llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1249 lines
46 KiB
C++
Raw Normal View History

//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cctype>
using namespace llvm;
static cl::opt<bool> DisableHazardRecognizer(
"disable-sched-hazard", cl::Hidden, cl::init(false),
cl::desc("Disable hazard detection during preRA scheduling"));
TargetInstrInfo::~TargetInstrInfo() {
}
const TargetRegisterClass*
TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
const TargetRegisterInfo *TRI,
const MachineFunction &MF) const {
if (OpNum >= MCID.getNumOperands())
return nullptr;
short RegClass = MCID.OpInfo[OpNum].RegClass;
if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
return TRI->getPointerRegClass(MF, RegClass);
// Instructions like INSERT_SUBREG do not have fixed register classes.
if (RegClass < 0)
return nullptr;
// Otherwise just look it up normally.
return TRI->getRegClass(RegClass);
}
/// insertNoop - Insert a noop into the instruction stream at the specified
/// point.
2010-12-24 12:28:06 +08:00
void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
llvm_unreachable("Target didn't implement insertNoop!");
}
static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
return strncmp(Str, MAI.getCommentString().data(),
MAI.getCommentString().size()) == 0;
}
/// Measure the specified inline asm to determine an approximation of its
/// length.
/// Comments (which run till the next SeparatorString or newline) do not
/// count as an instruction.
/// Any other non-whitespace text is considered an instruction, with
/// multiple instructions separated by SeparatorString or newlines.
/// Variable-length instructions are not handled here; this function
/// may be overloaded in the target code to do that.
/// We implement a special case of the .space directive which takes only a
/// single integer argument in base 10 that is the size in bytes. This is a
/// restricted form of the GAS directive in that we only interpret
/// simple--i.e. not a logical or arithmetic expression--size values without
/// the optional fill value. This is primarily used for creating arbitrary
/// sized inline asm blocks for testing purposes.
unsigned TargetInstrInfo::getInlineAsmLength(
const char *Str,
const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
// Count the number of instructions in the asm.
bool AtInsnStart = true;
unsigned Length = 0;
const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
for (; *Str; ++Str) {
if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
strlen(MAI.getSeparatorString())) == 0) {
AtInsnStart = true;
} else if (isAsmComment(Str, MAI)) {
// Stop counting as an instruction after a comment until the next
// separator.
AtInsnStart = false;
}
if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
unsigned AddLength = MaxInstLength;
if (strncmp(Str, ".space", 6) == 0) {
char *EStr;
int SpaceSize;
SpaceSize = strtol(Str + 6, &EStr, 10);
SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
++EStr;
if (*EStr == '\0' || *EStr == '\n' ||
isAsmComment(EStr, MAI)) // Successfully parsed .space argument
AddLength = SpaceSize;
}
Length += AddLength;
AtInsnStart = false;
}
}
2010-12-24 12:28:06 +08:00
return Length;
}
/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
/// after it, replacing it with an unconditional branch to NewDest.
void
TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
MachineBasicBlock *NewDest) const {
MachineBasicBlock *MBB = Tail->getParent();
// Remove all the old successors of MBB from the CFG.
while (!MBB->succ_empty())
MBB->removeSuccessor(MBB->succ_begin());
// Save off the debug loc before erasing the instruction.
DebugLoc DL = Tail->getDebugLoc();
// Update call site info and remove all the dead instructions
// from the end of MBB.
while (Tail != MBB->end()) {
auto MI = Tail++;
if (MI->isCall())
MBB->getParent()->eraseCallSiteInfo(&*MI);
MBB->erase(MI);
}
// If MBB isn't immediately before MBB, insert a branch to it.
if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
MBB->addSuccessor(NewDest);
}
MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
bool NewMI, unsigned Idx1,
unsigned Idx2) const {
const MCInstrDesc &MCID = MI.getDesc();
bool HasDef = MCID.getNumDefs();
if (HasDef && !MI.getOperand(0).isReg())
// No idea how to commute this instruction. Target should implement its own.
