * EmptySubobjects ;
2010-05-27 10:25:46 +08:00
2010-05-26 13:41:04 +08:00
/// Size - The current size of the record layout.
uint64_t Size ;
2010-05-27 10:25:46 +08:00
2010-05-26 13:41:04 +08:00
/// Alignment - The current alignment of the record layout.
2011-02-16 10:05:21 +08:00
CharUnits Alignment ;
2010-05-27 10:25:46 +08:00
2010-09-22 22:32:24 +08:00
/// \brief The alignment if attribute packed is not used.
2011-02-16 10:11:31 +08:00
CharUnits UnpackedAlignment ;
2010-09-22 22:32:24 +08:00
2011-07-23 18:55:15 +08:00
SmallVector < uint64_t , 16 > FieldOffsets ;
2010-05-26 13:41:04 +08:00
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
/// \brief Whether the external AST source has provided a layout for this
/// record.
unsigned ExternalLayout : 1 ;
2012-01-28 08:53:29 +08:00
/// \brief Whether we need to infer alignment, even when we have an
/// externally-provided layout.
unsigned InferAlignment : 1 ;
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
2010-05-26 13:41:04 +08:00
/// Packed - Whether the record is packed or not.
2010-05-27 13:45:51 +08:00
unsigned Packed : 1 ;
unsigned IsUnion : 1 ;
unsigned IsMac68kAlign : 1 ;
2011-04-27 07:52:16 +08:00
unsigned IsMsStruct : 1 ;
2010-05-26 13:41:04 +08:00
2013-06-27 04:50:34 +08:00
/// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
/// this contains the number of bits in the last unit that can be used for
/// an adjacent bitfield if necessary. The unit in question is usually
/// a byte, but larger units are used if IsMsStruct.
unsigned char UnfilledBitsInLastUnit ;
/// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
/// of the previous field if it was a bitfield.
unsigned char LastBitfieldTypeSize ;
2010-05-27 10:25:46 +08:00
2010-05-26 13:41:04 +08:00
/// MaxFieldAlignment - The maximum allowed field alignment. This is set by
2010-05-27 10:25:46 +08:00
/// #pragma pack.
2011-02-17 09:49:42 +08:00
CharUnits MaxFieldAlignment ;
2010-05-27 10:25:46 +08:00
2010-05-26 13:41:04 +08:00
/// DataSize - The data size of the record being laid out.
uint64_t DataSize ;
2010-05-27 10:25:46 +08:00
2011-02-16 09:52:01 +08:00
CharUnits NonVirtualSize ;
2011-02-16 09:43:15 +08:00
CharUnits NonVirtualAlignment ;
2010-05-27 10:25:46 +08:00
2010-05-26 13:41:04 +08:00
/// PrimaryBase - the primary base class (if one exists) of the class
/// we're laying out.
const CXXRecordDecl * PrimaryBase ;
2010-05-27 10:25:46 +08:00
2010-05-26 13:41:04 +08:00
/// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
/// out is virtual.
bool PrimaryBaseIsVirtual ;
2012-05-01 16:55:32 +08:00
/// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
/// pointer, as opposed to inheriting one from a primary base class.
bool HasOwnVFPtr ;
2011-10-22 06:49:56 +08:00
2013-10-12 04:19:00 +08:00
/// HasOwnVBPtr - Whether the class provides its own vbtbl
/// pointer, as opposed to inheriting one from a base class. Only for MS.
bool HasOwnVBPtr ;
2011-09-28 03:12:27 +08:00
/// VBPtrOffset - Virtual base table offset. Only for MS layout.
CharUnits VBPtrOffset ;
2010-11-01 05:01:46 +08:00
typedef llvm : : DenseMap < const CXXRecordDecl * , CharUnits > BaseOffsetsMapTy ;
2010-05-27 10:25:46 +08:00
2010-05-26 13:41:04 +08:00
/// Bases - base classes and their offsets in the record.
BaseOffsetsMapTy Bases ;
2010-05-27 10:25:46 +08:00
2010-05-26 13:41:04 +08:00
// VBases - virtual base classes and their offsets in the record.
2012-05-01 16:55:32 +08:00
ASTRecordLayout : : VBaseOffsetsMapTy VBases ;
2010-05-26 13:41:04 +08:00
/// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
/// primary base classes for some other direct or indirect base class.
2010-11-25 06:55:48 +08:00
CXXIndirectPrimaryBaseSet IndirectPrimaryBases ;
2010-05-27 10:25:46 +08:00
2010-05-26 13:41:04 +08:00
/// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
/// inheritance graph order. Used for determining the primary base class.
const CXXRecordDecl * FirstNearlyEmptyVBase ;
/// VisitedVirtualBases - A set of all the visited virtual bases, used to
/// avoid visiting virtual bases more than once.
llvm : : SmallPtrSet < const CXXRecordDecl * , 4 > VisitedVirtualBases ;
2010-05-27 10:25:46 +08:00
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
/// \brief Externally-provided size.
uint64_t ExternalSize ;
/// \brief Externally-provided alignment.
uint64_t ExternalAlign ;
/// \brief Externally-provided field offsets.
llvm : : DenseMap < const FieldDecl * , uint64_t > ExternalFieldOffsets ;
/// \brief Externally-provided direct, non-virtual base offsets.
llvm : : DenseMap < const CXXRecordDecl * , CharUnits > ExternalBaseOffsets ;
/// \brief Externally-provided virtual base offsets.
llvm : : DenseMap < const CXXRecordDecl * , CharUnits > ExternalVirtualBaseOffsets ;
2011-11-08 12:01:03 +08:00
RecordLayoutBuilder ( const ASTContext & Context ,
EmptySubobjectMap * EmptySubobjects )
2011-02-16 10:05:21 +08:00
: Context ( Context ) , EmptySubobjects ( EmptySubobjects ) , Size ( 0 ) ,
2011-11-08 12:01:03 +08:00
Alignment ( CharUnits : : One ( ) ) , UnpackedAlignment ( CharUnits : : One ( ) ) ,
2012-01-28 08:53:29 +08:00
ExternalLayout ( false ) , InferAlignment ( false ) ,
Packed ( false ) , IsUnion ( false ) , IsMac68kAlign ( false ) , IsMsStruct ( false ) ,
2013-06-27 04:50:34 +08:00
UnfilledBitsInLastUnit ( 0 ) , LastBitfieldTypeSize ( 0 ) ,
MaxFieldAlignment ( CharUnits : : Zero ( ) ) ,
2011-02-17 09:49:42 +08:00
DataSize ( 0 ) , NonVirtualSize ( CharUnits : : Zero ( ) ) ,
2011-05-03 01:20:56 +08:00
NonVirtualAlignment ( CharUnits : : One ( ) ) ,
2013-06-27 07:47:39 +08:00
PrimaryBase ( 0 ) , PrimaryBaseIsVirtual ( false ) ,
2012-05-01 16:55:32 +08:00
HasOwnVFPtr ( false ) ,
2013-10-12 04:19:00 +08:00
HasOwnVBPtr ( false ) ,
2011-10-22 06:49:56 +08:00
VBPtrOffset ( CharUnits : : fromQuantity ( - 1 ) ) ,
2011-09-28 03:12:27 +08:00
FirstNearlyEmptyVBase ( 0 ) { }
2010-05-27 10:25:46 +08:00
2011-11-08 12:01:03 +08:00
/// Reset this RecordLayoutBuilder to a fresh state, using the given
/// alignment as the initial alignment. This is used for the
/// correct layout of vb-table pointers in MSVC.
void resetWithTargetAlignment ( CharUnits TargetAlignment ) {
const ASTContext & Context = this - > Context ;
EmptySubobjectMap * EmptySubobjects = this - > EmptySubobjects ;
this - > ~ RecordLayoutBuilder ( ) ;
new ( this ) RecordLayoutBuilder ( Context , EmptySubobjects ) ;
Alignment = UnpackedAlignment = TargetAlignment ;
}
2010-05-26 13:41:04 +08:00
void Layout ( const RecordDecl * D ) ;
2010-05-26 23:10:00 +08:00
void Layout ( const CXXRecordDecl * D ) ;
2010-05-26 13:41:04 +08:00
void Layout ( const ObjCInterfaceDecl * D ) ;
void LayoutFields ( const RecordDecl * D ) ;
void LayoutField ( const FieldDecl * D ) ;
2010-09-22 22:32:24 +08:00
void LayoutWideBitField ( uint64_t FieldSize , uint64_t TypeSize ,
bool FieldPacked , const FieldDecl * D ) ;
2010-05-26 13:41:04 +08:00
void LayoutBitField ( const FieldDecl * D ) ;
2011-11-08 12:01:03 +08:00
2013-01-26 06:30:49 +08:00
TargetCXXABI getCXXABI ( ) const {
return Context . getTargetInfo ( ) . getCXXABI ( ) ;
}
2011-11-08 12:01:03 +08:00
bool isMicrosoftCXXABI ( ) const {
2013-01-26 06:30:49 +08:00
return getCXXABI ( ) . isMicrosoft ( ) ;
2011-11-08 12:01:03 +08:00
}
2011-09-28 03:12:27 +08:00
void MSLayoutVirtualBases ( const CXXRecordDecl * RD ) ;
2010-05-26 13:41:04 +08:00
2010-05-30 01:35:14 +08:00
/// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
llvm : : SpecificBumpPtrAllocator < BaseSubobjectInfo > BaseSubobjectInfoAllocator ;
typedef llvm : : DenseMap < const CXXRecordDecl * , BaseSubobjectInfo * >
BaseSubobjectInfoMapTy ;
/// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
/// of the class we're laying out to their base subobject info.
BaseSubobjectInfoMapTy VirtualBaseInfo ;
/// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
/// class we're laying out to their base subobject info.
BaseSubobjectInfoMapTy NonVirtualBaseInfo ;
/// ComputeBaseSubobjectInfo - Compute the base subobject information for the
/// bases of the given class.
void ComputeBaseSubobjectInfo ( const CXXRecordDecl * RD ) ;
/// ComputeBaseSubobjectInfo - Compute the base subobject information for a
/// single class and all of its base classes.
BaseSubobjectInfo * ComputeBaseSubobjectInfo ( const CXXRecordDecl * RD ,
bool IsVirtual ,
BaseSubobjectInfo * Derived ) ;
2010-05-26 13:41:04 +08:00
/// DeterminePrimaryBase - Determine the primary base of the given class.
void DeterminePrimaryBase ( const CXXRecordDecl * RD ) ;
void SelectPrimaryVBase ( const CXXRecordDecl * RD ) ;
2010-05-27 10:25:46 +08:00
2011-10-22 06:49:56 +08:00
void EnsureVTablePointerAlignment ( CharUnits UnpackedBaseAlign ) ;
2010-08-19 08:55:19 +08:00
2010-05-27 10:25:46 +08:00
/// LayoutNonVirtualBases - Determines the primary base class (if any) and
2010-05-26 13:41:04 +08:00
/// lays it out. Will then proceed to lay out all non-virtual base clasess.
void LayoutNonVirtualBases ( const CXXRecordDecl * RD ) ;
/// LayoutNonVirtualBase - Lays out a single non-virtual base.
2010-05-30 01:42:25 +08:00
void LayoutNonVirtualBase ( const BaseSubobjectInfo * Base ) ;
2010-05-26 13:41:04 +08:00
2010-11-01 06:20:42 +08:00
void AddPrimaryVirtualBaseOffsets ( const BaseSubobjectInfo * Info ,
CharUnits Offset ) ;
2010-05-26 13:41:04 +08:00
2011-11-08 12:01:03 +08:00
bool needsVFTable ( const CXXRecordDecl * RD ) const ;
2012-05-01 16:55:32 +08:00
bool hasNewVirtualFunction ( const CXXRecordDecl * RD ,
bool IgnoreDestructor = false ) const ;
2011-11-08 12:01:03 +08:00
bool isPossiblePrimaryBase ( const CXXRecordDecl * Base ) const ;
2011-10-18 08:55:28 +08:00
2012-05-01 16:55:32 +08:00
void computeVtordisps ( const CXXRecordDecl * RD ,
ClassSetTy & VtordispVBases ) ;
2010-05-26 13:41:04 +08:00
/// LayoutVirtualBases - Lays out all the virtual bases.
void LayoutVirtualBases ( const CXXRecordDecl * RD ,
const CXXRecordDecl * MostDerivedClass ) ;
/// LayoutVirtualBase - Lays out a single virtual base.
2012-05-01 16:55:32 +08:00
void LayoutVirtualBase ( const BaseSubobjectInfo * Base ,
bool IsVtordispNeed = false ) ;
2010-05-26 13:41:04 +08:00
2010-05-27 10:25:46 +08:00
/// LayoutBase - Will lay out a base and return the offset where it was
2010-11-01 06:20:42 +08:00
/// placed, in chars.
CharUnits LayoutBase ( const BaseSubobjectInfo * Base ) ;
2010-05-26 13:41:04 +08:00
2010-05-26 23:10:00 +08:00
/// InitializeLayout - Initialize record layout for the given record decl.
2010-05-27 13:45:51 +08:00
void InitializeLayout ( const Decl * D ) ;
2010-05-26 23:10:00 +08:00
2010-05-26 13:41:04 +08:00
/// FinishLayout - Finalize record layout. Adjust record size based on the
/// alignment.
2010-09-22 22:32:24 +08:00
void FinishLayout ( const NamedDecl * D ) ;
2011-02-20 02:58:07 +08:00
void UpdateAlignment ( CharUnits NewAlignment , CharUnits UnpackedNewAlignment ) ;
void UpdateAlignment ( CharUnits NewAlignment ) {
2010-09-22 22:32:24 +08:00
UpdateAlignment ( NewAlignment , NewAlignment ) ;
}
2012-01-28 08:53:29 +08:00
/// \brief Retrieve the externally-supplied field offset for the given
/// field.
///
/// \param Field The field whose offset is being queried.
/// \param ComputedOffset The offset that we've computed for this field.
uint64_t updateExternalFieldOffset ( const FieldDecl * Field ,
uint64_t ComputedOffset ) ;
2010-09-22 22:32:24 +08:00
void CheckFieldPadding ( uint64_t Offset , uint64_t UnpaddedOffset ,
uint64_t UnpackedOffset , unsigned UnpackedAlign ,
bool isPacked , const FieldDecl * D ) ;
2010-05-26 13:41:04 +08:00
2010-09-22 22:32:24 +08:00
DiagnosticBuilder Diag ( SourceLocation Loc , unsigned DiagID ) ;
2010-05-26 13:41:04 +08:00
2011-02-24 09:13:28 +08:00
CharUnits getSize ( ) const {
2011-02-24 09:33:05 +08:00
assert ( Size % Context . getCharWidth ( ) = = 0 ) ;
2011-02-24 09:13:28 +08:00
return Context . toCharUnitsFromBits ( Size ) ;
}
uint64_t getSizeInBits ( ) const { return Size ; }
void setSize ( CharUnits NewSize ) { Size = Context . toBits ( NewSize ) ; }
void setSize ( uint64_t NewSize ) { Size = NewSize ; }
2011-09-28 03:12:27 +08:00
CharUnits getAligment ( ) const { return Alignment ; }
2011-02-24 09:13:28 +08:00
CharUnits getDataSize ( ) const {
2011-02-24 09:33:05 +08:00
assert ( DataSize % Context . getCharWidth ( ) = = 0 ) ;
2011-02-24 09:13:28 +08:00
return Context . toCharUnitsFromBits ( DataSize ) ;
}
uint64_t getDataSizeInBits ( ) const { return DataSize ; }
void setDataSize ( CharUnits NewSize ) { DataSize = Context . toBits ( NewSize ) ; }
void setDataSize ( uint64_t NewSize ) { DataSize = NewSize ; }
2012-09-16 04:20:27 +08:00
RecordLayoutBuilder ( const RecordLayoutBuilder & ) LLVM_DELETED_FUNCTION ;
void operator = ( const RecordLayoutBuilder & ) LLVM_DELETED_FUNCTION ;
2010-05-26 13:41:04 +08:00
} ;
2010-05-26 17:58:31 +08:00
} // end anonymous namespace
2010-05-26 13:41:04 +08:00
2009-09-22 11:02:06 +08:00
void
2010-05-26 13:58:59 +08:00
RecordLayoutBuilder : : SelectPrimaryVBase ( const CXXRecordDecl * RD ) {
2010-03-11 11:39:12 +08:00
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > bases_begin ( ) ,
2010-04-08 10:59:49 +08:00
E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
2010-03-11 11:39:12 +08:00
assert ( ! I - > getType ( ) - > isDependentType ( ) & &
2009-10-26 01:03:50 +08:00
" Cannot layout class with dependent bases. " ) ;
2010-04-08 10:59:49 +08:00
2009-09-09 23:08:12 +08:00
const CXXRecordDecl * Base =
2010-03-11 11:39:12 +08:00
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
2010-03-11 08:15:35 +08:00
2010-03-11 11:39:12 +08:00
// Check if this is a nearly empty virtual base.
2010-11-25 09:51:53 +08:00
if ( I - > isVirtual ( ) & & Context . isNearlyEmpty ( Base ) ) {
2010-03-11 11:39:12 +08:00
// If it's not an indirect primary base, then we've found our primary
// base.
2009-09-22 11:02:06 +08:00
if ( ! IndirectPrimaryBases . count ( Base ) ) {
2010-05-26 13:20:58 +08:00
PrimaryBase = Base ;
PrimaryBaseIsVirtual = true ;
2009-08-13 05:50:08 +08:00
return ;
}
2010-04-08 10:59:49 +08:00
2010-03-11 11:39:12 +08:00
// Is this the first nearly empty virtual base?
if ( ! FirstNearlyEmptyVBase )
FirstNearlyEmptyVBase = Base ;
2009-08-13 05:50:08 +08:00
}
2010-04-08 10:59:49 +08:00
2010-03-11 08:15:35 +08:00
SelectPrimaryVBase ( Base ) ;
2010-05-26 13:20:58 +08:00
if ( PrimaryBase )
2010-02-15 12:28:35 +08:00
return ;
2009-08-13 05:50:08 +08:00
}
}
2010-03-11 08:15:35 +08:00
/// DeterminePrimaryBase - Determine the primary base of the given class.
2010-05-26 13:58:59 +08:00
void RecordLayoutBuilder : : DeterminePrimaryBase ( const CXXRecordDecl * RD ) {
2010-03-11 08:15:35 +08:00
// If the class isn't dynamic, it won't have a primary base.
if ( ! RD - > isDynamicClass ( ) )
return ;
2010-04-08 10:59:49 +08:00
2009-09-22 11:02:06 +08:00
// Compute all the primary virtual bases for all of our direct and
2009-08-14 07:26:06 +08:00
// indirect bases, and record all their primary virtual base classes.
2010-11-25 06:55:48 +08:00
RD - > getIndirectPrimaryBases ( IndirectPrimaryBases ) ;
2009-08-14 07:26:06 +08:00
2010-04-08 10:59:49 +08:00
// If the record has a dynamic base class, attempt to choose a primary base
// class. It is the first (in direct base class order) non-virtual dynamic
2009-09-22 11:02:06 +08:00
// base class, if one exists.
2009-08-06 06:37:18 +08:00
for ( CXXRecordDecl : : base_class_const_iterator i = RD - > bases_begin ( ) ,
2010-04-08 10:59:49 +08:00
e = RD - > bases_end ( ) ; i ! = e ; + + i ) {
2009-11-28 06:05:05 +08:00
// Ignore virtual bases.
if ( i - > isVirtual ( ) )
continue ;
2010-04-08 10:59:49 +08:00
2009-11-28 06:05:05 +08:00
const CXXRecordDecl * Base =
cast < CXXRecordDecl > ( i - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
2011-11-08 12:01:03 +08:00
if ( isPossiblePrimaryBase ( Base ) ) {
2009-11-28 06:05:05 +08:00
// We found it.
