llvm-project/llvm/lib/Target/ARM/ARMLegalizerInfo.cpp

353 lines
14 KiB
C++
Raw Normal View History

//===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for ARM.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "ARMLegalizerInfo.h"
#include "ARMCallLowering.h"
#include "ARMSubtarget.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Target/TargetOpcodes.h"
using namespace llvm;
static bool AEABI(const ARMSubtarget &ST) {
return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI();
}
ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) {
using namespace TargetOpcode;
const LLT p0 = LLT::pointer(0, 32);
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
setAction({G_GLOBAL_VALUE, p0}, Legal);
setAction({G_FRAME_INDEX, p0}, Legal);
for (unsigned Op : {G_LOAD, G_STORE}) {
for (auto Ty : {s1, s8, s16, s32, p0})
setAction({Op, Ty}, Legal);
setAction({Op, 1, p0}, Legal);
}
for (unsigned Op : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR}) {
for (auto Ty : {s1, s8, s16})
setAction({Op, Ty}, WidenScalar);
setAction({Op, s32}, Legal);
}
for (unsigned Op : {G_SDIV, G_UDIV}) {
for (auto Ty : {s8, s16})
setAction({Op, Ty}, WidenScalar);
if (ST.hasDivideInARMMode())
setAction({Op, s32}, Legal);
else
setAction({Op, s32}, Libcall);
}
for (unsigned Op : {G_SREM, G_UREM}) {
for (auto Ty : {s8, s16})
setAction({Op, Ty}, WidenScalar);
if (ST.hasDivideInARMMode())
setAction({Op, s32}, Lower);
else if (AEABI(ST))
setAction({Op, s32}, Custom);
else
setAction({Op, s32}, Libcall);
}
for (unsigned Op : {G_SEXT, G_ZEXT}) {
setAction({Op, s32}, Legal);
for (auto Ty : {s1, s8, s16})
setAction({Op, 1, Ty}, Legal);
}
setAction({G_GEP, p0}, Legal);
setAction({G_GEP, 1, s32}, Legal);
setAction({G_SELECT, s32}, Legal);
setAction({G_SELECT, p0}, Legal);
setAction({G_SELECT, 1, s1}, Legal);
setAction({G_BRCOND, s1}, Legal);
setAction({G_CONSTANT, s32}, Legal);
for (auto Ty : {s1, s8, s16})
setAction({G_CONSTANT, Ty}, WidenScalar);
setAction({G_ICMP, s1}, Legal);
for (auto Ty : {s8, s16})
setAction({G_ICMP, 1, Ty}, WidenScalar);
for (auto Ty : {s32, p0})
setAction({G_ICMP, 1, Ty}, Legal);
if (!ST.useSoftFloat() && ST.hasVFP2()) {
setAction({G_FADD, s32}, Legal);
setAction({G_FADD, s64}, Legal);
setAction({G_LOAD, s64}, Legal);
setAction({G_STORE, s64}, Legal);
setAction({G_FCMP, s1}, Legal);
setAction({G_FCMP, 1, s32}, Legal);
setAction({G_FCMP, 1, s64}, Legal);
} else {
for (auto Ty : {s32, s64})
setAction({G_FADD, Ty}, Libcall);
setAction({G_FCMP, s1}, Legal);
setAction({G_FCMP, 1, s32}, Custom);
setAction({G_FCMP, 1, s64}, Custom);
if (AEABI(ST))
setFCmpLibcallsAEABI();
else
setFCmpLibcallsGNU();
}
for (unsigned Op : {G_FREM, G_FPOW})
for (auto Ty : {s32, s64})
setAction({Op, Ty}, Libcall);
computeTables();
}
void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
// FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
// default-initialized.
FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
FCmp32Libcalls[CmpInst::FCMP_OEQ] = {
{RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}};
FCmp32Libcalls[CmpInst::FCMP_OGE] = {
{RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}};
FCmp32Libcalls[CmpInst::FCMP_OGT] = {
{RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}};
FCmp32Libcalls[CmpInst::FCMP_OLE] = {
{RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}};
FCmp32Libcalls[CmpInst::FCMP_OLT] = {
{RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}};
FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}};
FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}};
FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}};
FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}};
FCmp32Libcalls[CmpInst::FCMP_UNO] = {
{RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
FCmp32Libcalls[CmpInst::FCMP_ONE] = {
{RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE},
{RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
FCmp32Libcalls[CmpInst::FCMP_UEQ] = {
{RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE},
{RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
FCmp64Libcalls[CmpInst::FCMP_OEQ] = {
{RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}};
FCmp64Libcalls[CmpInst::FCMP_OGE] = {
{RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}};
FCmp64Libcalls[CmpInst::FCMP_OGT] = {
{RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}};
FCmp64Libcalls[CmpInst::FCMP_OLE] = {
{RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}};
FCmp64Libcalls[CmpInst::FCMP_OLT] = {
{RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}};
FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}};
FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}};
FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}};
FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}};
FCmp64Libcalls[CmpInst::FCMP_UNO] = {
{RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
FCmp64Libcalls[CmpInst::FCMP_ONE] = {
{RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE},
{RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
FCmp64Libcalls[CmpInst::FCMP_UEQ] = {
{RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE},
{RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
}
void ARMLegalizerInfo::setFCmpLibcallsGNU() {
// FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
// default-initialized.
FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}};
FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}};
FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}};
FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}};
FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}};
FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}};
FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}};
FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}};
FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}};
FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}};
FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT},
{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ},
{RTLIB::UO_F32, CmpInst::ICMP_NE}};
FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}};
FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}};
FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}};
FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}};
FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}};
FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}};
FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}};
FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}};
FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}};
FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}};
FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT},
{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ},
{RTLIB::UO_F64, CmpInst::ICMP_NE}};
}
ARMLegalizerInfo::FCmpLibcallsList
ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate,
unsigned Size) const {
assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate");
if (Size == 32)
return FCmp32Libcalls[Predicate];
if (Size == 64)
return FCmp64Libcalls[Predicate];
llvm_unreachable("Unsupported size for FCmp predicate");
}
bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
using namespace TargetOpcode;
MIRBuilder.setInstr(MI);
switch (MI.getOpcode()) {
default:
return false;
case G_SREM:
case G_UREM: {
unsigned OriginalResult = MI.getOperand(0).getReg();
auto Size = MRI.getType(OriginalResult).getSizeInBits();
if (Size != 32)
return false;
auto Libcall =
MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
// Our divmod libcalls return a struct containing the quotient and the
// remainder. We need to create a virtual register for it.
auto &Ctx = MIRBuilder.getMF().getFunction()->getContext();
Type *ArgTy = Type::getInt32Ty(Ctx);
StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
auto RetVal = MRI.createGenericVirtualRegister(
getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout()));
auto Status = createLibcall(MIRBuilder, Libcall, {RetVal, RetTy},
{{MI.getOperand(1).getReg(), ArgTy},
{MI.getOperand(2).getReg(), ArgTy}});
if (Status != LegalizerHelper::Legalized)
return false;
// The remainder is the second result of divmod. Split the return value into
// a new, unused register for the quotient and the destination of the
// original instruction for the remainder.
MIRBuilder.buildUnmerge(
{MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult},
RetVal);
break;
}
case G_FCMP: {
assert(MRI.getType(MI.getOperand(2).getReg()) ==
MRI.getType(MI.getOperand(3).getReg()) &&
"Mismatched operands for G_FCMP");
auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
auto OriginalResult = MI.getOperand(0).getReg();
auto Predicate =
static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
auto Libcalls = getFCmpLibcalls(Predicate, OpSize);
if (Libcalls.empty()) {
assert((Predicate == CmpInst::FCMP_TRUE ||
Predicate == CmpInst::FCMP_FALSE) &&
"Predicate needs libcalls, but none specified");
MIRBuilder.buildConstant(OriginalResult,
Predicate == CmpInst::FCMP_TRUE ? 1 : 0);
MI.eraseFromParent();
return true;
}
auto &Ctx = MIRBuilder.getMF().getFunction()->getContext();
assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size");
auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx);
auto *RetTy = Type::getInt32Ty(Ctx);
SmallVector<unsigned, 2> Results;
for (auto Libcall : Libcalls) {
auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32));
auto Status =
createLibcall(MIRBuilder, Libcall.LibcallID, {LibcallResult, RetTy},
{{MI.getOperand(2).getReg(), ArgTy},
{MI.getOperand(3).getReg(), ArgTy}});
if (Status != LegalizerHelper::Legalized)
return false;
auto ProcessedResult =
Libcalls.size() == 1
? OriginalResult
: MRI.createGenericVirtualRegister(MRI.getType(OriginalResult));
// We have a result, but we need to transform it into a proper 1-bit 0 or
// 1, taking into account the different peculiarities of the values
// returned by the comparison functions.
CmpInst::Predicate ResultPred = Libcall.Predicate;
if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) {
// We have a nice 0 or 1, and we just need to truncate it back to 1 bit
// to keep the types consistent.
MIRBuilder.buildTrunc(ProcessedResult, LibcallResult);
} else {
// We need to compare against 0.
assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate");
auto Zero = MRI.createGenericVirtualRegister(LLT::scalar(32));
MIRBuilder.buildConstant(Zero, 0);
MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero);
}
Results.push_back(ProcessedResult);
}
if (Results.size() != 1) {
assert(Results.size() == 2 && "Unexpected number of results");
MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]);
}
break;
}
}
MI.eraseFromParent();
return true;
}