return nullptr;
unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
"TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
"This only knows how to commute register operands so far");
Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
Register Reg1 = MI.getOperand(Idx1).getReg();
Register Reg2 = MI.getOperand(Idx2).getReg();
unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
bool Reg1IsKill = MI.getOperand(Idx1).isKill();
bool Reg2IsKill = MI.getOperand(Idx2).isKill();
bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
// Avoid calling isRenamable for virtual registers since we assert that
// renamable property is only queried/set for physical registers.
bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1)
? MI.getOperand(Idx1).isRenamable()
: false;
bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2)
? MI.getOperand(Idx2).isRenamable()
: false;
// If destination is tied to either of the commuted source register, then
// it must be updated.
if (HasDef && Reg0 == Reg1 &&
MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
Reg2IsKill = false;
Reg0 = Reg2;
SubReg0 = SubReg2;
} else if (HasDef && Reg0 == Reg2 &&
MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
Reg1IsKill = false;
Reg0 = Reg1;
SubReg0 = SubReg1;
}
MachineInstr *CommutedMI = nullptr;
if (NewMI) {
// Create a new instruction.
MachineFunction &MF = *MI.getMF();
CommutedMI = MF.CloneMachineInstr(&MI);
} else {
CommutedMI = &MI;
}
if (HasDef) {
CommutedMI->getOperand(0).setReg(Reg0);
CommutedMI->getOperand(0).setSubReg(SubReg0);
}
CommutedMI->getOperand(Idx2).setReg(Reg1);
CommutedMI->getOperand(Idx1).setReg(Reg2);
CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
// Avoid calling setIsRenamable for virtual registers since we assert that
// renamable property is only queried/set for physical registers.
if (Register::isPhysicalRegister(Reg1))
CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
if (Register::isPhysicalRegister(Reg2))
CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
return CommutedMI;
}
MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const {
// If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
// any commutable operand, which is done in findCommutedOpIndices() method
// called below.
if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
!findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
assert(MI.isCommutable() &&
"Precondition violation: MI must be commutable.");
return nullptr;
}
return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
}
bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
unsigned &ResultIdx2,
unsigned CommutableOpIdx1,
unsigned CommutableOpIdx2) {
if (ResultIdx1 == CommuteAnyOperandIndex &&
ResultIdx2 == CommuteAnyOperandIndex) {
ResultIdx1 = CommutableOpIdx1;
ResultIdx2 = CommutableOpIdx2;
} else if (ResultIdx1 == CommuteAnyOperandIndex) {
if (ResultIdx2 == CommutableOpIdx1)
ResultIdx1 = CommutableOpIdx2;
else if (ResultIdx2 == CommutableOpIdx2)
ResultIdx1 = CommutableOpIdx1;
else
return false;
} else if (ResultIdx2 == CommuteAnyOperandIndex) {
if (ResultIdx1 == CommutableOpIdx1)
ResultIdx2 = CommutableOpIdx2;
else if (ResultIdx1 == CommutableOpIdx2)
ResultIdx2 = CommutableOpIdx1;
else
return false;
} else
// Check that the result operand indices match the given commutable
// operand indices.
return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
(ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
return true;
}
bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
assert(!MI.isBundle() &&
"TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
const MCInstrDesc &MCID = MI.getDesc();
if (!MCID.isCommutable())
return false;
// This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
// is not true, then the target must implement this.
unsigned CommutableOpIdx1 = MCID.getNumDefs();
unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
CommutableOpIdx1, CommutableOpIdx2))
return false;
if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
// No idea.
return false;
return true;
}
bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
if (!MI.isTerminator()) return false;
// Conditional branch is a special case.