2010-05-26 13:20:58 +08:00
PrimaryBase = Base ;
PrimaryBaseIsVirtual = false ;
2009-11-28 06:05:05 +08:00
return ;
2009-08-06 06:37:18 +08:00
}
}
2011-10-18 08:55:28 +08:00
// The Microsoft ABI doesn't have primary virtual bases.
2011-11-08 12:01:03 +08:00
if ( isMicrosoftCXXABI ( ) ) {
2011-10-18 08:55:28 +08:00
assert ( ! PrimaryBase & & " Should not get here with a primary base! " ) ;
return ;
}
// Under the Itanium ABI, if there is no non-virtual primary base class,
// try to compute the primary virtual base. The primary virtual base is
// the first nearly empty virtual base that is not an indirect primary
// virtual base class, if one exists.
2010-03-11 08:15:35 +08:00
if ( RD - > getNumVBases ( ) ! = 0 ) {
SelectPrimaryVBase ( RD ) ;
2010-05-26 13:20:58 +08:00
if ( PrimaryBase )
2010-03-11 08:15:35 +08:00
return ;
}
2009-08-06 06:37:18 +08:00
2011-10-18 08:55:28 +08:00
// Otherwise, it is the first indirect primary base class, if one exists.
2010-03-11 08:15:35 +08:00
if ( FirstNearlyEmptyVBase ) {
2010-05-26 13:20:58 +08:00
PrimaryBase = FirstNearlyEmptyVBase ;
PrimaryBaseIsVirtual = true ;
2009-08-06 06:37:18 +08:00
return ;
2010-03-11 08:15:35 +08:00
}
2010-04-08 10:59:49 +08:00
2010-05-26 13:20:58 +08:00
assert ( ! PrimaryBase & & " Should not get here with a primary base! " ) ;
2009-08-06 06:37:18 +08:00
}
2010-05-30 01:35:14 +08:00
BaseSubobjectInfo *
RecordLayoutBuilder : : ComputeBaseSubobjectInfo ( const CXXRecordDecl * RD ,
bool IsVirtual ,
BaseSubobjectInfo * Derived ) {
BaseSubobjectInfo * Info ;
if ( IsVirtual ) {
// Check if we already have info about this virtual base.
BaseSubobjectInfo * & InfoSlot = VirtualBaseInfo [ RD ] ;
if ( InfoSlot ) {
assert ( InfoSlot - > Class = = RD & & " Wrong class for virtual base info! " ) ;
return InfoSlot ;
}
// We don't, create it.
InfoSlot = new ( BaseSubobjectInfoAllocator . Allocate ( ) ) BaseSubobjectInfo ;
Info = InfoSlot ;
} else {
Info = new ( BaseSubobjectInfoAllocator . Allocate ( ) ) BaseSubobjectInfo ;
}
Info - > Class = RD ;
Info - > IsVirtual = IsVirtual ;
Info - > Derived = 0 ;
Info - > PrimaryVirtualBaseInfo = 0 ;
const CXXRecordDecl * PrimaryVirtualBase = 0 ;
BaseSubobjectInfo * PrimaryVirtualBaseInfo = 0 ;
// Check if this base has a primary virtual base.
if ( RD - > getNumVBases ( ) ) {
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( RD ) ;
2010-11-25 07:12:57 +08:00
if ( Layout . isPrimaryBaseVirtual ( ) ) {
2010-05-30 01:35:14 +08:00
// This base does have a primary virtual base.
PrimaryVirtualBase = Layout . getPrimaryBase ( ) ;
assert ( PrimaryVirtualBase & & " Didn't have a primary virtual base! " ) ;
// Now check if we have base subobject info about this primary base.
PrimaryVirtualBaseInfo = VirtualBaseInfo . lookup ( PrimaryVirtualBase ) ;
if ( PrimaryVirtualBaseInfo ) {
if ( PrimaryVirtualBaseInfo - > Derived ) {
// We did have info about this primary base, and it turns out that it
// has already been claimed as a primary virtual base for another
// base.
PrimaryVirtualBase = 0 ;
} else {
// We can claim this base as our primary base.
Info - > PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo ;
PrimaryVirtualBaseInfo - > Derived = Info ;
}
}
}
}
// Now go through all direct bases.
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > bases_begin ( ) ,
E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
bool IsVirtual = I - > isVirtual ( ) ;
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
Info - > Bases . push_back ( ComputeBaseSubobjectInfo ( BaseDecl , IsVirtual , Info ) ) ;
}
if ( PrimaryVirtualBase & & ! PrimaryVirtualBaseInfo ) {
// Traversing the bases must have created the base info for our primary
// virtual base.
PrimaryVirtualBaseInfo = VirtualBaseInfo . lookup ( PrimaryVirtualBase ) ;
assert ( PrimaryVirtualBaseInfo & &
" Did not create a primary virtual base! " ) ;
// Claim the primary virtual base as our primary virtual base.
Info - > PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo ;
PrimaryVirtualBaseInfo - > Derived = Info ;
}
return Info ;
}
void RecordLayoutBuilder : : ComputeBaseSubobjectInfo ( const CXXRecordDecl * RD ) {
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > bases_begin ( ) ,
E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
bool IsVirtual = I - > isVirtual ( ) ;
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
// Compute the base subobject info for this base.
BaseSubobjectInfo * Info = ComputeBaseSubobjectInfo ( BaseDecl , IsVirtual , 0 ) ;
if ( IsVirtual ) {
// ComputeBaseInfo has already added this base for us.
assert ( VirtualBaseInfo . count ( BaseDecl ) & &
" Did not add virtual base! " ) ;
} else {
// Add the base info to the map of non-virtual bases.
assert ( ! NonVirtualBaseInfo . count ( BaseDecl ) & &
" Non-virtual base already exists! " ) ;
NonVirtualBaseInfo . insert ( std : : make_pair ( BaseDecl , Info ) ) ;
}
}
}
2011-10-18 08:55:28 +08:00
void
2011-10-22 06:49:56 +08:00
RecordLayoutBuilder : : EnsureVTablePointerAlignment ( CharUnits UnpackedBaseAlign ) {
2011-10-18 08:55:28 +08:00
CharUnits BaseAlign = ( Packed ) ? CharUnits : : One ( ) : UnpackedBaseAlign ;
// The maximum field alignment overrides base align.
if ( ! MaxFieldAlignment . isZero ( ) ) {
BaseAlign = std : : min ( BaseAlign , MaxFieldAlignment ) ;
UnpackedBaseAlign = std : : min ( UnpackedBaseAlign , MaxFieldAlignment ) ;
}
// Round up the current record size to pointer alignment.
2011-10-22 06:49:56 +08:00
setSize ( getSize ( ) . RoundUpToAlignment ( BaseAlign ) ) ;
setDataSize ( getSize ( ) ) ;
2011-10-18 08:55:28 +08:00
// Update the alignment.
UpdateAlignment ( BaseAlign , UnpackedBaseAlign ) ;
}
2010-03-11 06:21:28 +08:00
void
2010-05-26 13:58:59 +08:00
RecordLayoutBuilder : : LayoutNonVirtualBases ( const CXXRecordDecl * RD ) {
2010-05-30 01:35:14 +08:00
// Then, determine the primary base class.
2010-03-11 08:15:35 +08:00
DeterminePrimaryBase ( RD ) ;
2010-04-08 10:59:49 +08:00
2010-05-30 01:35:14 +08:00
// Compute base subobject info.
ComputeBaseSubobjectInfo ( RD ) ;
2010-03-11 08:15:35 +08:00
// If we have a primary base class, lay it out.
2010-05-26 13:20:58 +08:00
if ( PrimaryBase ) {
if ( PrimaryBaseIsVirtual ) {
2010-05-30 01:35:14 +08:00
// If the primary virtual base was a primary virtual base of some other
// base class we'll have to steal it.
BaseSubobjectInfo * PrimaryBaseInfo = VirtualBaseInfo . lookup ( PrimaryBase ) ;
PrimaryBaseInfo - > Derived = 0 ;
2010-03-11 08:15:35 +08:00
// We have a virtual primary base, insert it as an indirect primary base.
2010-05-26 13:20:58 +08:00
IndirectPrimaryBases . insert ( PrimaryBase ) ;
2010-03-11 13:42:17 +08:00
2010-05-27 10:25:46 +08:00
assert ( ! VisitedVirtualBases . count ( PrimaryBase ) & &
2010-05-26 13:20:58 +08:00
" vbase already visited! " ) ;
VisitedVirtualBases . insert ( PrimaryBase ) ;
2010-05-27 10:25:46 +08:00
2010-05-30 01:48:36 +08:00
LayoutVirtualBase ( PrimaryBaseInfo ) ;
2010-05-30 01:42:25 +08:00
} else {
BaseSubobjectInfo * PrimaryBaseInfo =
NonVirtualBaseInfo . lookup ( PrimaryBase ) ;
assert ( PrimaryBaseInfo & &
" Did not find base info for non-virtual primary base! " ) ;
LayoutNonVirtualBase ( PrimaryBaseInfo ) ;
}
2010-04-08 10:59:49 +08:00
2011-11-08 12:01:03 +08:00
// If this class needs a vtable/vf-table and didn't get one from a
// primary base, add it in now.
} else if ( needsVFTable ( RD ) ) {
2011-10-18 08:55:28 +08:00
assert ( DataSize = = 0 & & " Vtable pointer must be at offset zero! " ) ;
CharUnits PtrWidth =
Context . toCharUnitsFromBits ( Context . getTargetInfo ( ) . getPointerWidth ( 0 ) ) ;
2011-10-22 06:49:56 +08:00
CharUnits PtrAlign =
Context . toCharUnitsFromBits ( Context . getTargetInfo ( ) . getPointerAlign ( 0 ) ) ;
EnsureVTablePointerAlignment ( PtrAlign ) ;
2012-05-01 16:55:32 +08:00
HasOwnVFPtr = true ;
2011-10-18 08:55:28 +08:00
setSize ( getSize ( ) + PtrWidth ) ;
setDataSize ( getSize ( ) ) ;
}
2011-11-08 12:01:03 +08:00
bool HasDirectVirtualBases = false ;
bool HasNonVirtualBaseWithVBTable = false ;
2010-03-11 08:15:35 +08:00
// Now lay out the non-virtual bases.
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > bases_begin ( ) ,
2010-04-08 10:59:49 +08:00
E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
2010-03-11 08:15:35 +08:00
2011-11-08 12:01:03 +08:00
// Ignore virtual bases, but remember that we saw one.
if ( I - > isVirtual ( ) ) {
HasDirectVirtualBases = true ;
2010-03-11 08:15:35 +08:00
continue ;
2011-11-08 12:01:03 +08:00
}
2010-03-11 08:15:35 +08:00
2010-05-30 01:42:25 +08:00
const CXXRecordDecl * BaseDecl =
2011-11-08 12:01:03 +08:00
cast < CXXRecordDecl > ( I - > getType ( ) - > castAs < RecordType > ( ) - > getDecl ( ) ) ;
// Remember if this base has virtual bases itself.
2013-10-12 04:41:08 +08:00
if ( BaseDecl - > getNumVBases ( ) )
2011-11-08 12:01:03 +08:00
HasNonVirtualBaseWithVBTable = true ;
2010-03-11 08:15:35 +08:00
2011-11-08 12:01:03 +08:00
// Skip the primary base, because we've already laid it out. The
// !PrimaryBaseIsVirtual check is required because we might have a
// non-virtual base of the same type as a primary virtual base.
2010-05-30 01:42:25 +08:00
if ( BaseDecl = = PrimaryBase & & ! PrimaryBaseIsVirtual )
2010-03-11 08:15:35 +08:00
continue ;
// Lay out the base.
2010-05-30 01:42:25 +08:00
BaseSubobjectInfo * BaseInfo = NonVirtualBaseInfo . lookup ( BaseDecl ) ;
assert ( BaseInfo & & " Did not find base info for non-virtual base! " ) ;
LayoutNonVirtualBase ( BaseInfo ) ;
2010-03-11 06:21:28 +08:00
}
2011-10-18 08:55:28 +08:00
2011-11-08 12:01:03 +08:00
// In the MS ABI, add the vb-table pointer if we need one, which is
// whenever we have a virtual base and we can't re-use a vb-table
// pointer from a non-virtual base.
if ( isMicrosoftCXXABI ( ) & &
HasDirectVirtualBases & & ! HasNonVirtualBaseWithVBTable ) {
2011-10-18 08:55:28 +08:00
CharUnits PtrWidth =
Context . toCharUnitsFromBits ( Context . getTargetInfo ( ) . getPointerWidth ( 0 ) ) ;
2011-10-22 06:49:56 +08:00
CharUnits PtrAlign =
Context . toCharUnitsFromBits ( Context . getTargetInfo ( ) . getPointerAlign ( 0 ) ) ;
2011-11-08 12:01:03 +08:00
// MSVC potentially over-aligns the vb-table pointer by giving it
// the max alignment of all the non-virtual objects in the class.
// This is completely unnecessary, but we're not here to pass
// judgment.
//
// Note that we've only laid out the non-virtual bases, so on the
// first pass Alignment won't be set correctly here, but if the
// vb-table doesn't end up aligned correctly we'll come through
// and redo the layout from scratch with the right alignment.
//
// TODO: Instead of doing this, just lay out the fields as if the
// vb-table were at offset zero, then retroactively bump the field
// offsets up.
2011-10-22 06:49:56 +08:00
PtrAlign = std : : max ( PtrAlign , Alignment ) ;
2011-11-08 12:01:03 +08:00
EnsureVTablePointerAlignment ( PtrAlign ) ;
2013-10-12 04:19:00 +08:00
HasOwnVBPtr = true ;
2011-11-08 12:01:03 +08:00
VBPtrOffset = getSize ( ) ;
setSize ( getSize ( ) + PtrWidth ) ;
setDataSize ( getSize ( ) ) ;
2011-10-18 08:55:28 +08:00
}
2010-03-11 06:21:28 +08:00
}
2010-05-30 01:42:25 +08:00
void RecordLayoutBuilder : : LayoutNonVirtualBase ( const BaseSubobjectInfo * Base ) {
2010-03-11 06:26:24 +08:00
// Layout the base.
2010-11-01 06:20:42 +08:00
CharUnits Offset = LayoutBase ( Base ) ;
2010-04-08 10:59:49 +08:00
2010-03-11 06:26:24 +08:00
// Add its base class offset.
2010-05-30 01:42:25 +08:00
assert ( ! Bases . count ( Base - > Class ) & & " base offset already exists! " ) ;
2010-11-01 06:20:42 +08:00
Bases . insert ( std : : make_pair ( Base - > Class , Offset ) ) ;
2010-05-30 03:44:50 +08:00
AddPrimaryVirtualBaseOffsets ( Base , Offset ) ;
2010-03-11 06:21:28 +08:00
}
2009-11-05 12:02:15 +08:00
2010-04-16 00:12:58 +08:00
void
2010-05-30 03:44:50 +08:00
RecordLayoutBuilder : : AddPrimaryVirtualBaseOffsets ( const BaseSubobjectInfo * Info ,
2010-11-01 06:20:42 +08:00
CharUnits Offset ) {
2010-05-30 03:44:50 +08:00
// This base isn't interesting, it has no virtual bases.
if ( ! Info - > Class - > getNumVBases ( ) )
return ;
// First, check if we have a virtual primary base to add offsets for.
if ( Info - > PrimaryVirtualBaseInfo ) {
assert ( Info - > PrimaryVirtualBaseInfo - > IsVirtual & &
" Primary virtual base is not virtual! " ) ;
if ( Info - > PrimaryVirtualBaseInfo - > Derived = = Info ) {
// Add the offset.
assert ( ! VBases . count ( Info - > PrimaryVirtualBaseInfo - > Class ) & &
" primary vbase offset already exists! " ) ;
VBases . insert ( std : : make_pair ( Info - > PrimaryVirtualBaseInfo - > Class ,
2012-05-01 16:55:32 +08:00
ASTRecordLayout : : VBaseInfo ( Offset , false ) ) ) ;
2010-05-30 03:44:50 +08:00
// Traverse the primary virtual base.
AddPrimaryVirtualBaseOffsets ( Info - > PrimaryVirtualBaseInfo , Offset ) ;
}
2010-04-16 00:12:58 +08:00
}
2010-05-30 03:44:50 +08:00
// Now go through all direct non-virtual bases.
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( Info - > Class ) ;
for ( unsigned I = 0 , E = Info - > Bases . size ( ) ; I ! = E ; + + I ) {
const BaseSubobjectInfo * Base = Info - > Bases [ I ] ;
if ( Base - > IsVirtual )
2010-04-16 00:12:58 +08:00
continue ;
2010-05-27 10:25:46 +08:00
2010-11-01 08:21:58 +08:00
CharUnits BaseOffset = Offset + Layout . getBaseClassOffset ( Base - > Class ) ;
2010-05-30 03:44:50 +08:00
AddPrimaryVirtualBaseOffsets ( Base , BaseOffset ) ;
2010-04-16 00:12:58 +08:00
}
}
2011-11-08 12:01:03 +08:00
/// needsVFTable - Return true if this class needs a vtable or vf-table
/// when laid out as a base class. These are treated the same because
/// they're both always laid out at offset zero.
///
/// This function assumes that the class has no primary base.
bool RecordLayoutBuilder : : needsVFTable ( const CXXRecordDecl * RD ) const {
assert ( ! PrimaryBase ) ;
// In the Itanium ABI, every dynamic class needs a vtable: even if
// this class has no virtual functions as a base class (i.e. it's
// non-polymorphic or only has virtual functions from virtual
// bases),x it still needs a vtable to locate its virtual bases.
if ( ! isMicrosoftCXXABI ( ) )
return RD - > isDynamicClass ( ) ;
// In the MS ABI, we need a vfptr if the class has virtual functions
// other than those declared by its virtual bases. The AST doesn't
// tell us that directly, and checking manually for virtual
// functions that aren't overrides is expensive, but there are
// some important shortcuts:
// - Non-polymorphic classes have no virtual functions at all.
if ( ! RD - > isPolymorphic ( ) ) return false ;
// - Polymorphic classes with no virtual bases must either declare
// virtual functions directly or inherit them, but in the latter
// case we would have a primary base.
if ( RD - > getNumVBases ( ) = = 0 ) return true ;
return hasNewVirtualFunction ( RD ) ;
}
2012-05-01 16:55:32 +08:00
/// Does the given class inherit non-virtually from any of the classes
/// in the given set?
static bool hasNonVirtualBaseInSet ( const CXXRecordDecl * RD ,
const ClassSetTy & set ) {
for ( CXXRecordDecl : : base_class_const_iterator
I = RD - > bases_begin ( ) , E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
// Ignore virtual links.
if ( I - > isVirtual ( ) ) continue ;
// Check whether the set contains the base.
const CXXRecordDecl * base = I - > getType ( ) - > getAsCXXRecordDecl ( ) ;
if ( set . count ( base ) )
return true ;
// Otherwise, recurse and propagate.
if ( hasNonVirtualBaseInSet ( base , set ) )
return true ;
}
return false ;
}
/// Does the given method (B::foo()) already override a method (A::foo())
/// such that A requires a vtordisp in B? If so, we don't need to add a
/// new vtordisp for B in a yet-more-derived class C providing C::foo().
static bool overridesMethodRequiringVtorDisp ( const ASTContext & Context ,
const CXXMethodDecl * M ) {
CXXMethodDecl : : method_iterator
I = M - > begin_overridden_methods ( ) , E = M - > end_overridden_methods ( ) ;
if ( I = = E ) return false ;
const ASTRecordLayout : : VBaseOffsetsMapTy & offsets =
Context . getASTRecordLayout ( M - > getParent ( ) ) . getVBaseOffsetsMap ( ) ;
do {
const CXXMethodDecl * overridden = * I ;
// If the overridden method's class isn't recognized as a virtual
// base in the derived class, ignore it.