if (MI.isBranch() && !MI.isBarrier())
return true;
if (!MI.isPredicable())
return true;
return !isPredicated(MI);
}
bool TargetInstrInfo::PredicateInstruction(
MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
bool MadeChange = false;
assert(!MI.isBundle() &&
"TargetInstrInfo::PredicateInstruction() can't handle bundles");
const MCInstrDesc &MCID = MI.getDesc();
if (!MI.isPredicable())
return false;
for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
if (MCID.OpInfo[i].isPredicate()) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
MO.setReg(Pred[j].getReg());
MadeChange = true;
} else if (MO.isImm()) {
MO.setImm(Pred[j].getImm());
MadeChange = true;
} else if (MO.isMBB()) {
MO.setMBB(Pred[j].getMBB());
MadeChange = true;
}
++j;
}
}
return MadeChange;
}
bool TargetInstrInfo::hasLoadFromStackSlot(
const MachineInstr &MI,
SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
size_t StartSize = Accesses.size();
for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
oe = MI.memoperands_end();
o != oe; ++o) {
if ((*o)->isLoad() &&
dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
Accesses.push_back(*o);
}
return Accesses.size() != StartSize;
}
bool TargetInstrInfo::hasStoreToStackSlot(
const MachineInstr &MI,
SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
size_t StartSize = Accesses.size();
for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
oe = MI.memoperands_end();
o != oe; ++o) {
if ((*o)->isStore() &&
dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
Accesses.push_back(*o);
}
return Accesses.size() != StartSize;
}
bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
unsigned SubIdx, unsigned &Size,
unsigned &Offset,
const MachineFunction &MF) const {
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!SubIdx) {
Size = TRI->getSpillSize(*RC);
Offset = 0;
return true;
}
unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
// Convert bit size to byte size.
if (BitSize % 8)
return false;
int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
if (BitOffset < 0 || BitOffset % 8)
return false;
Size = BitSize / 8;
Offset = (unsigned)BitOffset / 8;
assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
if (!MF.getDataLayout().isLittleEndian()) {
Offset = TRI->getSpillSize(*RC) - (Offset + Size);
}
return true;
}
void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg, unsigned SubIdx,
const MachineInstr &Orig,
const TargetRegisterInfo &TRI) const {
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
MBB.insert(I, MI);
}
bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
const MachineInstr &MI1,
const MachineRegisterInfo *MRI) const {
return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
}
MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
MachineFunction &MF = *MBB.getParent();
return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
}
// If the COPY instruction in MI can be folded to a stack operation, return
// the register class to use.
static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
unsigned FoldIdx) {
assert(MI.isCopy() && "MI must be a COPY instruction");
if (MI.getNumOperands() != 2)
return nullptr;
assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
if (FoldOp.getSubReg() || LiveOp.getSubReg())
return nullptr;
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register FoldReg = FoldOp.getReg();
Register LiveReg = LiveOp.getReg();
assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs");
const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
if (Register::isPhysicalRegister(LiveOp.getReg()))
return RC->contains(LiveOp.getReg()) ? RC : nullptr;
if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
return RC;
// FIXME: Allow folding when register classes are memory compatible.
return nullptr;
}
void TargetInstrInfo::getNoop(MCInst &NopInst) const {
llvm_unreachable("Not implemented");
}
static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
ArrayRef<unsigned> Ops, int FrameIndex,
const TargetInstrInfo &TII) {
unsigned StartIdx = 0;
switch (MI.getOpcode()) {
case TargetOpcode::STACKMAP: {
// StackMapLiveValues are foldable
StartIdx = StackMapOpers(&MI).getVarIdx();
break;
}
case TargetOpcode::PATCHPOINT: {
// For PatchPoint, the call args are not foldable (even if reported in the
// stackmap e.g. via anyregcc).