ASTRecordLayout : : VBaseOffsetsMapTy : : const_iterator
it = offsets . find ( overridden - > getParent ( ) ) ;
if ( it = = offsets . end ( ) ) continue ;
// Otherwise, check if the overridden method's class needs a vtordisp.
if ( it - > second . hasVtorDisp ( ) ) return true ;
} while ( + + I ! = E ) ;
return false ;
}
/// In the Microsoft ABI, decide which of the virtual bases require a
/// vtordisp field.
void RecordLayoutBuilder : : computeVtordisps ( const CXXRecordDecl * RD ,
ClassSetTy & vtordispVBases ) {
// Bail out if we have no virtual bases.
assert ( RD - > getNumVBases ( ) ) ;
// Build up the set of virtual bases that we haven't decided yet.
ClassSetTy undecidedVBases ;
for ( CXXRecordDecl : : base_class_const_iterator
I = RD - > vbases_begin ( ) , E = RD - > vbases_end ( ) ; I ! = E ; + + I ) {
const CXXRecordDecl * vbase = I - > getType ( ) - > getAsCXXRecordDecl ( ) ;
undecidedVBases . insert ( vbase ) ;
}
assert ( ! undecidedVBases . empty ( ) ) ;
// A virtual base requires a vtordisp field in a derived class if it
// requires a vtordisp field in a base class. Walk all the direct
// bases and collect this information.
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > bases_begin ( ) ,
E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
const CXXRecordDecl * base = I - > getType ( ) - > getAsCXXRecordDecl ( ) ;
const ASTRecordLayout & baseLayout = Context . getASTRecordLayout ( base ) ;
// Iterate over the set of virtual bases provided by this class.
for ( ASTRecordLayout : : VBaseOffsetsMapTy : : const_iterator
VI = baseLayout . getVBaseOffsetsMap ( ) . begin ( ) ,
VE = baseLayout . getVBaseOffsetsMap ( ) . end ( ) ; VI ! = VE ; + + VI ) {
// If it doesn't need a vtordisp in this base, ignore it.
if ( ! VI - > second . hasVtorDisp ( ) ) continue ;
// If we've already seen it and decided it needs a vtordisp, ignore it.
if ( ! undecidedVBases . erase ( VI - > first ) )
continue ;
// Add it.
vtordispVBases . insert ( VI - > first ) ;
// Quit as soon as we've decided everything.
if ( undecidedVBases . empty ( ) )
return ;
}
}
// Okay, we have virtual bases that we haven't yet decided about. A
// virtual base requires a vtordisp if any the non-destructor
// virtual methods declared in this class directly override a method
// provided by that virtual base. (If so, we need to emit a thunk
// for that method, to be used in the construction vftable, which
// applies an additional 'vtordisp' this-adjustment.)
// Collect the set of bases directly overridden by any method in this class.
// It's possible that some of these classes won't be virtual bases, or won't be
// provided by virtual bases, or won't be virtual bases in the overridden
// instance but are virtual bases elsewhere. Only the last matters for what
// we're doing, and we can ignore those: if we don't directly override
// a method provided by a virtual copy of a base class, but we do directly
// override a method provided by a non-virtual copy of that base class,
// then we must indirectly override the method provided by the virtual base,
// and so we should already have collected it in the loop above.
ClassSetTy overriddenBases ;
for ( CXXRecordDecl : : method_iterator
M = RD - > method_begin ( ) , E = RD - > method_end ( ) ; M ! = E ; + + M ) {
// Ignore non-virtual methods and destructors.
if ( isa < CXXDestructorDecl > ( * M ) | | ! M - > isVirtual ( ) )
continue ;
for ( CXXMethodDecl : : method_iterator I = M - > begin_overridden_methods ( ) ,
E = M - > end_overridden_methods ( ) ; I ! = E ; + + I ) {
const CXXMethodDecl * overriddenMethod = ( * I ) ;
// Ignore methods that override methods from vbases that require
// require vtordisps.
if ( overridesMethodRequiringVtorDisp ( Context , overriddenMethod ) )
continue ;
// As an optimization, check immediately whether we're overriding
// something from the undecided set.
const CXXRecordDecl * overriddenBase = overriddenMethod - > getParent ( ) ;
if ( undecidedVBases . erase ( overriddenBase ) ) {
vtordispVBases . insert ( overriddenBase ) ;
if ( undecidedVBases . empty ( ) ) return ;
// We can't 'continue;' here because one of our undecided
// vbases might non-virtually inherit from this base.
// Consider:
// struct A { virtual void foo(); };
// struct B : A {};
// struct C : virtual A, virtual B { virtual void foo(); };
// We need a vtordisp for B here.
}
// Otherwise, just collect it.
overriddenBases . insert ( overriddenBase ) ;
}
}
// Walk the undecided v-bases and check whether they (non-virtually)
// provide any of the overridden bases. We don't need to consider
// virtual links because the vtordisp inheres to the layout
// subobject containing the base.
for ( ClassSetTy : : const_iterator
I = undecidedVBases . begin ( ) , E = undecidedVBases . end ( ) ; I ! = E ; + + I ) {
if ( hasNonVirtualBaseInSet ( * I , overriddenBases ) )
vtordispVBases . insert ( * I ) ;
}
}
2011-11-08 12:01:03 +08:00
/// hasNewVirtualFunction - Does the given polymorphic class declare a
/// virtual function that does not override a method from any of its
/// base classes?
2011-09-28 03:12:27 +08:00
bool
2012-05-01 16:55:32 +08:00
RecordLayoutBuilder : : hasNewVirtualFunction ( const CXXRecordDecl * RD ,
bool IgnoreDestructor ) const {
2011-11-08 12:01:03 +08:00
if ( ! RD - > getNumBases ( ) )
return true ;
2011-09-28 03:12:27 +08:00
for ( CXXRecordDecl : : method_iterator method = RD - > method_begin ( ) ;
method ! = RD - > method_end ( ) ;
+ + method ) {
2012-05-01 16:55:32 +08:00
if ( method - > isVirtual ( ) & & ! method - > size_overridden_methods ( ) & &
! ( IgnoreDestructor & & method - > getKind ( ) = = Decl : : CXXDestructor ) ) {
2011-09-28 03:12:27 +08:00
return true ;
}
}
return false ;
}
2011-11-08 12:01:03 +08:00
/// isPossiblePrimaryBase - Is the given base class an acceptable
/// primary base class?
2011-10-18 08:55:28 +08:00
bool
2012-05-01 16:55:32 +08:00
RecordLayoutBuilder : : isPossiblePrimaryBase ( const CXXRecordDecl * base ) const {
2011-11-08 12:01:03 +08:00
// In the Itanium ABI, a class can be a primary base class if it has
// a vtable for any reason.
if ( ! isMicrosoftCXXABI ( ) )
2012-05-01 16:55:32 +08:00
return base - > isDynamicClass ( ) ;
2011-11-08 12:01:03 +08:00
// In the MS ABI, a class can only be a primary base class if it
// provides a vf-table at a static offset. That means it has to be
// non-virtual base. The existence of a separate vb-table means
// that it's possible to get virtual functions only from a virtual
// base, which we have to guard against.
// First off, it has to have virtual functions.
2012-05-01 16:55:32 +08:00
if ( ! base - > isPolymorphic ( ) ) return false ;
// If it has no virtual bases, then the vfptr must be at a static offset.
if ( ! base - > getNumVBases ( ) ) return true ;
// Otherwise, the necessary information is cached in the layout.
const ASTRecordLayout & layout = Context . getASTRecordLayout ( base ) ;
2011-11-08 12:01:03 +08:00
2012-05-01 16:55:32 +08:00
// If the base has its own vfptr, it can be a primary base.
if ( layout . hasOwnVFPtr ( ) ) return true ;
2011-11-08 12:01:03 +08:00
2012-05-01 16:55:32 +08:00
// If the base has a primary base class, then it can be a primary base.
if ( layout . getPrimaryBase ( ) ) return true ;
// Otherwise it can't.
return false ;
2011-09-28 03:12:27 +08:00
}
2010-04-08 10:59:49 +08:00
void
2010-05-26 13:58:59 +08:00
RecordLayoutBuilder : : LayoutVirtualBases ( const CXXRecordDecl * RD ,
2010-04-16 00:12:58 +08:00
const CXXRecordDecl * MostDerivedClass ) {
2010-03-11 12:33:54 +08:00
const CXXRecordDecl * PrimaryBase ;
2010-04-11 02:42:27 +08:00
bool PrimaryBaseIsVirtual ;
2010-03-11 13:42:17 +08:00
2010-04-11 02:42:27 +08:00
if ( MostDerivedClass = = RD ) {
2010-05-26 13:20:58 +08:00
PrimaryBase = this - > PrimaryBase ;
PrimaryBaseIsVirtual = this - > PrimaryBaseIsVirtual ;
2010-04-11 02:42:27 +08:00
} else {
2010-04-16 23:07:51 +08:00
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( RD ) ;
2010-03-11 12:33:54 +08:00
PrimaryBase = Layout . getPrimaryBase ( ) ;
2010-11-25 07:12:57 +08:00
PrimaryBaseIsVirtual = Layout . isPrimaryBaseVirtual ( ) ;
2010-04-11 02:42:27 +08:00
}
2010-03-11 12:24:02 +08:00
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > bases_begin ( ) ,
E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
assert ( ! I - > getType ( ) - > isDependentType ( ) & &
2009-10-26 01:03:50 +08:00
" Cannot layout class with dependent bases. " ) ;
2010-04-08 10:59:49 +08:00
2010-05-30 01:48:36 +08:00
const CXXRecordDecl * BaseDecl =
2011-11-08 12:01:03 +08:00
cast < CXXRecordDecl > ( I - > getType ( ) - > castAs < RecordType > ( ) - > getDecl ( ) ) ;
2010-03-11 12:24:02 +08:00
if ( I - > isVirtual ( ) ) {
2010-05-30 01:48:36 +08:00
if ( PrimaryBase ! = BaseDecl | | ! PrimaryBaseIsVirtual ) {
bool IndirectPrimaryBase = IndirectPrimaryBases . count ( BaseDecl ) ;
2010-04-11 02:42:27 +08:00
// Only lay out the virtual base if it's not an indirect primary base.
if ( ! IndirectPrimaryBase ) {
// Only visit virtual bases once.
2010-05-30 01:48:36 +08:00
if ( ! VisitedVirtualBases . insert ( BaseDecl ) )
2010-04-11 02:42:27 +08:00
continue ;
2010-05-27 10:25:46 +08:00
2010-05-30 01:48:36 +08:00
const BaseSubobjectInfo * BaseInfo = VirtualBaseInfo . lookup ( BaseDecl ) ;
assert ( BaseInfo & & " Did not find virtual base info! " ) ;
LayoutVirtualBase ( BaseInfo ) ;
2010-03-11 12:10:39 +08:00
}
2009-11-05 12:02:15 +08:00
}
2009-08-17 03:04:13 +08:00
}
2010-04-08 10:59:49 +08:00
2010-05-30 01:48:36 +08:00
if ( ! BaseDecl - > getNumVBases ( ) ) {
2010-03-11 12:24:02 +08:00
// This base isn't interesting since it doesn't have any virtual bases.
continue ;
}
2010-05-30 01:48:36 +08:00
LayoutVirtualBases ( BaseDecl , MostDerivedClass ) ;
2009-08-06 21:41:24 +08:00
}
}
2011-11-08 12:01:03 +08:00
void RecordLayoutBuilder : : MSLayoutVirtualBases ( const CXXRecordDecl * RD ) {
if ( ! RD - > getNumVBases ( ) )
return ;
2012-05-01 16:55:32 +08:00
ClassSetTy VtordispVBases ;
computeVtordisps ( RD , VtordispVBases ) ;
2011-11-08 12:01:03 +08:00
// This is substantially simplified because there are no virtual
// primary bases.
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > vbases_begin ( ) ,
E = RD - > vbases_end ( ) ; I ! = E ; + + I ) {
const CXXRecordDecl * BaseDecl = I - > getType ( ) - > getAsCXXRecordDecl ( ) ;
const BaseSubobjectInfo * BaseInfo = VirtualBaseInfo . lookup ( BaseDecl ) ;
assert ( BaseInfo & & " Did not find virtual base info! " ) ;
2012-05-01 16:55:32 +08:00
// If this base requires a vtordisp, add enough space for an int field.
// This is apparently always 32-bits, even on x64.
bool vtordispNeeded = false ;
if ( VtordispVBases . count ( BaseDecl ) ) {
CharUnits IntSize =
CharUnits : : fromQuantity ( Context . getTargetInfo ( ) . getIntWidth ( ) / 8 ) ;
setSize ( getSize ( ) + IntSize ) ;
setDataSize ( getSize ( ) ) ;
vtordispNeeded = true ;
}
LayoutVirtualBase ( BaseInfo , vtordispNeeded ) ;
2011-11-08 12:01:03 +08:00
}
}
2012-05-01 16:55:32 +08:00
void RecordLayoutBuilder : : LayoutVirtualBase ( const BaseSubobjectInfo * Base ,
bool IsVtordispNeed ) {
2010-05-30 03:44:50 +08:00
assert ( ! Base - > Derived & & " Trying to lay out a primary virtual base! " ) ;
2010-03-11 06:26:24 +08:00
// Layout the base.
2010-11-01 06:20:42 +08:00
CharUnits Offset = LayoutBase ( Base ) ;
2010-03-11 06:26:24 +08:00
// Add its base class offset.
2010-05-30 01:48:36 +08:00
assert ( ! VBases . count ( Base - > Class ) & & " vbase offset already exists! " ) ;
2012-05-01 16:55:32 +08:00
VBases . insert ( std : : make_pair ( Base - > Class ,
ASTRecordLayout : : VBaseInfo ( Offset , IsVtordispNeed ) ) ) ;
if ( ! isMicrosoftCXXABI ( ) )
AddPrimaryVirtualBaseOffsets ( Base , Offset ) ;
2010-03-11 06:21:28 +08:00
}
2010-11-01 06:20:42 +08:00
CharUnits RecordLayoutBuilder : : LayoutBase ( const BaseSubobjectInfo * Base ) {
2010-05-30 04:47:33 +08:00
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( Base - > Class ) ;
2010-03-11 06:21:28 +08:00
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
CharUnits Offset ;
// Query the external layout to see if it provides an offset.
bool HasExternalLayout = false ;
if ( ExternalLayout ) {
llvm : : DenseMap < const CXXRecordDecl * , CharUnits > : : iterator Known ;
if ( Base - > IsVirtual ) {
Known = ExternalVirtualBaseOffsets . find ( Base - > Class ) ;
if ( Known ! = ExternalVirtualBaseOffsets . end ( ) ) {
Offset = Known - > second ;
HasExternalLayout = true ;
}
} else {
Known = ExternalBaseOffsets . find ( Base - > Class ) ;
if ( Known ! = ExternalBaseOffsets . end ( ) ) {
Offset = Known - > second ;
HasExternalLayout = true ;
}
}
}
2013-07-16 08:21:28 +08:00
CharUnits UnpackedBaseAlign = Layout . getNonVirtualAlign ( ) ;
CharUnits BaseAlign = ( Packed ) ? CharUnits : : One ( ) : UnpackedBaseAlign ;
2010-03-11 06:21:28 +08:00
// If we have an empty base class, try to place it at offset 0.
2010-05-30 04:47:33 +08:00
if ( Base - > Class - > isEmpty ( ) & &
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
( ! HasExternalLayout | | Offset = = CharUnits : : Zero ( ) ) & &
2010-11-01 06:13:23 +08:00
EmptySubobjects - > CanPlaceBaseAtOffset ( Base , CharUnits : : Zero ( ) ) ) {
2011-02-28 10:01:38 +08:00
setSize ( std : : max ( getSize ( ) , Layout . getSize ( ) ) ) ;
2013-07-16 08:21:28 +08:00
UpdateAlignment ( BaseAlign , UnpackedBaseAlign ) ;
2010-03-11 06:21:28 +08:00
2010-11-01 06:20:42 +08:00
return CharUnits : : Zero ( ) ;
2010-03-11 06:21:28 +08:00
}
2010-04-08 10:59:49 +08:00
2010-12-09 08:35:20 +08:00
// The maximum field alignment overrides base align.
2011-02-17 09:49:42 +08:00
if ( ! MaxFieldAlignment . isZero ( ) ) {
2011-02-20 02:58:07 +08:00
BaseAlign = std : : min ( BaseAlign , MaxFieldAlignment ) ;
UnpackedBaseAlign = std : : min ( UnpackedBaseAlign , MaxFieldAlignment ) ;
2010-12-09 08:35:20 +08:00
}
2010-04-08 10:59:49 +08:00
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
if ( ! HasExternalLayout ) {
// Round up the current record size to the base's alignment boundary.
Offset = getDataSize ( ) . RoundUpToAlignment ( BaseAlign ) ;
2010-03-11 06:21:28 +08:00
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
// Try to place the base.
while ( ! EmptySubobjects - > CanPlaceBaseAtOffset ( Base , Offset ) )
Offset + = BaseAlign ;
} else {
bool Allowed = EmptySubobjects - > CanPlaceBaseAtOffset ( Base , Offset ) ;
( void ) Allowed ;
assert ( Allowed & & " Base subobject externally placed at overlapping offset " ) ;
2012-10-27 06:31:14 +08:00
if ( InferAlignment & & Offset < getDataSize ( ) . RoundUpToAlignment ( BaseAlign ) ) {
// The externally-supplied base offset is before the base offset we
// computed. Assume that the structure is packed.
Alignment = CharUnits : : One ( ) ;
InferAlignment = false ;
}
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
}
2010-05-30 04:47:33 +08:00
if ( ! Base - > Class - > isEmpty ( ) ) {
2010-03-11 06:21:28 +08:00
// Update the data size.
2011-02-28 10:01:38 +08:00
setDataSize ( Offset + Layout . getNonVirtualSize ( ) ) ;
2010-03-11 06:21:28 +08:00
2011-02-28 10:01:38 +08:00
setSize ( std : : max ( getSize ( ) , getDataSize ( ) ) ) ;
2010-03-11 06:21:28 +08:00
} else
2011-02-28 10:01:38 +08:00
setSize ( std : : max ( getSize ( ) , Offset + Layout . getSize ( ) ) ) ;
2010-03-11 06:21:28 +08:00
// Remember max struct/class alignment.
2010-12-09 08:35:20 +08:00
UpdateAlignment ( BaseAlign , UnpackedBaseAlign ) ;
2010-03-11 06:21:28 +08:00
2011-02-28 10:01:38 +08:00
return Offset ;
2010-03-11 06:21:28 +08:00
}
2010-05-27 13:45:51 +08:00
void RecordLayoutBuilder : : InitializeLayout ( const Decl * D ) {
2012-10-13 07:29:20 +08:00
if ( const RecordDecl * RD = dyn_cast < RecordDecl > ( D ) ) {
2010-05-27 13:45:51 +08:00
IsUnion = RD - > isUnion ( ) ;
2012-10-13 07:29:20 +08:00
IsMsStruct = RD - > isMsStruct ( Context ) ;
}
2010-05-27 10:25:46 +08:00
2012-10-13 07:29:20 +08:00
Packed = D - > hasAttr < PackedAttr > ( ) ;
2010-05-27 10:25:46 +08:00
2011-10-06 05:04:55 +08:00
// Honor the default struct packing maximum alignment flag.