StartIdx = PatchPointOpers(&MI).getVarIdx();
break;
}
[statepoints][experimental] Add support for live-in semantics of values in deopt bundles This is a first step towards supporting deopt value lowering and reporting entirely with the register allocator. I hope to build on this in the near future to support live-on-return semantics, but I have a use case which allows me to test and investigate code quality with just the live-in semantics so I've chosen to start there. For those curious, my use cases is our implementation of the "__llvm_deoptimize" function we bind to @llvm.deoptimize. I'm choosing not to hard code that fact in the patch and instead make it configurable via function attributes. The basic approach here is modelled on what is done for the "Live In" values on stackmaps and patchpoints. (A secondary goal here is to remove one of the last barriers to merging the pseudo instructions.) We start by adding the operands directly to the STATEPOINT SDNode. Once we've lowered to MI, we extend the remat logic used by the register allocator to fold virtual register uses into StackMap::Indirect entries as needed. This does rely on the fact that the register allocator rematerializes. If it didn't along some code path, we could end up with more vregs than physical registers and fail to allocate. Today, we *only* fold in the register allocator. This can create some weird effects when combined with arguments passed on the stack because we don't fold them appropriately. I have an idea how to fix that, but it needs this patch in place to work on that effectively. (There's some weird interaction with the scheduler as well, more investigation needed.) My near term plan is to land this patch off-by-default, experiment in my local tree to identify any correctness issues and then start fixing codegen problems one by one as I find them. Once I have the live-in lowering fully working (both correctness and code quality), I'm hoping to move on to the live-on-return semantics. Note: I don't have any *known* miscompiles with this patch enabled, but I'm pretty sure I'll find at least a couple. Thus, the "experimental" tag and the fact it's off by default. Differential Revision: https://reviews.llvm.org/D24000 llvm-svn: 280250
2016-08-31 23:12:17 +08:00
case TargetOpcode::STATEPOINT: {
// For statepoints, fold deopt and gc arguments, but not call arguments.
StartIdx = StatepointOpers(&MI).getVarIdx();
break;
}
default:
llvm_unreachable("unexpected stackmap opcode");
}
// Return false if any operands requested for folding are not foldable (not
// part of the stackmap's live values).
for (unsigned Op : Ops) {
if (Op < StartIdx)
return nullptr;
}
MachineInstr *NewMI =
MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
MachineInstrBuilder MIB(MF, NewMI);
// No need to fold return, the meta data, and function arguments
for (unsigned i = 0; i < StartIdx; ++i)
MIB.add(MI.getOperand(i));
for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
MachineOperand &MO = MI.getOperand(i);
if (is_contained(Ops, i)) {
unsigned SpillSize;
unsigned SpillOffset;
// Compute the spill slot size and offset.
const TargetRegisterClass *RC =
MF.getRegInfo().getRegClass(MO.getReg());
bool Valid =
TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
if (!Valid)
report_fatal_error("cannot spill patchpoint subregister operand");
MIB.addImm(StackMaps::IndirectMemRefOp);
MIB.addImm(SpillSize);
MIB.addFrameIndex(FrameIndex);
MIB.addImm(SpillOffset);
}
else
MIB.add(MO);
}
return NewMI;
}
MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
ArrayRef<unsigned> Ops, int FI,
[SystemZ, RegAlloc] Favor 3-address instructions during instruction selection. This patch aims to reduce spilling and register moves by using the 3-address versions of instructions per default instead of the 2-address equivalent ones. It seems that both spilling and register moves are improved noticeably generally. Regalloc hints are passed to increase conversions to 2-address instructions which are done in SystemZShortenInst.cpp (after regalloc). Since the SystemZ reg/mem instructions are 2-address (dst and lhs regs are the same), foldMemoryOperandImpl() can no longer trivially fold a spilled source register since the reg/reg instruction is now 3-address. In order to remedy this, new 3-address pseudo memory instructions are used to perform the folding only when the dst and lhs virtual registers are known to be allocated to the same physreg. In order to not let MachineCopyPropagation run and change registers on these transformed instructions (making it 3-address), a new target pass called SystemZPostRewrite.cpp is run just after VirtRegRewriter, that immediately lowers the pseudo to a target instruction. If it would have been possibe to insert a COPY instruction and change a register operand (convert to 2-address) in foldMemoryOperandImpl() while trusting that the caller (e.g. InlineSpiller) would update/repair the involved LiveIntervals, the solution involving pseudo instructions would not have been needed. This is perhaps a potential improvement (see Phabricator post). Common code changes: * A new hook TargetPassConfig::addPostRewrite() is utilized to be able to run a target pass immediately before MachineCopyPropagation. * VirtRegMap is passed as an argument to foldMemoryOperand(). Review: Ulrich Weigand, Quentin Colombet https://reviews.llvm.org/D60888 llvm-svn: 362868
2019-06-08 14:19:15 +08:00
LiveIntervals *LIS,
VirtRegMap *VRM) const {
auto Flags = MachineMemOperand::MONone;
for (unsigned OpIdx : Ops)
Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
: MachineMemOperand::MOLoad;
MachineBasicBlock *MBB = MI.getParent();
assert(MBB && "foldMemoryOperand needs an inserted instruction");
MachineFunction &MF = *MBB->getParent();
// If we're not folding a load into a subreg, the size of the load is the
// size of the spill slot. But if we are, we need to figure out what the
// actual load size is.