2012-03-11 15:00:24 +08:00
if ( unsigned DefaultMaxFieldAlignment = Context . getLangOpts ( ) . PackStruct ) {
2011-10-06 05:04:55 +08:00
MaxFieldAlignment = CharUnits : : fromQuantity ( DefaultMaxFieldAlignment ) ;
}
2010-05-27 13:45:51 +08:00
// mac68k alignment supersedes maximum field alignment and attribute aligned,
// and forces all structures to have 2-byte alignment. The IBM docs on it
// allude to additional (more complicated) semantics, especially with regard
// to bit-fields, but gcc appears not to follow that.
if ( D - > hasAttr < AlignMac68kAttr > ( ) ) {
IsMac68kAlign = true ;
2011-02-17 09:49:42 +08:00
MaxFieldAlignment = CharUnits : : fromQuantity ( 2 ) ;
2011-02-16 10:05:21 +08:00
Alignment = CharUnits : : fromQuantity ( 2 ) ;
2010-05-27 13:45:51 +08:00
} else {
if ( const MaxFieldAlignmentAttr * MFAA = D - > getAttr < MaxFieldAlignmentAttr > ( ) )
2011-02-17 09:49:42 +08:00
MaxFieldAlignment = Context . toCharUnitsFromBits ( MFAA - > getAlignment ( ) ) ;
2010-05-27 10:25:46 +08:00
2010-08-19 07:23:40 +08:00
if ( unsigned MaxAlign = D - > getMaxAlignment ( ) )
2011-02-20 02:58:07 +08:00
UpdateAlignment ( Context . toCharUnitsFromBits ( MaxAlign ) ) ;
2010-05-27 13:45:51 +08:00
}
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
// If there is an external AST source, ask it for the various offsets.
if ( const RecordDecl * RD = dyn_cast < RecordDecl > ( D ) )
if ( ExternalASTSource * External = Context . getExternalSource ( ) ) {
ExternalLayout = External - > layoutRecordType ( RD ,
ExternalSize ,
ExternalAlign ,
ExternalFieldOffsets ,
ExternalBaseOffsets ,
ExternalVirtualBaseOffsets ) ;
// Update based on external alignment.
if ( ExternalLayout ) {
2012-01-28 08:53:29 +08:00
if ( ExternalAlign > 0 ) {
Alignment = Context . toCharUnitsFromBits ( ExternalAlign ) ;
} else {
// The external source didn't have alignment information; infer it.
InferAlignment = true ;
}
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
}
}
2010-05-26 23:10:00 +08:00
}
2009-07-19 08:18:47 +08:00
2010-05-26 23:10:00 +08:00
void RecordLayoutBuilder : : Layout ( const RecordDecl * D ) {
InitializeLayout ( D ) ;
2009-07-19 05:48:39 +08:00
LayoutFields ( D ) ;
2009-09-09 23:08:12 +08:00
2010-05-26 23:10:00 +08:00
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
2010-09-22 22:32:24 +08:00
FinishLayout ( D ) ;
2010-05-26 23:10:00 +08:00
}
void RecordLayoutBuilder : : Layout ( const CXXRecordDecl * RD ) {
InitializeLayout ( RD ) ;
// Lay out the vtable and the non-virtual bases.
LayoutNonVirtualBases ( RD ) ;
LayoutFields ( RD ) ;
2011-03-10 09:53:59 +08:00
NonVirtualSize = Context . toCharUnitsFromBits (
llvm : : RoundUpToAlignment ( getSizeInBits ( ) ,
2011-09-02 08:18:52 +08:00
Context . getTargetInfo ( ) . getCharAlign ( ) ) ) ;
2011-02-16 10:05:21 +08:00
NonVirtualAlignment = Alignment ;
2009-07-30 08:22:38 +08:00
2012-05-01 16:55:32 +08:00
if ( isMicrosoftCXXABI ( ) ) {
if ( NonVirtualSize ! = NonVirtualSize . RoundUpToAlignment ( Alignment ) ) {
2011-11-08 12:01:03 +08:00
CharUnits AlignMember =
NonVirtualSize . RoundUpToAlignment ( Alignment ) - NonVirtualSize ;
2010-04-16 00:12:58 +08:00
2011-11-08 12:01:03 +08:00
setSize ( getSize ( ) + AlignMember ) ;
setDataSize ( getSize ( ) ) ;
2009-08-06 21:41:24 +08:00
2011-11-08 12:01:03 +08:00
NonVirtualSize = Context . toCharUnitsFromBits (
llvm : : RoundUpToAlignment ( getSizeInBits ( ) ,
Context . getTargetInfo ( ) . getCharAlign ( ) ) ) ;
2012-05-01 16:55:32 +08:00
}
2011-11-08 12:01:03 +08:00
MSLayoutVirtualBases ( RD ) ;
} else {
// Lay out the virtual bases and add the primary virtual base offsets.
LayoutVirtualBases ( RD , RD ) ;
}
// Finally, round the size of the total struct up to the alignment
2011-12-01 08:37:01 +08:00
// of the struct itself.
FinishLayout ( RD ) ;
2010-05-26 23:10:00 +08:00
2010-04-11 05:24:48 +08:00
# ifndef NDEBUG
2010-05-26 23:10:00 +08:00
// Check that we have base offsets for all bases.
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > bases_begin ( ) ,
E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
if ( I - > isVirtual ( ) )
continue ;
2010-05-27 10:25:46 +08:00
2010-05-26 23:10:00 +08:00
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
assert ( Bases . count ( BaseDecl ) & & " Did not find base offset! " ) ;
}
2010-05-27 10:25:46 +08:00
2010-05-26 23:10:00 +08:00
// And all virtual bases.
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > vbases_begin ( ) ,
E = RD - > vbases_end ( ) ; I ! = E ; + + I ) {
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
2010-05-27 10:25:46 +08:00
2010-05-26 23:10:00 +08:00
assert ( VBases . count ( BaseDecl ) & & " Did not find base offset! " ) ;
2010-04-11 05:24:48 +08:00
}
# endif
2009-07-19 04:20:21 +08:00
}
2010-05-26 13:58:59 +08:00
void RecordLayoutBuilder : : Layout ( const ObjCInterfaceDecl * D ) {
2009-07-19 04:50:59 +08:00
if ( ObjCInterfaceDecl * SD = D - > getSuperClass ( ) ) {
2010-04-16 23:07:51 +08:00
const ASTRecordLayout & SL = Context . getASTObjCInterfaceLayout ( SD ) ;
2009-07-19 04:50:59 +08:00
2011-02-20 02:58:07 +08:00
UpdateAlignment ( SL . getAlignment ( ) ) ;
2009-09-09 23:08:12 +08:00
2009-07-19 04:50:59 +08:00
// We start laying out ivars not at the end of the superclass
// structure, but at the next byte following the last field.
2011-02-24 09:13:28 +08:00
setSize ( SL . getDataSize ( ) ) ;
2011-02-28 10:01:38 +08:00
setDataSize ( getSize ( ) ) ;
2009-07-19 04:50:59 +08:00
}
2009-09-09 23:08:12 +08:00
2010-05-27 13:45:51 +08:00
InitializeLayout ( D ) ;
2009-07-19 04:50:59 +08:00
// Layout each ivar sequentially.
2011-07-22 10:08:32 +08:00
for ( const ObjCIvarDecl * IVD = D - > all_declared_ivar_begin ( ) ; IVD ;
IVD = IVD - > getNextIvar ( ) )
2011-06-29 02:05:25 +08:00
LayoutField ( IVD ) ;
2009-09-09 23:08:12 +08:00
2009-07-19 04:50:59 +08:00
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
2010-09-22 22:32:24 +08:00
FinishLayout ( D ) ;
2009-07-19 04:50:59 +08:00
}
2010-05-26 13:58:59 +08:00
void RecordLayoutBuilder : : LayoutFields ( const RecordDecl * D ) {
2009-07-19 05:48:39 +08:00
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
2009-09-09 23:08:12 +08:00
for ( RecordDecl : : field_iterator Field = D - > field_begin ( ) ,
2013-06-27 07:47:39 +08:00
FieldEnd = D - > field_end ( ) ; Field ! = FieldEnd ; + + Field )
2012-06-07 04:45:41 +08:00
LayoutField ( * Field ) ;
2009-07-19 05:48:39 +08:00
}
2010-05-27 10:25:46 +08:00
void RecordLayoutBuilder : : LayoutWideBitField ( uint64_t FieldSize ,
2010-09-22 22:32:24 +08:00
uint64_t TypeSize ,
bool FieldPacked ,
const FieldDecl * D ) {
2012-03-11 15:00:24 +08:00
assert ( Context . getLangOpts ( ) . CPlusPlus & &
2010-04-16 23:57:11 +08:00
" Can only have wide bit-fields in C++! " ) ;
2010-05-27 10:25:46 +08:00
2010-04-16 23:57:11 +08:00
// Itanium C++ ABI 2.4:
2010-05-27 10:25:46 +08:00
// If sizeof(T)*8 < n, let T' be the largest integral POD type with
2010-04-16 23:57:11 +08:00
// sizeof(T')*8 <= n.
2010-05-27 10:25:46 +08:00
2010-04-16 23:57:11 +08:00
QualType IntegralPODTypes [ ] = {
2010-05-27 10:25:46 +08:00
Context . UnsignedCharTy , Context . UnsignedShortTy , Context . UnsignedIntTy ,
2010-04-16 23:57:11 +08:00
Context . UnsignedLongTy , Context . UnsignedLongLongTy
} ;
QualType Type ;
for ( unsigned I = 0 , E = llvm : : array_lengthof ( IntegralPODTypes ) ;
I ! = E ; + + I ) {
uint64_t Size = Context . getTypeSize ( IntegralPODTypes [ I ] ) ;
if ( Size > FieldSize )
break ;
Type = IntegralPODTypes [ I ] ;
}
assert ( ! Type . isNull ( ) & & " Did not find a type! " ) ;
2010-05-27 10:25:46 +08:00
2011-03-01 09:36:00 +08:00
CharUnits TypeAlign = Context . getTypeAlignInChars ( Type ) ;
2010-04-16 23:57:11 +08:00
// We're not going to use any of the unfilled bits in the last byte.
2013-06-27 04:50:34 +08:00
UnfilledBitsInLastUnit = 0 ;
LastBitfieldTypeSize = 0 ;
2010-04-16 23:57:11 +08:00
2010-04-18 04:21:41 +08:00
uint64_t FieldOffset ;
2013-06-27 04:50:34 +08:00
uint64_t UnpaddedFieldOffset = getDataSizeInBits ( ) - UnfilledBitsInLastUnit ;
2010-05-27 10:25:46 +08:00
2010-04-16 23:57:11 +08:00
if ( IsUnion ) {
2011-02-24 09:13:28 +08:00
setDataSize ( std : : max ( getDataSizeInBits ( ) , FieldSize ) ) ;
2010-04-18 04:21:41 +08:00
FieldOffset = 0 ;
2010-04-16 23:57:11 +08:00
} else {
2011-08-06 06:38:04 +08:00
// The bitfield is allocated starting at the next offset aligned
// appropriately for T', with length n bits.
2011-03-01 09:36:00 +08:00
FieldOffset = llvm : : RoundUpToAlignment ( getDataSizeInBits ( ) ,
Context . toBits ( TypeAlign ) ) ;
2010-05-27 10:25:46 +08:00
2010-04-16 23:57:11 +08:00
uint64_t NewSizeInBits = FieldOffset + FieldSize ;
2010-05-27 10:25:46 +08:00
2011-03-10 10:00:35 +08:00
setDataSize ( llvm : : RoundUpToAlignment ( NewSizeInBits ,
2011-09-02 08:18:52 +08:00
Context . getTargetInfo ( ) . getCharAlign ( ) ) ) ;
2013-06-27 04:50:34 +08:00
UnfilledBitsInLastUnit = getDataSizeInBits ( ) - NewSizeInBits ;
2010-04-16 23:57:11 +08:00
}
// Place this field at the current location.
FieldOffsets . push_back ( FieldOffset ) ;
2010-09-22 22:32:24 +08:00
CheckFieldPadding ( FieldOffset , UnpaddedFieldOffset , FieldOffset ,
2011-03-01 09:36:00 +08:00
Context . toBits ( TypeAlign ) , FieldPacked , D ) ;
2010-09-22 22:32:24 +08:00
2010-04-16 23:57:11 +08:00
// Update the size.
2011-02-24 09:13:28 +08:00
setSize ( std : : max ( getSizeInBits ( ) , getDataSizeInBits ( ) ) ) ;
2010-05-27 10:25:46 +08:00
2010-04-16 23:57:11 +08:00
// Remember max struct/class alignment.
2011-03-01 09:36:00 +08:00
UpdateAlignment ( TypeAlign ) ;
2010-04-16 23:57:11 +08:00
}
2010-05-26 13:58:59 +08:00
void RecordLayoutBuilder : : LayoutBitField ( const FieldDecl * D ) {
2009-11-23 01:37:31 +08:00
bool FieldPacked = Packed | | D - > hasAttr < PackedAttr > ( ) ;
2011-10-11 02:28:20 +08:00
uint64_t FieldSize = D - > getBitWidthValue ( Context ) ;
2010-04-16 23:07:51 +08:00
std : : pair < uint64_t , unsigned > FieldInfo = Context . getTypeInfo ( D - > getType ( ) ) ;
2009-11-23 01:37:31 +08:00
uint64_t TypeSize = FieldInfo . first ;
unsigned FieldAlign = FieldInfo . second ;
2013-06-27 04:50:34 +08:00
if ( IsMsStruct ) {
// The field alignment for integer types in ms_struct structs is
// always the size.
2011-05-10 06:03:17 +08:00
FieldAlign = TypeSize ;
2013-06-27 04:50:34 +08:00
// Ignore zero-length bitfields after non-bitfields in ms_struct structs.
if ( ! FieldSize & & ! LastBitfieldTypeSize )
FieldAlign = 1 ;
// If a bitfield is followed by a bitfield of a different size, don't
// pack the bits together in ms_struct structs.
if ( LastBitfieldTypeSize ! = TypeSize ) {
UnfilledBitsInLastUnit = 0 ;
LastBitfieldTypeSize = 0 ;
}
}
uint64_t UnpaddedFieldOffset = getDataSizeInBits ( ) - UnfilledBitsInLastUnit ;
uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset ;
2011-08-04 09:21:14 +08:00
2013-06-27 07:47:39 +08:00
bool ZeroLengthBitfield = false ;
if ( ! Context . getTargetInfo ( ) . useBitFieldTypeAlignment ( ) & &
Context . getTargetInfo ( ) . useZeroLengthBitfieldAlignment ( ) & &
FieldSize = = 0 ) {
2013-06-27 04:50:34 +08:00
// The alignment of a zero-length bitfield affects the alignment
// of the next member. The alignment is the max of the zero
// length bitfield's alignment and a target specific fixed value.
2013-06-27 07:47:39 +08:00
ZeroLengthBitfield = true ;
2013-06-27 04:50:34 +08:00
unsigned ZeroLengthBitfieldBoundary =
Context . getTargetInfo ( ) . getZeroLengthBitfieldBoundary ( ) ;
if ( ZeroLengthBitfieldBoundary > FieldAlign )
FieldAlign = ZeroLengthBitfieldBoundary ;
2011-05-04 04:21:04 +08:00
}
2010-04-08 10:59:49 +08:00
2010-04-16 23:57:11 +08:00
if ( FieldSize > TypeSize ) {
2010-09-22 22:32:24 +08:00
LayoutWideBitField ( FieldSize , TypeSize , FieldPacked , D ) ;
2010-04-16 23:57:11 +08:00
return ;
}
2010-09-22 22:32:24 +08:00
// The align if the field is not packed. This is to check if the attribute
// was unnecessary (-Wpacked).
unsigned UnpackedFieldAlign = FieldAlign ;
uint64_t UnpackedFieldOffset = FieldOffset ;
2011-09-02 08:18:52 +08:00
if ( ! Context . getTargetInfo ( ) . useBitFieldTypeAlignment ( ) & & ! ZeroLengthBitfield )
2010-09-22 22:32:24 +08:00
UnpackedFieldAlign = 1 ;
2011-08-06 06:38:04 +08:00
if ( FieldPacked | |
2011-09-02 08:18:52 +08:00
( ! Context . getTargetInfo ( ) . useBitFieldTypeAlignment ( ) & & ! ZeroLengthBitfield ) )
2009-11-23 01:37:31 +08:00
FieldAlign = 1 ;
2010-08-19 07:23:40 +08:00
FieldAlign = std : : max ( FieldAlign , D - > getMaxAlignment ( ) ) ;
2010-09-22 22:32:24 +08:00
UnpackedFieldAlign = std : : max ( UnpackedFieldAlign , D - > getMaxAlignment ( ) ) ;
2009-09-09 23:08:12 +08:00
2009-11-23 01:37:31 +08:00
// The maximum field alignment overrides the aligned attribute.
2011-12-02 10:38:48 +08:00
if ( ! MaxFieldAlignment . isZero ( ) & & FieldSize ! = 0 ) {
2011-02-17 09:49:42 +08:00
unsigned MaxFieldAlignmentInBits = Context . toBits ( MaxFieldAlignment ) ;
FieldAlign = std : : min ( FieldAlign , MaxFieldAlignmentInBits ) ;
UnpackedFieldAlign = std : : min ( UnpackedFieldAlign , MaxFieldAlignmentInBits ) ;
2010-09-22 22:32:24 +08:00
}
2010-04-08 10:59:49 +08:00
2013-06-27 04:50:34 +08:00
// ms_struct bitfields always have to start at a round alignment.
if ( IsMsStruct & & ! LastBitfieldTypeSize ) {
FieldOffset = llvm : : RoundUpToAlignment ( FieldOffset , FieldAlign ) ;
UnpackedFieldOffset = llvm : : RoundUpToAlignment ( UnpackedFieldOffset ,
UnpackedFieldAlign ) ;
}
2012-01-28 08:53:29 +08:00
// Check if we need to add padding to give the field the correct alignment.
if ( FieldSize = = 0 | |
( MaxFieldAlignment . isZero ( ) & &
( FieldOffset & ( FieldAlign - 1 ) ) + FieldSize > TypeSize ) )
FieldOffset = llvm : : RoundUpToAlignment ( FieldOffset , FieldAlign ) ;
2010-04-08 10:59:49 +08:00
2012-01-28 08:53:29 +08:00
if ( FieldSize = = 0 | |
( MaxFieldAlignment . isZero ( ) & &
( UnpackedFieldOffset & ( UnpackedFieldAlign - 1 ) ) + FieldSize > TypeSize ) )
UnpackedFieldOffset = llvm : : RoundUpToAlignment ( UnpackedFieldOffset ,
UnpackedFieldAlign ) ;
2010-09-22 22:32:24 +08:00
2011-08-06 06:38:04 +08:00
// Padding members don't affect overall alignment, unless zero length bitfield
// alignment is enabled.
2013-06-27 04:50:34 +08:00
if ( ! D - > getIdentifier ( ) & &
! Context . getTargetInfo ( ) . useZeroLengthBitfieldAlignment ( ) & &
! IsMsStruct )
2010-09-22 22:32:24 +08:00
FieldAlign = UnpackedFieldAlign = 1 ;
2010-04-08 10:59:49 +08:00
2012-01-28 08:53:29 +08:00
if ( ExternalLayout )
FieldOffset = updateExternalFieldOffset ( D , FieldOffset ) ;
2009-11-23 01:37:31 +08:00
// Place this field at the current location.
FieldOffsets . push_back ( FieldOffset ) ;
2010-04-08 10:59:49 +08:00
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
if ( ! ExternalLayout )
CheckFieldPadding ( FieldOffset , UnpaddedFieldOffset , UnpackedFieldOffset ,
UnpackedFieldAlign , FieldPacked , D ) ;
2010-09-22 22:32:24 +08:00
2009-11-23 03:13:51 +08:00
// Update DataSize to include the last byte containing (part of) the bitfield.
if ( IsUnion ) {
// FIXME: I think FieldSize should be TypeSize here.
2011-02-24 09:13:28 +08:00
setDataSize ( std : : max ( getDataSizeInBits ( ) , FieldSize ) ) ;
2009-11-23 03:13:51 +08:00
} else {
2013-06-27 04:50:34 +08:00
if ( IsMsStruct & & FieldSize ) {
// Under ms_struct, a bitfield always takes up space equal to the size
// of the type. We can't just change the alignment computation on the
// other codepath because of the way this interacts with #pragma pack:
// in a packed struct, we need to allocate misaligned space in the
// struct to hold the bitfield.
if ( ! UnfilledBitsInLastUnit ) {
setDataSize ( FieldOffset + TypeSize ) ;
UnfilledBitsInLastUnit = TypeSize - FieldSize ;
} else if ( UnfilledBitsInLastUnit < FieldSize ) {
setDataSize ( getDataSizeInBits ( ) + TypeSize ) ;
UnfilledBitsInLastUnit = TypeSize - FieldSize ;
} else {
UnfilledBitsInLastUnit - = FieldSize ;
}
LastBitfieldTypeSize = TypeSize ;
} else {
uint64_t NewSizeInBits = FieldOffset + FieldSize ;
uint64_t BitfieldAlignment = Context . getTargetInfo ( ) . getCharAlign ( ) ;
setDataSize ( llvm : : RoundUpToAlignment ( NewSizeInBits , BitfieldAlignment ) ) ;
UnfilledBitsInLastUnit = getDataSizeInBits ( ) - NewSizeInBits ;
LastBitfieldTypeSize = 0 ;
}
2009-11-23 03:13:51 +08:00
}
2010-04-08 10:59:49 +08:00
2009-11-23 03:13:51 +08:00
// Update the size.
2011-02-24 09:13:28 +08:00
setSize ( std : : max ( getSizeInBits ( ) , getDataSizeInBits ( ) ) ) ;
2010-04-08 10:59:49 +08:00
2009-11-23 01:37:31 +08:00
// Remember max struct/class alignment.
2011-02-20 02:58:07 +08:00
UpdateAlignment ( Context . toCharUnitsFromBits ( FieldAlign ) ,
Context . toCharUnitsFromBits ( UnpackedFieldAlign ) ) ;
2009-11-23 01:37:31 +08:00
}
2009-09-09 23:08:12 +08:00
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
void RecordLayoutBuilder : : LayoutField ( const FieldDecl * D ) {
2009-11-23 01:37:31 +08:00
if ( D - > isBitField ( ) ) {
LayoutBitField ( D ) ;
return ;
}
2009-09-09 23:08:12 +08:00
2013-06-27 04:50:34 +08:00
uint64_t UnpaddedFieldOffset = getDataSizeInBits ( ) - UnfilledBitsInLastUnit ;
2010-09-22 22:32:24 +08:00
2009-11-23 03:13:51 +08:00
// Reset the unfilled bits.
2013-06-27 04:50:34 +08:00
UnfilledBitsInLastUnit = 0 ;
LastBitfieldTypeSize = 0 ;
2009-11-23 03:13:51 +08:00
2009-11-23 01:37:31 +08:00
bool FieldPacked = Packed | | D - > hasAttr < PackedAttr > ( ) ;
2011-02-20 10:06:09 +08:00
CharUnits FieldOffset =
2011-02-24 09:13:28 +08:00
IsUnion ? CharUnits : : Zero ( ) : getDataSize ( ) ;
2011-02-20 10:06:09 +08:00
CharUnits FieldSize ;
CharUnits FieldAlign ;
2010-04-08 10:59:49 +08:00
2009-11-23 01:37:31 +08:00
if ( D - > getType ( ) - > isIncompleteArrayType ( ) ) {
// This is a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
2011-02-20 10:06:09 +08:00
FieldSize = CharUnits : : Zero ( ) ;
2010-04-16 23:07:51 +08:00
const ArrayType * ATy = Context . getAsArrayType ( D - > getType ( ) ) ;
2011-02-20 10:06:09 +08:00
FieldAlign = Context . getTypeAlignInChars ( ATy - > getElementType ( ) ) ;
2009-11-23 01:37:31 +08:00
} else if ( const ReferenceType * RT = D - > getType ( ) - > getAs < ReferenceType > ( ) ) {
unsigned AS = RT - > getPointeeType ( ) . getAddressSpace ( ) ;
2011-02-20 10:06:09 +08:00
FieldSize =
2011-09-02 08:18:52 +08:00
Context . toCharUnitsFromBits ( Context . getTargetInfo ( ) . getPointerWidth ( AS ) ) ;
2011-02-20 10:06:09 +08:00
FieldAlign =
2011-09-02 08:18:52 +08:00
Context . toCharUnitsFromBits ( Context . getTargetInfo ( ) . getPointerAlign ( AS ) ) ;
2009-11-23 01:37:31 +08:00
} else {
2011-02-20 10:06:09 +08:00
std : : pair < CharUnits , CharUnits > FieldInfo =
Context . getTypeInfoInChars ( D - > getType ( ) ) ;
2009-11-23 01:37:31 +08:00
FieldSize = FieldInfo . first ;
2009-07-19 04:20:21 +08:00
FieldAlign = FieldInfo . second ;
2011-08-04 09:21:14 +08:00
2012-10-13 07:29:20 +08:00
if ( IsMsStruct ) {
2011-02-01 23:15:22 +08:00
// If MS bitfield layout is required, figure out what type is being
// laid out and align the field to the width of that type.
// Resolve all typedefs down to their base type and round up the field
// alignment if necessary.
QualType T = Context . getBaseElementType ( D - > getType ( ) ) ;
if ( const BuiltinType * BTy = T - > getAs < BuiltinType > ( ) ) {
2011-02-20 10:06:09 +08:00
CharUnits TypeSize = Context . getTypeSizeInChars ( BTy ) ;
2011-02-01 23:15:22 +08:00
if ( TypeSize > FieldAlign )
FieldAlign = TypeSize ;
}
}
2009-11-23 01:37:31 +08:00
}
2009-09-09 23:08:12 +08:00
2010-09-22 22:32:24 +08:00
// The align if the field is not packed. This is to check if the attribute
// was unnecessary (-Wpacked).
2011-02-20 10:06:09 +08:00
CharUnits UnpackedFieldAlign = FieldAlign ;
CharUnits UnpackedFieldOffset = FieldOffset ;
2010-09-22 22:32:24 +08:00
2009-11-23 01:37:31 +08:00
if ( FieldPacked )
2011-02-20 10:06:09 +08:00
FieldAlign = CharUnits : : One ( ) ;
CharUnits MaxAlignmentInChars =
Context . toCharUnitsFromBits ( D - > getMaxAlignment ( ) ) ;
FieldAlign = std : : max ( FieldAlign , MaxAlignmentInChars ) ;
UnpackedFieldAlign = std : : max ( UnpackedFieldAlign , MaxAlignmentInChars ) ;
2009-09-09 23:08:12 +08:00
2009-11-23 01:37:31 +08:00
// The maximum field alignment overrides the aligned attribute.
2011-02-17 09:49:42 +08:00
if ( ! MaxFieldAlignment . isZero ( ) ) {
2011-02-20 10:06:09 +08:00
FieldAlign = std : : min ( FieldAlign , MaxFieldAlignment ) ;
UnpackedFieldAlign = std : : min ( UnpackedFieldAlign , MaxFieldAlignment ) ;
2010-09-22 22:32:24 +08:00
}
2009-09-09 23:08:12 +08:00
2012-01-28 08:53:29 +08:00
// Round up the current record size to the field's alignment boundary.
FieldOffset = FieldOffset . RoundUpToAlignment ( FieldAlign ) ;
UnpackedFieldOffset =
UnpackedFieldOffset . RoundUpToAlignment ( UnpackedFieldAlign ) ;
if ( ExternalLayout ) {
FieldOffset = Context . toCharUnitsFromBits (
updateExternalFieldOffset ( D , Context . toBits ( FieldOffset ) ) ) ;
if ( ! IsUnion & & EmptySubobjects ) {
// Record the fact that we're placing a field at this offset.
bool Allowed = EmptySubobjects - > CanPlaceFieldAtOffset ( D , FieldOffset ) ;
( void ) Allowed ;
assert ( Allowed & & " Externally-placed field cannot be placed here " ) ;
}
} else {
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
if ( ! IsUnion & & EmptySubobjects ) {
// Check if we can place the field at this offset.
while ( ! EmptySubobjects - > CanPlaceFieldAtOffset ( D , FieldOffset ) ) {
// We couldn't place the field at the offset. Try again at a new offset.
FieldOffset + = FieldAlign ;
}
2009-09-25 08:02:51 +08:00
}
2009-07-19 04:20:21 +08:00
}
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
2009-07-19 04:20:21 +08:00
// Place this field at the current location.
2011-02-20 10:06:09 +08:00
FieldOffsets . push_back ( Context . toBits ( FieldOffset ) ) ;
2009-09-09 23:08:12 +08:00
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
if ( ! ExternalLayout )
CheckFieldPadding ( Context . toBits ( FieldOffset ) , UnpaddedFieldOffset ,
Context . toBits ( UnpackedFieldOffset ) ,
Context . toBits ( UnpackedFieldAlign ) , FieldPacked , D ) ;
2010-09-22 22:32:24 +08:00
2009-07-19 04:20:21 +08:00
// Reserve space for this field.
2012-01-13 07:27:03 +08:00
uint64_t FieldSizeInBits = Context . toBits ( FieldSize ) ;
2009-07-19 04:20:21 +08:00
if ( IsUnion )
2012-01-13 07:48:56 +08:00
setDataSize ( std : : max ( getDataSizeInBits ( ) , FieldSizeInBits ) ) ;
2009-07-19 04:20:21 +08:00
else
2012-01-13 07:48:56 +08:00
setDataSize ( FieldOffset + FieldSize ) ;
2009-09-09 23:08:12 +08:00
2012-01-13 07:48:56 +08:00
// Update the size.
setSize ( std : : max ( getSizeInBits ( ) , getDataSizeInBits ( ) ) ) ;
2009-09-09 23:08:12 +08:00
2009-07-19 04:20:21 +08:00
// Remember max struct/class alignment.
2011-02-20 10:06:09 +08:00
UpdateAlignment ( FieldAlign , UnpackedFieldAlign ) ;
2009-07-19 04:20:21 +08:00
}
2010-09-22 22:32:24 +08:00
void RecordLayoutBuilder : : FinishLayout ( const NamedDecl * D ) {
2009-07-19 04:20:21 +08:00
// In C++, records cannot be of size 0.
2012-03-11 15:00:24 +08:00
if ( Context . getLangOpts ( ) . CPlusPlus & & getSizeInBits ( ) = = 0 ) {
2011-02-03 03:36:18 +08:00
if ( const CXXRecordDecl * RD = dyn_cast < CXXRecordDecl > ( D ) ) {
// Compatibility with gcc requires a class (pod or non-pod)
// which is not empty but of size 0; such as having fields of
// array of zero-length, remains of Size 0
if ( RD - > isEmpty ( ) )
2011-02-28 10:01:38 +08:00
setSize ( CharUnits : : One ( ) ) ;
2011-02-03 03:36:18 +08:00
}
else
2011-02-28 10:01:38 +08:00
setSize ( CharUnits : : One ( ) ) ;
2011-02-03 03:36:18 +08:00
}
2011-12-01 08:37:01 +08:00
2012-10-27 06:31:14 +08:00
// Finally, round the size of the record up to the alignment of the
// record itself.
2013-06-27 04:50:34 +08:00
uint64_t UnpaddedSize = getSizeInBits ( ) - UnfilledBitsInLastUnit ;
2012-10-27 06:31:14 +08:00
uint64_t UnpackedSizeInBits =
llvm : : RoundUpToAlignment ( getSizeInBits ( ) ,
Context . toBits ( UnpackedAlignment ) ) ;
CharUnits UnpackedSize = Context . toCharUnitsFromBits ( UnpackedSizeInBits ) ;
uint64_t RoundedSize
= llvm : : RoundUpToAlignment ( getSizeInBits ( ) , Context . toBits ( Alignment ) ) ;
if ( ExternalLayout ) {
// If we're inferring alignment, and the external size is smaller than
// our size after we've rounded up to alignment, conservatively set the
// alignment to 1.
if ( InferAlignment & & ExternalSize < RoundedSize ) {
Alignment = CharUnits : : One ( ) ;
InferAlignment = false ;
}
setSize ( ExternalSize ) ;
return ;
}
2011-12-01 08:37:01 +08:00
// MSVC doesn't round up to the alignment of the record with virtual bases.
if ( const CXXRecordDecl * RD = dyn_cast < CXXRecordDecl > ( D ) ) {
if ( isMicrosoftCXXABI ( ) & & RD - > getNumVBases ( ) )
return ;
}
2012-10-27 06:31:14 +08:00
// Set the size to the final size.
setSize ( RoundedSize ) ;
2010-09-22 22:32:24 +08:00
2011-09-02 08:18:52 +08:00
unsigned CharBitNum = Context . getTargetInfo ( ) . getCharWidth ( ) ;
2010-09-22 22:32:24 +08:00
if ( const RecordDecl * RD = dyn_cast < RecordDecl > ( D ) ) {
// Warn if padding was introduced to the struct/class/union.
2011-02-24 09:13:28 +08:00
if ( getSizeInBits ( ) > UnpaddedSize ) {
unsigned PadSize = getSizeInBits ( ) - UnpaddedSize ;
2010-09-22 22:32:24 +08:00
bool InBits = true ;
if ( PadSize % CharBitNum = = 0 ) {
PadSize = PadSize / CharBitNum ;
InBits = false ;
}
Diag ( RD - > getLocation ( ) , diag : : warn_padded_struct_size )
< < Context . getTypeDeclType ( RD )
< < PadSize
< < ( InBits ? 1 : 0 ) /*(byte|bit)*/ < < ( PadSize > 1 ) ; // plural or not
}
// Warn if we packed it unnecessarily. If the alignment is 1 byte don't
// bother since there won't be alignment issues.
2011-02-24 09:13:28 +08:00
if ( Packed & & UnpackedAlignment > CharUnits : : One ( ) & &
2011-02-28 10:01:38 +08:00
getSize ( ) = = UnpackedSize )
2010-09-22 22:32:24 +08:00
Diag ( D - > getLocation ( ) , diag : : warn_unnecessary_packed )
< < Context . getTypeDeclType ( RD ) ;
}
2009-07-19 04:20:21 +08:00
}
2011-02-20 02:58:07 +08:00
void RecordLayoutBuilder : : UpdateAlignment ( CharUnits NewAlignment ,
CharUnits UnpackedNewAlignment ) {
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
// The alignment is not modified when using 'mac68k' alignment or when
2012-01-28 08:53:29 +08:00
// we have an externally-supplied layout that also provides overall alignment.
if ( IsMac68kAlign | | ( ExternalLayout & & ! InferAlignment ) )
2010-05-27 13:45:51 +08:00
return ;
2011-02-20 02:58:07 +08:00
if ( NewAlignment > Alignment ) {
assert ( llvm : : isPowerOf2_32 ( NewAlignment . getQuantity ( ) & &
" Alignment not a power of 2 " ) ) ;
Alignment = NewAlignment ;
2010-09-22 22:32:24 +08:00
}
2011-02-20 02:58:07 +08:00
if ( UnpackedNewAlignment > UnpackedAlignment ) {
assert ( llvm : : isPowerOf2_32 ( UnpackedNewAlignment . getQuantity ( ) & &
2010-09-22 22:32:24 +08:00
" Alignment not a power of 2 " ) ) ;
2011-02-20 02:58:07 +08:00
UnpackedAlignment = UnpackedNewAlignment ;
2010-09-22 22:32:24 +08:00
}
}
2012-01-28 08:53:29 +08:00
uint64_t
RecordLayoutBuilder : : updateExternalFieldOffset ( const FieldDecl * Field ,
uint64_t ComputedOffset ) {
assert ( ExternalFieldOffsets . find ( Field ) ! = ExternalFieldOffsets . end ( ) & &
" Field does not have an external offset " ) ;
uint64_t ExternalFieldOffset = ExternalFieldOffsets [ Field ] ;
if ( InferAlignment & & ExternalFieldOffset < ComputedOffset ) {
// The externally-supplied field offset is before the field offset we
// computed. Assume that the structure is packed.
2012-10-27 06:31:14 +08:00
Alignment = CharUnits : : One ( ) ;
2012-01-28 08:53:29 +08:00
InferAlignment = false ;
}
// Use the externally-supplied field offset.
2012-09-01 06:14:25 +08:00
return ExternalFieldOffset ;
}
/// \brief Get diagnostic %select index for tag kind for
/// field padding diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getPaddingDiagFromTagKind ( TagTypeKind Tag ) {
switch ( Tag ) {
case TTK_Struct : return 0 ;
case TTK_Interface : return 1 ;
case TTK_Class : return 2 ;
default : llvm_unreachable ( " Invalid tag kind for field padding diagnostic! " ) ;
}
}
void RecordLayoutBuilder : : CheckFieldPadding ( uint64_t Offset ,
uint64_t UnpaddedOffset ,
uint64_t UnpackedOffset ,
2010-09-22 22:32:24 +08:00
unsigned UnpackedAlign ,
bool isPacked ,
const FieldDecl * D ) {
// We let objc ivars without warning, objc interfaces generally are not used
// for padding tricks.
if ( isa < ObjCIvarDecl > ( D ) )
2009-07-19 04:20:21 +08:00
return ;
2009-09-09 23:08:12 +08:00
2011-09-07 03:40:45 +08:00
// Don't warn about structs created without a SourceLocation. This can
// be done by clients of the AST, such as codegen.
if ( D - > getLocation ( ) . isInvalid ( ) )
return ;
2011-09-02 08:18:52 +08:00
unsigned CharBitNum = Context . getTargetInfo ( ) . getCharWidth ( ) ;
2009-09-09 23:08:12 +08:00
2010-09-22 22:32:24 +08:00
// Warn if padding was introduced to the struct/class.
if ( ! IsUnion & & Offset > UnpaddedOffset ) {
unsigned PadSize = Offset - UnpaddedOffset ;
bool InBits = true ;
if ( PadSize % CharBitNum = = 0 ) {
PadSize = PadSize / CharBitNum ;
InBits = false ;
2012-09-01 06:14:25 +08:00
}
if ( D - > getIdentifier ( ) )
Diag ( D - > getLocation ( ) , diag : : warn_padded_struct_field )
< < getPaddingDiagFromTagKind ( D - > getParent ( ) - > getTagKind ( ) )
< < Context . getTypeDeclType ( D - > getParent ( ) )
< < PadSize
< < ( InBits ? 1 : 0 ) /*(byte|bit)*/ < < ( PadSize > 1 ) // plural or not
< < D - > getIdentifier ( ) ;
else
Diag ( D - > getLocation ( ) , diag : : warn_padded_struct_anon_field )
< < getPaddingDiagFromTagKind ( D - > getParent ( ) - > getTagKind ( ) )
< < Context . getTypeDeclType ( D - > getParent ( ) )
< < PadSize
< < ( InBits ? 1 : 0 ) /*(byte|bit)*/ < < ( PadSize > 1 ) ; // plural or not
2010-09-22 22:32:24 +08:00
}
// Warn if we packed it unnecessarily. If the alignment is 1 byte don't
// bother since there won't be alignment issues.
if ( isPacked & & UnpackedAlign > CharBitNum & & Offset = = UnpackedOffset )
Diag ( D - > getLocation ( ) , diag : : warn_unnecessary_packed )
< < D - > getIdentifier ( ) ;
2009-07-19 04:20:21 +08:00
}
2009-09-09 23:08:12 +08:00
2013-01-26 06:31:03 +08:00
static const CXXMethodDecl * computeKeyFunction ( ASTContext & Context ,
const CXXRecordDecl * RD ) {
2010-04-20 04:44:53 +08:00
// If a class isn't polymorphic it doesn't have a key function.
2009-12-07 12:35:11 +08:00
if ( ! RD - > isPolymorphic ( ) )
return 0 ;
2009-12-08 11:56:49 +08:00
2011-06-11 05:53:06 +08:00
// A class that is not externally visible doesn't have a key function. (Or
2009-12-08 11:56:49 +08:00
// at least, there's no point to assigning a key function to such a class;
// this doesn't affect the ABI.)
2013-05-13 08:12:11 +08:00
if ( ! RD - > isExternallyVisible ( ) )
2009-12-08 11:56:49 +08:00
return 0 ;
2010-10-13 10:39:41 +08:00
// Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
// Same behavior as GCC.
TemplateSpecializationKind TSK = RD - > getTemplateSpecializationKind ( ) ;
if ( TSK = = TSK_ImplicitInstantiation | |
TSK = = TSK_ExplicitInstantiationDefinition )
return 0 ;
2013-01-26 06:31:03 +08:00
bool allowInlineFunctions =
Context . getTargetInfo ( ) . getCXXABI ( ) . canKeyFunctionBeInline ( ) ;
2010-04-08 10:59:49 +08:00
for ( CXXRecordDecl : : method_iterator I = RD - > method_begin ( ) ,
E = RD - > method_end ( ) ; I ! = E ; + + I ) {
2012-06-07 04:45:41 +08:00
const CXXMethodDecl * MD = * I ;
2010-04-08 10:59:49 +08:00
2009-12-07 12:35:11 +08:00
if ( ! MD - > isVirtual ( ) )
continue ;
2010-04-08 10:59:49 +08:00
2009-12-07 12:35:11 +08:00
if ( MD - > isPure ( ) )
continue ;
2009-12-08 11:56:49 +08:00
2009-12-07 12:35:11 +08:00
// Ignore implicit member functions, they are always marked as inline, but
// they don't have a body until they're defined.
if ( MD - > isImplicit ( ) )
continue ;
2010-04-08 10:59:49 +08:00
2010-01-06 03:06:31 +08:00
if ( MD - > isInlineSpecified ( ) )
continue ;
2009-12-07 12:35:11 +08:00
if ( MD - > hasInlineBody ( ) )
continue ;
2010-04-08 10:59:49 +08:00
2012-08-03 23:43:22 +08:00
// Ignore inline deleted or defaulted functions.
2012-08-03 16:39:58 +08:00
if ( ! MD - > isUserProvided ( ) )
continue ;
2013-01-26 06:31:03 +08:00
// In certain ABIs, ignore functions with out-of-line inline definitions.
if ( ! allowInlineFunctions ) {
const FunctionDecl * Def ;
if ( MD - > hasBody ( Def ) & & Def - > isInlineSpecified ( ) )
continue ;
}
2009-12-07 12:35:11 +08:00
// We found it.
return MD ;
}
2010-04-08 10:59:49 +08:00
2009-12-07 12:35:11 +08:00
return 0 ;
}
2010-09-22 22:32:24 +08:00
DiagnosticBuilder
RecordLayoutBuilder : : Diag ( SourceLocation Loc , unsigned DiagID ) {
2010-11-19 04:06:41 +08:00
return Context . getDiagnostics ( ) . Report ( Loc , DiagID ) ;
2010-09-22 22:32:24 +08:00
}
2013-01-29 09:14:22 +08:00
/// Does the target C++ ABI require us to skip over the tail-padding
/// of the given class (considering it as a base class) when allocating
/// objects?
static bool mustSkipTailPadding ( TargetCXXABI ABI , const CXXRecordDecl * RD ) {
switch ( ABI . getTailPaddingUseRules ( ) ) {
case TargetCXXABI : : AlwaysUseTailPadding :
return false ;
case TargetCXXABI : : UseTailPaddingUnlessPOD03 :
// FIXME: To the extent that this is meant to cover the Itanium ABI
// rules, we should implement the restrictions about over-sized
// bitfields:
//
// http://mentorembedded.github.com/cxx-abi/abi.html#POD :
// In general, a type is considered a POD for the purposes of
// layout if it is a POD type (in the sense of ISO C++
// [basic.types]). However, a POD-struct or POD-union (in the
// sense of ISO C++ [class]) with a bitfield member whose
// declared width is wider than the declared type of the
// bitfield is not a POD for the purpose of layout. Similarly,
// an array type is not a POD for the purpose of layout if the
// element type of the array is not a POD for the purpose of
// layout.
//
// Where references to the ISO C++ are made in this paragraph,
// the Technical Corrigendum 1 version of the standard is
// intended.
return RD - > isPOD ( ) ;
case TargetCXXABI : : UseTailPaddingUnlessPOD11 :
// This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
// but with a lot of abstraction penalty stripped off. This does
// assume that these properties are set correctly even in C++98
// mode; fortunately, that is true because we want to assign
// consistently semantics to the type-traits intrinsics (or at
// least as many of them as possible).
return RD - > isTrivial ( ) & & RD - > isStandardLayout ( ) ;
}
llvm_unreachable ( " bad tail-padding use kind " ) ;
}
2013-10-12 04:19:00 +08:00
static bool isMsLayout ( const RecordDecl * D ) {
2013-10-12 05:10:11 +08:00
// FIXME: Use MS record layout for x64 code and remove MS C++ support from the
// Itanium record layout code.
return D - > getASTContext ( ) . getTargetInfo ( ) . getCXXABI ( ) . isMicrosoft ( ) & &
D - > getASTContext ( ) . getTargetInfo ( ) . getTriple ( ) . getArch ( ) = =
llvm : : Triple : : x86 ;
2013-10-12 04:19:00 +08:00
}
// This section contains an implementation of struct layout that is, up to the
// included tests, compatible with cl.exe (2012). The layout produced is
// significantly different than those produced by the Itanium ABI. Here we note
// the most important differences.
//
// * The alignment of bitfields in unions is ignored when computing the
// alignment of the union.
// * The existance of zero-width bitfield that occurs after anything other than
// a non-zero length bitfield is ignored.
// * The Itanium equivalent vtable pointers are split into a vfptr (virtual
// function pointer) and a vbptr (virtual base pointer). They can each be
// shared with a, non-virtual bases. These bases need not be the same. vfptrs always occur at offset 0. vbptrs can occur at an
// arbitrary offset and are placed after non-virtual bases but before fields.
// * Virtual bases sometimes require a 'vtordisp' field that is laid out before
// the virtual base and is used in conjunction with virtual overrides during
// construction and destruction.
// * vfptrs are allocated in a block of memory equal to the alignment of the
// fields and non-virtual bases at offset 0.
// * vbptrs are allocated in a block of memory equal to the alignment of the
// fields and non-virtual bases. This block is at a potentially unaligned offset. If the
// allocation slot is unaligned and the alignment is less than or equal to the
// pointer size, additional space is allocated so that the pointer can be aligned properly. This causes very strange effects on the placement of objects after the allocated block. (see
// the code).
// * vtordisps are allocated in a block of memory with size and alignment equal
// to the alignment of the completed structure (before applying __declspec(
// align())). The vtordisp always occur at the end of the allocation block, immediately prior to the virtual base.
// * The last zero sized non-virtual base is allocated after the placement of
// vbptr if one exists and can be placed at the end of the struct, potentially
// aliasing either the first member or another struct allocated after this
// one.
// * The last zero size virtual base may be placed at the end of the struct.
// and can potentially alias a zero sized type in the next struct.
namespace {
struct MicrosoftRecordLayoutBuilder {
typedef llvm : : DenseMap < const CXXRecordDecl * , CharUnits > BaseOffsetsMapTy ;
MicrosoftRecordLayoutBuilder ( const ASTContext & Context ) : Context ( Context ) { }
private :
MicrosoftRecordLayoutBuilder ( const MicrosoftRecordLayoutBuilder & )
LLVM_DELETED_FUNCTION ;
void operator = ( const MicrosoftRecordLayoutBuilder & ) LLVM_DELETED_FUNCTION ;
public :
void layout ( const RecordDecl * RD ) ;
void cxxLayout ( const CXXRecordDecl * RD ) ;
/// \brief Initializes size and alignment and honors some flags.
void initializeLayout ( const RecordDecl * RD ) ;
/// \brief Initialized C++ layout, compute alignment and virtual alignment and
/// existance of vfptrs and vbptrs. Alignment is needed before the vfptr is
/// laid out.
void initializeCXXLayout ( const CXXRecordDecl * RD ) ;
void layoutVFPtr ( const CXXRecordDecl * RD ) ;
void layoutNonVirtualBases ( const CXXRecordDecl * RD ) ;
void layoutNonVirtualBase ( const CXXRecordDecl * RD ) ;
void layoutVBPtr ( const CXXRecordDecl * RD ) ;
/// \brief Lays out the fields of the record. Also rounds size up to
/// alignment.
void layoutFields ( const RecordDecl * RD ) ;
void layoutField ( const FieldDecl * FD ) ;
void layoutBitField ( const FieldDecl * FD ) ;
/// \brief Lays out a single zero-width bit-field in the record and handles
/// special cases associated with zero-width bit-fields.
void layoutZeroWidthBitField ( const FieldDecl * FD ) ;
void layoutVirtualBases ( const CXXRecordDecl * RD ) ;
void layoutVirtualBase ( const CXXRecordDecl * RD , bool HasVtordisp ) ;
/// \brief Flushes the lazy virtual base and conditionally rounds up to
/// alignment.
void finalizeCXXLayout ( const CXXRecordDecl * RD ) ;
void honorDeclspecAlign ( const RecordDecl * RD ) ;
/// \brief Updates the alignment of the type. This function doesn't take any
/// properties (such as packedness) into account. getAdjustedFieldInfo()
/// adjustes for packedness.
void updateAlignment ( CharUnits NewAlignment ) {
Alignment = std : : max ( Alignment , NewAlignment ) ;
}
/// \brief Gets the size and alignment taking attributes into account.
std : : pair < CharUnits , CharUnits > getAdjustedFieldInfo ( const FieldDecl * FD ) ;
/// \brief Places a field at offset 0.
void placeFieldAtZero ( ) { FieldOffsets . push_back ( 0 ) ; }
/// \brief Places a field at an offset in CharUnits.
void placeFieldAtOffset ( CharUnits FieldOffset ) {
FieldOffsets . push_back ( Context . toBits ( FieldOffset ) ) ;
}
/// \brief Places a bitfield at a bit offset.
void placeFieldAtBitOffset ( uint64_t FieldOffset ) {
FieldOffsets . push_back ( FieldOffset ) ;
}
/// \brief Compute the set of virtual bases for which vtordisps are required.
llvm : : SmallPtrSet < const CXXRecordDecl * , 2 >
computeVtorDispSet ( const CXXRecordDecl * RD ) ;
const ASTContext & Context ;
/// \brief The size of the record being laid out.
CharUnits Size ;
/// \brief The current alignment of the record layout.
CharUnits Alignment ;
/// \brief The collection of field offsets.
SmallVector < uint64_t , 16 > FieldOffsets ;
/// \brief The maximum allowed field alignment. This is set by #pragma pack.
CharUnits MaxFieldAlignment ;
/// \brief Alignment does not occur for virtual bases unless something
/// forces it to by explicitly using __declspec(align())
bool AlignAfterVBases : 1 ;
bool IsUnion : 1 ;
/// \brief True if the last field laid out was a bitfield and was not 0
/// width.
bool LastFieldIsNonZeroWidthBitfield : 1 ;
/// \brief The size of the allocation of the currently active bitfield.
/// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
/// is true.
CharUnits CurrentBitfieldSize ;
/// \brief The number of remaining bits in our last bitfield allocation.
/// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
/// true.
unsigned RemainingBitsInField ;
/// \brief The data alignment of the record layout.
CharUnits DataSize ;
/// \brief The alignment of the non-virtual portion of the record layout
/// including. Only used for C++ layouts.
CharUnits NonVirtualAlignment ;
/// \brief The additional alignment imposed by the virtual bases.
CharUnits VirtualAlignment ;
/// \brief The primary base class (if one exists).
const CXXRecordDecl * PrimaryBase ;
/// \brief The class we share our vb-pointer with.
const CXXRecordDecl * SharedVBPtrBase ;
/// \brief True if the class has a (not necessarily its own) vftable pointer.
bool HasVFPtr : 1 ;
/// \brief True if the class has a (not necessarily its own) vbtable pointer.
bool HasVBPtr : 1 ;
/// \brief Offset to the virtual base table pointer (if one exists).
CharUnits VBPtrOffset ;
/// \brief Base classes and their offsets in the record.
BaseOffsetsMapTy Bases ;
/// \brief virtual base classes and their offsets in the record.
ASTRecordLayout : : VBaseOffsetsMapTy VBases ;
/// \brief The size of a pointer.
CharUnits PointerSize ;
/// \brief The alignment of a pointer.
CharUnits PointerAlignment ;
/// \brief Holds an empty base we haven't yet laid out.
const CXXRecordDecl * LazyEmptyBase ;
} ;
} // namespace
std : : pair < CharUnits , CharUnits >
MicrosoftRecordLayoutBuilder : : getAdjustedFieldInfo ( const FieldDecl * FD ) {
std : : pair < CharUnits , CharUnits > FieldInfo ;
if ( FD - > getType ( ) - > isIncompleteArrayType ( ) ) {
// This is a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
FieldInfo . first = CharUnits : : Zero ( ) ;
const ArrayType * ATy = Context . getAsArrayType ( FD - > getType ( ) ) ;
FieldInfo . second = Context . getTypeAlignInChars ( ATy - > getElementType ( ) ) ;
} else if ( const ReferenceType * RT = FD - > getType ( ) - > getAs < ReferenceType > ( ) ) {
unsigned AS = RT - > getPointeeType ( ) . getAddressSpace ( ) ;
FieldInfo . first = Context
. toCharUnitsFromBits ( Context . getTargetInfo ( ) . getPointerWidth ( AS ) ) ;
FieldInfo . second = Context
. toCharUnitsFromBits ( Context . getTargetInfo ( ) . getPointerAlign ( AS ) ) ;
} else
FieldInfo = Context . getTypeInfoInChars ( FD - > getType ( ) ) ;
// If we're not on win32 and using ms_struct the field alignment will be wrong
// for 64 bit types, so we fix that here.
if ( FD - > getASTContext ( ) . getTargetInfo ( ) . getTriple ( ) . getOS ( ) ! =
llvm : : Triple : : Win32 ) {
QualType T = Context . getBaseElementType ( FD - > getType ( ) ) ;
if ( const BuiltinType * BTy = T - > getAs < BuiltinType > ( ) ) {
CharUnits TypeSize = Context . getTypeSizeInChars ( BTy ) ;
if ( TypeSize > FieldInfo . second )
FieldInfo . second = TypeSize ;
}
}
// Respect packed attribute.
if ( FD - > hasAttr < PackedAttr > ( ) )
FieldInfo . second = CharUnits : : One ( ) ;
// Respect pack pragma.
else if ( ! MaxFieldAlignment . isZero ( ) )
FieldInfo . second = std : : min ( FieldInfo . second , MaxFieldAlignment ) ;
// Respect alignment attributes.
if ( unsigned fieldAlign = FD - > getMaxAlignment ( ) ) {
CharUnits FieldAlign = Context . toCharUnitsFromBits ( fieldAlign ) ;
AlignAfterVBases = true ;
FieldInfo . second = std : : max ( FieldInfo . second , FieldAlign ) ;
}
return FieldInfo ;
}
void MicrosoftRecordLayoutBuilder : : initializeLayout ( const RecordDecl * RD ) {
IsUnion = RD - > isUnion ( ) ;
Size = CharUnits : : Zero ( ) ;
Alignment = CharUnits : : One ( ) ;
AlignAfterVBases = false ;
// Compute the maximum field alignment.
MaxFieldAlignment = CharUnits : : Zero ( ) ;
// Honor the default struct packing maximum alignment flag.
if ( unsigned DefaultMaxFieldAlignment = Context . getLangOpts ( ) . PackStruct )
MaxFieldAlignment = CharUnits : : fromQuantity ( DefaultMaxFieldAlignment ) ;
// Honor the packing attribute.
if ( const MaxFieldAlignmentAttr * MFAA = RD - > getAttr < MaxFieldAlignmentAttr > ( ) )
MaxFieldAlignment = Context . toCharUnitsFromBits ( MFAA - > getAlignment ( ) ) ;
// Packed attribute forces max field alignment to be 1.
if ( RD - > hasAttr < PackedAttr > ( ) )
MaxFieldAlignment = CharUnits : : One ( ) ;
}
void MicrosoftRecordLayoutBuilder : : layout ( const RecordDecl * RD ) {
initializeLayout ( RD ) ;
layoutFields ( RD ) ;
honorDeclspecAlign ( RD ) ;
}
void MicrosoftRecordLayoutBuilder : : cxxLayout ( const CXXRecordDecl * RD ) {
initializeLayout ( RD ) ;
initializeCXXLayout ( RD ) ;
layoutVFPtr ( RD ) ;
layoutNonVirtualBases ( RD ) ;
layoutVBPtr ( RD ) ;
layoutFields ( RD ) ;
DataSize = Size ;
NonVirtualAlignment = Alignment ;
layoutVirtualBases ( RD ) ;
finalizeCXXLayout ( RD ) ;
honorDeclspecAlign ( RD ) ;
}
void
MicrosoftRecordLayoutBuilder : : initializeCXXLayout ( const CXXRecordDecl * RD ) {
// Calculate pointer size and alignment.
PointerSize =
Context . toCharUnitsFromBits ( Context . getTargetInfo ( ) . getPointerWidth ( 0 ) ) ;
PointerAlignment = PointerSize ;
if ( ! MaxFieldAlignment . isZero ( ) )
PointerAlignment = std : : min ( PointerAlignment , MaxFieldAlignment ) ;
// Initialize information about the bases.
HasVBPtr = false ;
HasVFPtr = false ;
SharedVBPtrBase = 0 ;
PrimaryBase = 0 ;
VirtualAlignment = CharUnits : : One ( ) ;
// If the record has a dynamic base class, attempt to choose a primary base
// class. It is the first (in direct base class order) non-virtual dynamic
// base class, if one exists.
for ( CXXRecordDecl : : base_class_const_iterator i = RD - > bases_begin ( ) ,
e = RD - > bases_end ( ) ;
i ! = e ; + + i ) {
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( i - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( BaseDecl ) ;
// Handle forced alignment.
if ( Layout . getAlignAfterVBases ( ) )
AlignAfterVBases = true ;
// Handle virtual bases.
if ( i - > isVirtual ( ) ) {
VirtualAlignment = std : : max ( VirtualAlignment , Layout . getAlignment ( ) ) ;
HasVBPtr = true ;
continue ;
}
// We located a primary base class!
if ( ! PrimaryBase & & Layout . hasVFPtr ( ) ) {
PrimaryBase = BaseDecl ;
HasVFPtr = true ;
}
// We located a base to share a VBPtr with!
if ( ! SharedVBPtrBase & & Layout . hasVBPtr ( ) ) {
SharedVBPtrBase = BaseDecl ;
HasVBPtr = true ;
}
updateAlignment ( Layout . getAlignment ( ) ) ;
}
// Use LayoutFields to compute the alignment of the fields. The layout
// is discarded. This is the simplest way to get all of the bit-field
// behavior correct and is not actually very expensive.
layoutFields ( RD ) ;
Size = CharUnits : : Zero ( ) ;
FieldOffsets . clear ( ) ;
}
void MicrosoftRecordLayoutBuilder : : layoutVFPtr ( const CXXRecordDecl * RD ) {
// If we have a primary base then our VFPtr was already laid out
if ( PrimaryBase )
return ;
// Look at all of our methods to determine if we need a VFPtr. We need a
// vfptr if we define a new virtual function.
if ( ! HasVFPtr & & RD - > isDynamicClass ( ) )
for ( CXXRecordDecl : : method_iterator i = RD - > method_begin ( ) ,
e = RD - > method_end ( ) ;
! HasVFPtr & & i ! = e ; + + i )
HasVFPtr = i - > isVirtual ( ) & & i - > size_overridden_methods ( ) = = 0 ;
if ( ! HasVFPtr )
return ;
// MSVC potentially over-aligns the vf-table pointer by giving it
// the max alignment of all the non-virtual data in the class. The resulting
// layout is essentially { vftbl, { nvdata } }. This is completely
// unnecessary, but we're not here to pass judgment.
updateAlignment ( PointerAlignment ) ;
2013-10-15 05:14:05 +08:00
Size + = Alignment ;
2013-10-12 04:19:00 +08:00
}
void
MicrosoftRecordLayoutBuilder : : layoutNonVirtualBases ( const CXXRecordDecl * RD ) {
LazyEmptyBase = 0 ;
// Lay out the primary base first.
if ( PrimaryBase )
layoutNonVirtualBase ( PrimaryBase ) ;
// Iterate through the bases and lay out the non-virtual ones.
for ( CXXRecordDecl : : base_class_const_iterator i = RD - > bases_begin ( ) ,
e = RD - > bases_end ( ) ;
i ! = e ; + + i ) {
if ( i - > isVirtual ( ) )
continue ;
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( i - > getType ( ) - > castAs < RecordType > ( ) - > getDecl ( ) ) ;
if ( BaseDecl ! = PrimaryBase )
layoutNonVirtualBase ( BaseDecl ) ;
}
}
void
MicrosoftRecordLayoutBuilder : : layoutNonVirtualBase ( const CXXRecordDecl * RD ) {
const ASTRecordLayout * Layout = RD ? & Context . getASTRecordLayout ( RD ) : 0 ;
// If we have a lazy empty base we haven't laid out yet, do that now.
if ( LazyEmptyBase ) {
const ASTRecordLayout & LazyLayout =
Context . getASTRecordLayout ( LazyEmptyBase ) ;
Size = Size . RoundUpToAlignment ( LazyLayout . getAlignment ( ) ) ;
Bases . insert ( std : : make_pair ( LazyEmptyBase , Size ) ) ;
// Empty bases only consume space when followed by another empty base.
if ( RD & & Layout - > getNonVirtualSize ( ) . isZero ( ) )
Size + + ;
LazyEmptyBase = 0 ;
}
// RD is null when flushing the final lazy base.
if ( ! RD )
return ;
if ( Layout - > getNonVirtualSize ( ) . isZero ( ) ) {
LazyEmptyBase = RD ;
return ;
}
// Insert the base here.
CharUnits BaseOffset = Size . RoundUpToAlignment ( Layout - > getAlignment ( ) ) ;
Bases . insert ( std : : make_pair ( RD , BaseOffset ) ) ;
Size = BaseOffset + Layout - > getDataSize ( ) ;
// Note: we don't update alignment here because it was accounted
// for during initalization.
}
void MicrosoftRecordLayoutBuilder : : layoutVBPtr ( const CXXRecordDecl * RD ) {
if ( ! HasVBPtr )
VBPtrOffset = CharUnits : : fromQuantity ( - 1 ) ;
else if ( SharedVBPtrBase ) {
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( SharedVBPtrBase ) ;
VBPtrOffset = Bases [ SharedVBPtrBase ] + Layout . getVBPtrOffset ( ) ;
} else {
updateAlignment ( PointerAlignment ) ;
VBPtrOffset = Size . RoundUpToAlignment ( PointerAlignment ) ;
if ( Alignment = = PointerAlignment & & Size % PointerAlignment ) {
CharUnits x = Size + Alignment + Alignment ;
Size = VBPtrOffset + Alignment ;
// Handle strange padding rules. I have no explanation for why the
// virtual base is padded in such an odd way. My guess is that they
// always Add 2 * Alignment and incorrectly round down to the appropriate
// alignment. It's important to get this case correct because it impacts
// the layout of the first member of the struct.
RecordDecl : : field_iterator FieldBegin = RD - > field_begin ( ) ;
if ( FieldBegin ! = RD - > field_end ( ) )
Size + = CharUnits : : fromQuantity (
x % getAdjustedFieldInfo ( * FieldBegin ) . second ) ;
} else
Size + = Alignment ;
}
// Flush the lazy empty base.
layoutNonVirtualBase ( 0 ) ;
}
void MicrosoftRecordLayoutBuilder : : layoutFields ( const RecordDecl * RD ) {
LastFieldIsNonZeroWidthBitfield = false ;
for ( RecordDecl : : field_iterator Field = RD - > field_begin ( ) ,
FieldEnd = RD - > field_end ( ) ;
Field ! = FieldEnd ; + + Field )
layoutField ( * Field ) ;
Size = Size . RoundUpToAlignment ( Alignment ) ;
}
void MicrosoftRecordLayoutBuilder : : layoutField ( const FieldDecl * FD ) {
if ( FD - > isBitField ( ) ) {
layoutBitField ( FD ) ;
return ;
}
LastFieldIsNonZeroWidthBitfield = false ;
std : : pair < CharUnits , CharUnits > FieldInfo = getAdjustedFieldInfo ( FD ) ;
CharUnits FieldSize = FieldInfo . first ;
CharUnits FieldAlign = FieldInfo . second ;
updateAlignment ( FieldAlign ) ;
if ( IsUnion ) {
placeFieldAtZero ( ) ;
Size = std : : max ( Size , FieldSize ) ;
} else {
// Round up the current record size to the field's alignment boundary.
CharUnits FieldOffset = Size . RoundUpToAlignment ( FieldAlign ) ;
placeFieldAtOffset ( FieldOffset ) ;
Size = FieldOffset + FieldSize ;
}
}
void MicrosoftRecordLayoutBuilder : : layoutBitField ( const FieldDecl * FD ) {
unsigned Width = FD - > getBitWidthValue ( Context ) ;
if ( Width = = 0 ) {
layoutZeroWidthBitField ( FD ) ;
return ;
}
std : : pair < CharUnits , CharUnits > FieldInfo = getAdjustedFieldInfo ( FD ) ;
CharUnits FieldSize = FieldInfo . first ;
CharUnits FieldAlign = FieldInfo . second ;
// Clamp the bitfield to a containable size for the sake of being able
// to lay them out. Sema will throw an error.
if ( Width > Context . toBits ( FieldSize ) )
Width = Context . toBits ( FieldSize ) ;
// Check to see if this bitfield fits into an existing allocation. Note:
// MSVC refuses to pack bitfields of formal types with different sizes
// into the same allocation.
if ( ! IsUnion & & LastFieldIsNonZeroWidthBitfield & &
CurrentBitfieldSize = = FieldSize & & Width < = RemainingBitsInField ) {
placeFieldAtBitOffset ( Context . toBits ( Size ) - RemainingBitsInField ) ;
RemainingBitsInField - = Width ;
return ;
}
LastFieldIsNonZeroWidthBitfield = true ;
CurrentBitfieldSize = FieldSize ;
if ( IsUnion ) {
placeFieldAtZero ( ) ;
Size = std : : max ( Size , FieldSize ) ;
// TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
} else {
// Allocate a new block of memory and place the bitfield in it.
CharUnits FieldOffset = Size . RoundUpToAlignment ( FieldAlign ) ;
placeFieldAtOffset ( FieldOffset ) ;
Size = FieldOffset + FieldSize ;
updateAlignment ( FieldAlign ) ;
RemainingBitsInField = Context . toBits ( FieldSize ) - Width ;
}
}
void
MicrosoftRecordLayoutBuilder : : layoutZeroWidthBitField ( const FieldDecl * FD ) {
// Zero-width bitfields are ignored unless they follow a non-zero-width
// bitfield.
std : : pair < CharUnits , CharUnits > FieldInfo = getAdjustedFieldInfo ( FD ) ;
CharUnits FieldSize = FieldInfo . first ;
CharUnits FieldAlign = FieldInfo . second ;
if ( ! LastFieldIsNonZeroWidthBitfield ) {
placeFieldAtOffset ( IsUnion ? CharUnits : : Zero ( ) : Size ) ;
// TODO: Add a Sema warning that MS ignores alignment for zero
// sized bitfields that occur after zero-size bitfields or non bitfields.
return ;
}
LastFieldIsNonZeroWidthBitfield = false ;
if ( IsUnion ) {
placeFieldAtZero ( ) ;
Size = std : : max ( Size , FieldSize ) ;
} else {
// Round up the current record size to the field's alignment boundary.
CharUnits FieldOffset = Size . RoundUpToAlignment ( FieldAlign ) ;
placeFieldAtOffset ( FieldOffset ) ;
Size = FieldOffset ;
updateAlignment ( FieldAlign ) ;
}
}
void MicrosoftRecordLayoutBuilder : : layoutVirtualBases ( const CXXRecordDecl * RD ) {
if ( ! HasVBPtr )
return ;
updateAlignment ( VirtualAlignment ) ;
// Zero-sized v-bases obey the alignment attribute so apply it here. The
// alignment attribute is normally accounted for in FinalizeLayout.
if ( unsigned MaxAlign = RD - > getMaxAlignment ( ) )
updateAlignment ( Context . toCharUnitsFromBits ( MaxAlign ) ) ;
llvm : : SmallPtrSet < const CXXRecordDecl * , 2 > HasVtordisp =
computeVtorDispSet ( RD ) ;
// Iterate through the virtual bases and lay them out.
for ( CXXRecordDecl : : base_class_const_iterator i = RD - > vbases_begin ( ) ,
e = RD - > vbases_end ( ) ;
i ! = e ; + + i ) {
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( i - > getType ( ) - > castAs < RecordType > ( ) - > getDecl ( ) ) ;
layoutVirtualBase ( BaseDecl , HasVtordisp . count ( BaseDecl ) ) ;
}
}
void MicrosoftRecordLayoutBuilder : : layoutVirtualBase ( const CXXRecordDecl * RD ,
bool HasVtordisp ) {
if ( LazyEmptyBase ) {
const ASTRecordLayout & LazyLayout =
Context . getASTRecordLayout ( LazyEmptyBase ) ;
Size = Size . RoundUpToAlignment ( LazyLayout . getAlignment ( ) ) ;
VBases . insert (
std : : make_pair ( LazyEmptyBase , ASTRecordLayout : : VBaseInfo ( Size , false ) ) ) ;
// Empty bases only consume space when followed by another empty base.
// The space consumed is in an Alignment sized/aligned block and the v-base
// is placed at its alignment offset into the chunk, unless its alignment
// is less than the size of a pointer, at which it is placed at pointer
// width offset in the chunck. We have no idea why.
if ( RD & & Context . getASTRecordLayout ( RD ) . getNonVirtualSize ( ) . isZero ( ) )
Size = Size . RoundUpToAlignment ( Alignment ) + PointerSize ;
LazyEmptyBase = 0 ;
}
// RD is null when flushing the final lazy virtual base.
if ( ! RD )
return ;
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( RD ) ;
if ( Layout . getNonVirtualSize ( ) . isZero ( ) & & ! HasVtordisp ) {
LazyEmptyBase = RD ;
return ;
}
CharUnits BaseNVSize = Layout . getNonVirtualSize ( ) ;
CharUnits BaseAlign = Layout . getAlignment ( ) ;
if ( HasVtordisp )
Size = Size . RoundUpToAlignment ( Alignment ) + PointerSize ;
Size = Size . RoundUpToAlignment ( BaseAlign ) ;
// Insert the base here.
CharUnits BaseOffset = Size . RoundUpToAlignment ( BaseAlign ) ;
VBases . insert (
std : : make_pair ( RD , ASTRecordLayout : : VBaseInfo ( BaseOffset , HasVtordisp ) ) ) ;
Size = BaseOffset + BaseNVSize ;
// Note: we don't update alignment here because it was accounted for in
// InitializeLayout.
}
void MicrosoftRecordLayoutBuilder : : finalizeCXXLayout ( const CXXRecordDecl * RD ) {
// Flush the lazy virtual base.
layoutVirtualBase ( 0 , false ) ;
if ( RD - > vbases_begin ( ) = = RD - > vbases_end ( ) | | AlignAfterVBases )
Size = Size . RoundUpToAlignment ( Alignment ) ;
if ( Size . isZero ( ) )
Size = Alignment ;
}
void MicrosoftRecordLayoutBuilder : : honorDeclspecAlign ( const RecordDecl * RD ) {
if ( unsigned MaxAlign = RD - > getMaxAlignment ( ) ) {
AlignAfterVBases = true ;
updateAlignment ( Context . toCharUnitsFromBits ( MaxAlign ) ) ;
Size = Size . RoundUpToAlignment ( Alignment ) ;
}
}
static bool
RequiresVtordisp ( const llvm : : SmallPtrSet < const CXXRecordDecl * , 2 > & HasVtordisp ,
const CXXRecordDecl * RD ) {
if ( HasVtordisp . count ( RD ) )
return true ;
// If any of a virtual bases non-virtual bases (recursively) requires a
// vtordisp than so does this virtual base.
for ( CXXRecordDecl : : base_class_const_iterator i = RD - > bases_begin ( ) ,
e = RD - > bases_end ( ) ;
i ! = e ; + + i )
if ( ! i - > isVirtual ( ) & &
RequiresVtordisp (
HasVtordisp ,
cast < CXXRecordDecl > ( i - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ) )
return true ;
return false ;
}
llvm : : SmallPtrSet < const CXXRecordDecl * , 2 >
MicrosoftRecordLayoutBuilder : : computeVtorDispSet ( const CXXRecordDecl * RD ) {
llvm : : SmallPtrSet < const CXXRecordDecl * , 2 > HasVtordisp ;
// If any of our bases need a vtordisp for this type, so do we. Check our
// direct bases for vtordisp requirements.
for ( CXXRecordDecl : : base_class_const_iterator i = RD - > bases_begin ( ) ,
e = RD - > bases_end ( ) ;
i ! = e ; + + i ) {
const CXXRecordDecl * BaseDecl =
cast < CXXRecordDecl > ( i - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
const ASTRecordLayout & Layout = Context . getASTRecordLayout ( BaseDecl ) ;
for ( ASTRecordLayout : : VBaseOffsetsMapTy : : const_iterator
bi = Layout . getVBaseOffsetsMap ( ) . begin ( ) ,
be = Layout . getVBaseOffsetsMap ( ) . end ( ) ;
bi ! = be ; + + bi )
if ( bi - > second . hasVtorDisp ( ) )
HasVtordisp . insert ( bi - > first ) ;
}
// If we define a constructor or destructor and override a function that is
// defined in a virtual base's vtable, that virtual bases need a vtordisp.
// Here we collect a list of classes with vtables for which our virtual bases
// actually live. The virtual bases with this property will require
// vtordisps. In addition, virtual bases that contain non-virtual bases that
// define functions we override also require vtordisps, this case is checked
// explicitly below.
if ( RD - > hasUserDeclaredConstructor ( ) | | RD - > hasUserDeclaredDestructor ( ) ) {
llvm : : SmallPtrSet < const CXXMethodDecl * , 8 > Work ;
// Seed the working set with our non-destructor virtual methods.
for ( CXXRecordDecl : : method_iterator i = RD - > method_begin ( ) ,
e = RD - > method_end ( ) ;
i ! = e ; + + i )
2013-10-15 04:14:09 +08:00
if ( ( * i ) - > isVirtual ( ) & & ! isa < CXXDestructorDecl > ( * i ) )
2013-10-12 04:19:00 +08:00
Work . insert ( * i ) ;
while ( ! Work . empty ( ) ) {
const CXXMethodDecl * MD = * Work . begin ( ) ;
CXXMethodDecl : : method_iterator i = MD - > begin_overridden_methods ( ) ,
e = MD - > end_overridden_methods ( ) ;
if ( i = = e )
// If a virtual method has no-overrides it lives in its parent's vtable.
HasVtordisp . insert ( MD - > getParent ( ) ) ;
else
Work . insert ( i , e ) ;
// We've finished processing this element, remove it from the working set.
Work . erase ( MD ) ;
}
}
// Re-check all of our vbases for vtordisp requirements (in case their
// non-virtual bases have vtordisp requirements).
for ( CXXRecordDecl : : base_class_const_iterator i = RD - > vbases_begin ( ) ,
e = RD - > vbases_end ( ) ;
i ! = e ; + + i ) {
const CXXRecordDecl * BaseDecl = i - > getType ( ) - > getAsCXXRecordDecl ( ) ;
if ( ! HasVtordisp . count ( BaseDecl ) & & RequiresVtordisp ( HasVtordisp , BaseDecl ) )
HasVtordisp . insert ( BaseDecl ) ;
}
return HasVtordisp ;
}
/// \brief Get or compute information about the layout of the specified record
/// (struct/union/class), which indicates its size and field position
/// information.
const ASTRecordLayout *
ASTContext : : BuildMicrosoftASTRecordLayout ( const RecordDecl * D ) const {
MicrosoftRecordLayoutBuilder Builder ( * this ) ;
if ( const CXXRecordDecl * RD = dyn_cast < CXXRecordDecl > ( D ) ) {
Builder . cxxLayout ( RD ) ;
return new ( * this ) ASTRecordLayout (
* this , Builder . Size , Builder . Alignment ,
Builder . HasVFPtr & & ! Builder . PrimaryBase , Builder . HasVFPtr ,
Builder . HasVBPtr & & ! Builder . SharedVBPtrBase , Builder . VBPtrOffset ,
Builder . DataSize , Builder . FieldOffsets . data ( ) ,
Builder . FieldOffsets . size ( ) , Builder . DataSize ,
Builder . NonVirtualAlignment , CharUnits : : Zero ( ) , Builder . PrimaryBase ,
false , Builder . AlignAfterVBases , Builder . Bases , Builder . VBases ) ;
} else {
Builder . layout ( D ) ;
return new ( * this ) ASTRecordLayout (
* this , Builder . Size , Builder . Alignment , Builder . Size ,
Builder . FieldOffsets . data ( ) , Builder . FieldOffsets . size ( ) ) ;
}
}
2010-05-26 12:56:53 +08:00
/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
2011-01-12 17:06:06 +08:00
const ASTRecordLayout &
ASTContext : : getASTRecordLayout ( const RecordDecl * D ) const {
2011-10-07 10:39:22 +08:00
// These asserts test different things. A record has a definition
// as soon as we begin to parse the definition. That definition is
// not a complete definition (which is what isDefinition() tests)
// until we *finish* parsing the definition.
2012-02-08 08:04:52 +08:00
if ( D - > hasExternalLexicalStorage ( ) & & ! D - > getDefinition ( ) )
getExternalSource ( ) - > CompleteType ( const_cast < RecordDecl * > ( D ) ) ;
2010-05-26 12:56:53 +08:00
D = D - > getDefinition ( ) ;
assert ( D & & " Cannot get layout of forward declarations! " ) ;
2013-06-26 06:19:15 +08:00
assert ( ! D - > isInvalidDecl ( ) & & " Cannot get layout of invalid decl! " ) ;
2011-10-07 14:10:15 +08:00
assert ( D - > isCompleteDefinition ( ) & & " Cannot layout type before complete! " ) ;
2010-05-26 12:56:53 +08:00
// Look up this layout, if already laid out, return what we have.
// Note that we can't save a reference to the entry because this function
// is recursive.
const ASTRecordLayout * Entry = ASTRecordLayouts [ D ] ;
if ( Entry ) return * Entry ;
2013-10-12 04:19:00 +08:00
const ASTRecordLayout * NewEntry = 0 ;
2010-05-26 13:10:47 +08:00
2013-10-12 04:19:00 +08:00
if ( isMsLayout ( D ) & & ! D - > getASTContext ( ) . getExternalSource ( ) ) {
NewEntry = BuildMicrosoftASTRecordLayout ( D ) ;
} else if ( const CXXRecordDecl * RD = dyn_cast < CXXRecordDecl > ( D ) ) {
2010-05-27 08:07:01 +08:00
EmptySubobjectMap EmptySubobjects ( * this , RD ) ;
2011-11-08 12:01:03 +08:00
RecordLayoutBuilder Builder ( * this , & EmptySubobjects ) ;
Builder . Layout ( RD ) ;
2013-01-29 09:14:22 +08:00
// In certain situations, we are allowed to lay out objects in the
// tail-padding of base classes. This is ABI-dependent.
// FIXME: this should be stored in the record layout.
bool skipTailPadding =
mustSkipTailPadding ( getTargetInfo ( ) . getCXXABI ( ) , cast < CXXRecordDecl > ( D ) ) ;
2010-05-26 13:10:47 +08:00
// FIXME: This should be done in FinalizeLayout.
2011-02-28 10:01:38 +08:00
CharUnits DataSize =
2013-01-29 09:14:22 +08:00
skipTailPadding ? Builder . getSize ( ) : Builder . getDataSize ( ) ;
2011-02-28 10:01:38 +08:00
CharUnits NonVirtualSize =
2013-01-29 09:14:22 +08:00
skipTailPadding ? DataSize : Builder . NonVirtualSize ;
2010-05-27 10:25:46 +08:00
NewEntry =
2011-11-08 12:01:03 +08:00
new ( * this ) ASTRecordLayout ( * this , Builder . getSize ( ) ,
Builder . Alignment ,
2012-05-01 16:55:32 +08:00
Builder . HasOwnVFPtr ,
2013-10-12 04:19:00 +08:00
RD - > isDynamicClass ( ) ,
Builder . HasOwnVBPtr ,
2011-11-08 12:01:03 +08:00
Builder . VBPtrOffset ,
2011-02-28 10:01:38 +08:00
DataSize ,
2011-11-08 12:01:03 +08:00
Builder . FieldOffsets . data ( ) ,
Builder . FieldOffsets . size ( ) ,
2011-02-16 09:52:01 +08:00
NonVirtualSize ,
2011-11-08 12:01:03 +08:00
Builder . NonVirtualAlignment ,
2010-05-27 08:07:01 +08:00
EmptySubobjects . SizeOfLargestEmptySubobject ,
2011-11-08 12:01:03 +08:00
Builder . PrimaryBase ,
Builder . PrimaryBaseIsVirtual ,
2013-10-12 04:19:00 +08:00
true ,
2011-11-08 12:01:03 +08:00
Builder . Bases , Builder . VBases ) ;
2010-05-26 13:10:47 +08:00
} else {
2011-11-08 12:01:03 +08:00
RecordLayoutBuilder Builder ( * this , /*EmptySubobjects=*/ 0 ) ;
2010-05-26 13:10:47 +08:00
Builder . Layout ( D ) ;
2010-05-27 10:25:46 +08:00
2010-05-26 13:10:47 +08:00
NewEntry =
2011-02-28 10:01:38 +08:00
new ( * this ) ASTRecordLayout ( * this , Builder . getSize ( ) ,
2011-02-16 10:05:21 +08:00
Builder . Alignment ,
2011-02-28 10:01:38 +08:00
Builder . getSize ( ) ,
2010-05-26 13:10:47 +08:00
Builder . FieldOffsets . data ( ) ,
Builder . FieldOffsets . size ( ) ) ;
}
2010-05-26 12:56:53 +08:00
ASTRecordLayouts [ D ] = NewEntry ;
2012-03-11 15:00:24 +08:00
if ( getLangOpts ( ) . DumpRecordLayouts ) {
2013-07-13 06:30:03 +08:00
llvm : : outs ( ) < < " \n *** Dumping AST Record Layout \n " ;
DumpRecordLayout ( D , llvm : : outs ( ) , getLangOpts ( ) . DumpRecordLayoutsSimple ) ;
2010-05-26 12:56:53 +08:00
}
return * NewEntry ;
}
2013-01-26 06:31:03 +08:00
const CXXMethodDecl * ASTContext : : getCurrentKeyFunction ( const CXXRecordDecl * RD ) {
2013-05-30 00:18:30 +08:00
if ( ! getTargetInfo ( ) . getCXXABI ( ) . hasKeyFunctions ( ) )
return 0 ;
2013-01-26 06:31:03 +08:00
assert ( RD - > getDefinition ( ) & & " Cannot get key function for forward decl! " ) ;
2010-05-26 12:56:53 +08:00
RD = cast < CXXRecordDecl > ( RD - > getDefinition ( ) ) ;
2010-05-27 10:25:46 +08:00
2013-08-30 07:59:27 +08:00
LazyDeclPtr & Entry = KeyFunctions [ RD ] ;
if ( ! Entry )
Entry = const_cast < CXXMethodDecl * > ( computeKeyFunction ( * this , RD ) ) ;
2013-01-26 06:31:03 +08:00
2013-08-30 07:59:27 +08:00
return cast_or_null < CXXMethodDecl > ( Entry . get ( getExternalSource ( ) ) ) ;
2013-01-26 06:31:03 +08:00
}
2013-08-30 07:59:27 +08:00
void ASTContext : : setNonKeyFunction ( const CXXMethodDecl * Method ) {
2013-10-17 23:37:26 +08:00
assert ( Method = = Method - > getFirstDecl ( ) & &
2013-01-26 06:31:03 +08:00
" not working with method declaration from class definition " ) ;
2010-05-27 10:25:46 +08:00
2013-01-26 06:31:03 +08:00
// Look up the cache entry. Since we're working with the first
// declaration, its parent must be the class definition, which is
// the correct key for the KeyFunctions hash.
2013-08-30 07:59:27 +08:00
llvm : : DenseMap < const CXXRecordDecl * , LazyDeclPtr > : : iterator
I = KeyFunctions . find ( Method - > getParent ( ) ) ;
2013-01-26 06:31:03 +08:00
// If it's not cached, there's nothing to do.
2013-08-30 07:59:27 +08:00
if ( I = = KeyFunctions . end ( ) ) return ;
2013-01-26 06:31:03 +08:00
// If it is cached, check whether it's the target method, and if so,
// remove it from the cache.
2013-08-30 07:59:27 +08:00
if ( I - > second . get ( getExternalSource ( ) ) = = Method ) {
2013-01-26 06:31:03 +08:00
// FIXME: remember that we did this for module / chained PCH state?
2013-08-30 07:59:27 +08:00
KeyFunctions . erase ( I ) ;
2013-01-26 06:31:03 +08:00
}
2010-05-26 12:56:53 +08:00
}
2012-01-14 12:30:29 +08:00
static uint64_t getFieldOffset ( const ASTContext & C , const FieldDecl * FD ) {
const ASTRecordLayout & Layout = C . getASTRecordLayout ( FD - > getParent ( ) ) ;
return Layout . getFieldOffset ( FD - > getFieldIndex ( ) ) ;
}
uint64_t ASTContext : : getFieldOffset ( const ValueDecl * VD ) const {
uint64_t OffsetInBits ;
if ( const FieldDecl * FD = dyn_cast < FieldDecl > ( VD ) ) {
OffsetInBits = : : getFieldOffset ( * this , FD ) ;
} else {
const IndirectFieldDecl * IFD = cast < IndirectFieldDecl > ( VD ) ;
OffsetInBits = 0 ;
for ( IndirectFieldDecl : : chain_iterator CI = IFD - > chain_begin ( ) ,
CE = IFD - > chain_end ( ) ;
CI ! = CE ; + + CI )
OffsetInBits + = : : getFieldOffset ( * this , cast < FieldDecl > ( * CI ) ) ;
}
return OffsetInBits ;
}
2011-10-05 14:00:51 +08:00
/// getObjCLayout - Get or compute information about the layout of the
/// given interface.
2010-05-26 12:56:53 +08:00
///
/// \param Impl - If given, also include the layout of the interface's
/// implementation. This may differ by including synthesized ivars.
const ASTRecordLayout &
ASTContext : : getObjCLayout ( const ObjCInterfaceDecl * D ,
2011-01-12 17:06:06 +08:00
const ObjCImplementationDecl * Impl ) const {
2011-12-20 23:50:13 +08:00
// Retrieve the definition
2012-03-16 00:33:08 +08:00
if ( D - > hasExternalLexicalStorage ( ) & & ! D - > getDefinition ( ) )
getExternalSource ( ) - > CompleteType ( const_cast < ObjCInterfaceDecl * > ( D ) ) ;
2011-12-20 23:50:13 +08:00
D = D - > getDefinition ( ) ;
assert ( D & & D - > isThisDeclarationADefinition ( ) & & " Invalid interface decl! " ) ;
2010-05-26 12:56:53 +08:00
// Look up this layout, if already laid out, return what we have.
2012-09-06 23:59:27 +08:00
const ObjCContainerDecl * Key =
Impl ? ( const ObjCContainerDecl * ) Impl : ( const ObjCContainerDecl * ) D ;
2010-05-26 12:56:53 +08:00
if ( const ASTRecordLayout * Entry = ObjCLayouts [ Key ] )
return * Entry ;
// Add in synthesized ivar count if laying out an implementation.
if ( Impl ) {
unsigned SynthCount = CountNonClassIvars ( D ) ;
// If there aren't any sythesized ivars then reuse the interface
// entry. Note we can't cache this because we simply free all
// entries later; however we shouldn't look up implementations
// frequently.
if ( SynthCount = = 0 )
return getObjCLayout ( D , 0 ) ;
}
2011-11-08 12:01:03 +08:00
RecordLayoutBuilder Builder ( * this , /*EmptySubobjects=*/ 0 ) ;
2010-05-26 13:04:25 +08:00
Builder . Layout ( D ) ;
2010-05-26 12:56:53 +08:00
const ASTRecordLayout * NewEntry =
2011-02-28 10:01:38 +08:00
new ( * this ) ASTRecordLayout ( * this , Builder . getSize ( ) ,
2011-02-16 10:05:21 +08:00
Builder . Alignment ,
2011-02-28 10:01:38 +08:00
Builder . getDataSize ( ) ,
2010-05-26 13:04:25 +08:00
Builder . FieldOffsets . data ( ) ,
Builder . FieldOffsets . size ( ) ) ;
2010-05-27 10:25:46 +08:00
2010-05-26 12:56:53 +08:00
ObjCLayouts [ Key ] = NewEntry ;
return * NewEntry ;
}
2011-07-23 18:55:15 +08:00
static void PrintOffset ( raw_ostream & OS ,
2010-11-01 07:45:59 +08:00
CharUnits Offset , unsigned IndentLevel ) {
2011-11-05 17:02:52 +08:00
OS < < llvm : : format ( " %4 " PRId64 " | " , ( int64_t ) Offset . getQuantity ( ) ) ;
2010-04-08 10:59:49 +08:00
OS . indent ( IndentLevel * 2 ) ;
}
2012-12-08 08:07:24 +08:00
static void PrintIndentNoOffset ( raw_ostream & OS , unsigned IndentLevel ) {
OS < < " | " ;
OS . indent ( IndentLevel * 2 ) ;
}
2011-07-23 18:55:15 +08:00
static void DumpCXXRecordLayout ( raw_ostream & OS ,
2011-01-12 17:06:06 +08:00
const CXXRecordDecl * RD , const ASTContext & C ,
2010-11-01 07:45:59 +08:00
CharUnits Offset ,
2010-04-08 10:59:49 +08:00
unsigned IndentLevel ,
const char * Description ,
bool IncludeVirtualBases ) {
2010-11-01 07:45:59 +08:00
const ASTRecordLayout & Layout = C . getASTRecordLayout ( RD ) ;
2010-04-08 10:59:49 +08:00
PrintOffset ( OS , Offset , IndentLevel ) ;
2010-04-20 00:39:44 +08:00
OS < < C . getTypeDeclType ( const_cast < CXXRecordDecl * > ( RD ) ) . getAsString ( ) ;
2010-04-08 10:59:49 +08:00
if ( Description )
OS < < ' ' < < Description ;
if ( RD - > isEmpty ( ) )
OS < < " (empty) " ;
OS < < ' \n ' ;
IndentLevel + + ;
2010-11-01 07:45:59 +08:00
const CXXRecordDecl * PrimaryBase = Layout . getPrimaryBase ( ) ;
2013-10-12 04:19:00 +08:00
bool HasOwnVFPtr = Layout . hasOwnVFPtr ( ) ;
bool HasOwnVBPtr = Layout . hasOwnVBPtr ( ) ;
2010-04-08 10:59:49 +08:00
// Vtable pointer.
2013-10-12 04:19:00 +08:00
if ( RD - > isDynamicClass ( ) & & ! PrimaryBase & & ! isMsLayout ( RD ) ) {
2010-04-08 10:59:49 +08:00
PrintOffset ( OS , Offset , IndentLevel ) ;
2011-10-15 02:45:37 +08:00
OS < < ' ( ' < < * RD < < " vtable pointer) \n " ;
2013-10-12 04:19:00 +08:00
} else if ( HasOwnVFPtr ) {
PrintOffset ( OS , Offset , IndentLevel ) ;
// vfptr (for Microsoft C++ ABI)
OS < < ' ( ' < < * RD < < " vftable pointer) \n " ;
2010-04-08 10:59:49 +08:00
}
2013-10-12 04:19:00 +08:00
2010-04-08 10:59:49 +08:00
// Dump (non-virtual) bases
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > bases_begin ( ) ,
E = RD - > bases_end ( ) ; I ! = E ; + + I ) {
assert ( ! I - > getType ( ) - > isDependentType ( ) & &
" Cannot layout class with dependent bases. " ) ;
if ( I - > isVirtual ( ) )
continue ;
const CXXRecordDecl * Base =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
2010-11-01 07:45:59 +08:00
CharUnits BaseOffset = Offset + Layout . getBaseClassOffset ( Base ) ;
2010-04-08 10:59:49 +08:00
DumpCXXRecordLayout ( OS , Base , C , BaseOffset , IndentLevel ,
Base = = PrimaryBase ? " (primary base) " : " (base) " ,
/*IncludeVirtualBases=*/ false ) ;
}
2011-10-22 06:49:56 +08:00
2013-10-12 04:19:00 +08:00
// vbptr (for Microsoft C++ ABI)
if ( HasOwnVBPtr ) {
2011-09-28 03:12:27 +08:00
PrintOffset ( OS , Offset + Layout . getVBPtrOffset ( ) , IndentLevel ) ;
2011-10-15 02:45:37 +08:00
OS < < ' ( ' < < * RD < < " vbtable pointer) \n " ;
2011-09-28 03:12:27 +08:00
}
2010-04-08 10:59:49 +08:00
// Dump fields.
uint64_t FieldNo = 0 ;
for ( CXXRecordDecl : : field_iterator I = RD - > field_begin ( ) ,
E = RD - > field_end ( ) ; I ! = E ; + + I , + + FieldNo ) {
2012-06-07 04:45:41 +08:00
const FieldDecl & Field = * * I ;
2010-11-01 07:45:59 +08:00
CharUnits FieldOffset = Offset +
2011-01-18 09:56:16 +08:00
C . toCharUnitsFromBits ( Layout . getFieldOffset ( FieldNo ) ) ;
2010-04-08 10:59:49 +08:00
2012-04-30 10:36:29 +08:00
if ( const RecordType * RT = Field . getType ( ) - > getAs < RecordType > ( ) ) {
2010-04-08 10:59:49 +08:00
if ( const CXXRecordDecl * D = dyn_cast < CXXRecordDecl > ( RT - > getDecl ( ) ) ) {
DumpCXXRecordLayout ( OS , D , C , FieldOffset , IndentLevel ,
2012-04-30 10:36:29 +08:00
Field . getName ( ) . data ( ) ,
2010-04-08 10:59:49 +08:00
/*IncludeVirtualBases=*/ true ) ;
continue ;
}
}
PrintOffset ( OS , FieldOffset , IndentLevel ) ;
2012-04-30 10:36:29 +08:00
OS < < Field . getType ( ) . getAsString ( ) < < ' ' < < Field < < ' \n ' ;
2010-04-08 10:59:49 +08:00
}
if ( ! IncludeVirtualBases )
return ;
// Dump virtual bases.
2012-05-01 16:55:32 +08:00
const ASTRecordLayout : : VBaseOffsetsMapTy & vtordisps =
Layout . getVBaseOffsetsMap ( ) ;
2010-04-08 10:59:49 +08:00
for ( CXXRecordDecl : : base_class_const_iterator I = RD - > vbases_begin ( ) ,
E = RD - > vbases_end ( ) ; I ! = E ; + + I ) {
assert ( I - > isVirtual ( ) & & " Found non-virtual class! " ) ;
const CXXRecordDecl * VBase =
cast < CXXRecordDecl > ( I - > getType ( ) - > getAs < RecordType > ( ) - > getDecl ( ) ) ;
2010-11-01 07:45:59 +08:00
CharUnits VBaseOffset = Offset + Layout . getVBaseClassOffset ( VBase ) ;
2012-05-01 16:55:32 +08:00
if ( vtordisps . find ( VBase ) - > second . hasVtorDisp ( ) ) {
PrintOffset ( OS , VBaseOffset - CharUnits : : fromQuantity ( 4 ) , IndentLevel ) ;
OS < < " (vtordisp for vbase " < < * VBase < < " ) \n " ;
}
2010-04-08 10:59:49 +08:00
DumpCXXRecordLayout ( OS , VBase , C , VBaseOffset , IndentLevel ,
VBase = = PrimaryBase ?
" (primary virtual base) " : " (virtual base) " ,
/*IncludeVirtualBases=*/ false ) ;
}
2012-12-08 08:07:24 +08:00
PrintIndentNoOffset ( OS , IndentLevel - 1 ) ;
OS < < " [sizeof= " < < Layout . getSize ( ) . getQuantity ( ) ;
2013-10-12 04:19:00 +08:00
if ( ! isMsLayout ( RD ) )
OS < < " , dsize= " < < Layout . getDataSize ( ) . getQuantity ( ) ;
2011-02-15 10:32:40 +08:00
OS < < " , align= " < < Layout . getAlignment ( ) . getQuantity ( ) < < ' \n ' ;
2012-12-08 08:07:24 +08:00
PrintIndentNoOffset ( OS , IndentLevel - 1 ) ;
OS < < " nvsize= " < < Layout . getNonVirtualSize ( ) . getQuantity ( ) ;
OS < < " , nvalign= " < < Layout . getNonVirtualAlign ( ) . getQuantity ( ) < < " ] \n " ;
2010-04-08 10:59:49 +08:00
OS < < ' \n ' ;
}
2010-04-20 04:44:53 +08:00
void ASTContext : : DumpRecordLayout ( const RecordDecl * RD ,
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
raw_ostream & OS ,
bool Simple ) const {
2010-04-20 04:44:53 +08:00
const ASTRecordLayout & Info = getASTRecordLayout ( RD ) ;
if ( const CXXRecordDecl * CXXRD = dyn_cast < CXXRecordDecl > ( RD ) )
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
if ( ! Simple )
return DumpCXXRecordLayout ( OS , CXXRD , * this , CharUnits ( ) , 0 , 0 ,
/*IncludeVirtualBases=*/ true ) ;
2010-04-20 04:44:53 +08:00
OS < < " Type: " < < getTypeDeclType ( RD ) . getAsString ( ) < < " \n " ;
Extend the ExternalASTSource interface to allow the AST source to
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
2012-01-26 15:55:45 +08:00
if ( ! Simple ) {
OS < < " Record: " ;
RD - > dump ( ) ;
}
2010-04-20 04:44:53 +08:00
OS < < " \n Layout: " ;
OS < < " <ASTRecordLayout \n " ;
2011-02-11 09:54:29 +08:00
OS < < " Size: " < < toBits ( Info . getSize ( ) ) < < " \n " ;
2013-10-12 04:19:00 +08:00
if ( ! isMsLayout ( RD ) )
OS < < " DataSize: " < < toBits ( Info . getDataSize ( ) ) < < " \n " ;
2011-02-15 10:32:40 +08:00
OS < < " Alignment: " < < toBits ( Info . getAlignment ( ) ) < < " \n " ;
2010-04-20 04:44:53 +08:00
OS < < " FieldOffsets: [ " ;
for ( unsigned i = 0 , e = Info . getFieldCount ( ) ; i ! = e ; + + i ) {
if ( i ) OS < < " , " ;
OS < < Info . getFieldOffset ( i ) ;
}
OS < < " ]> \n " ;
}