int64_t MemSize = 0;
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (Flags & MachineMemOperand::MOStore) {
MemSize = MFI.getObjectSize(FI);
} else {
for (unsigned OpIdx : Ops) {
int64_t OpSize = MFI.getObjectSize(FI);
if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
if (SubRegSize > 0 && !(SubRegSize % 8))
OpSize = SubRegSize / 8;
}
MemSize = std::max(MemSize, OpSize);
}
}
assert(MemSize && "Did not expect a zero-sized stack slot");
MachineInstr *NewMI = nullptr;
if (MI.getOpcode() == TargetOpcode::STACKMAP ||
[statepoints][experimental] Add support for live-in semantics of values in deopt bundles This is a first step towards supporting deopt value lowering and reporting entirely with the register allocator. I hope to build on this in the near future to support live-on-return semantics, but I have a use case which allows me to test and investigate code quality with just the live-in semantics so I've chosen to start there. For those curious, my use cases is our implementation of the "__llvm_deoptimize" function we bind to @llvm.deoptimize. I'm choosing not to hard code that fact in the patch and instead make it configurable via function attributes. The basic approach here is modelled on what is done for the "Live In" values on stackmaps and patchpoints. (A secondary goal here is to remove one of the last barriers to merging the pseudo instructions.) We start by adding the operands directly to the STATEPOINT SDNode. Once we've lowered to MI, we extend the remat logic used by the register allocator to fold virtual register uses into StackMap::Indirect entries as needed. This does rely on the fact that the register allocator rematerializes. If it didn't along some code path, we could end up with more vregs than physical registers and fail to allocate. Today, we *only* fold in the register allocator. This can create some weird effects when combined with arguments passed on the stack because we don't fold them appropriately. I have an idea how to fix that, but it needs this patch in place to work on that effectively. (There's some weird interaction with the scheduler as well, more investigation needed.) My near term plan is to land this patch off-by-default, experiment in my local tree to identify any correctness issues and then start fixing codegen problems one by one as I find them. Once I have the live-in lowering fully working (both correctness and code quality), I'm hoping to move on to the live-on-return semantics. Note: I don't have any *known* miscompiles with this patch enabled, but I'm pretty sure I'll find at least a couple. Thus, the "experimental" tag and the fact it's off by default. Differential Revision: https://reviews.llvm.org/D24000 llvm-svn: 280250
2016-08-31 23:12:17 +08:00
MI.getOpcode() == TargetOpcode::PATCHPOINT ||
MI.getOpcode() == TargetOpcode::STATEPOINT) {
// Fold stackmap/patchpoint.
NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
if (NewMI)
MBB->insert(MI, NewMI);
} else {
// Ask the target to do the actual folding.
[SystemZ, RegAlloc] Favor 3-address instructions during instruction selection. This patch aims to reduce spilling and register moves by using the 3-address versions of instructions per default instead of the 2-address equivalent ones. It seems that both spilling and register moves are improved noticeably generally. Regalloc hints are passed to increase conversions to 2-address instructions which are done in SystemZShortenInst.cpp (after regalloc). Since the SystemZ reg/mem instructions are 2-address (dst and lhs regs are the same), foldMemoryOperandImpl() can no longer trivially fold a spilled source register since the reg/reg instruction is now 3-address. In order to remedy this, new 3-address pseudo memory instructions are used to perform the folding only when the dst and lhs virtual registers are known to be allocated to the same physreg. In order to not let MachineCopyPropagation run and change registers on these transformed instructions (making it 3-address), a new target pass called SystemZPostRewrite.cpp is run just after VirtRegRewriter, that immediately lowers the pseudo to a target instruction. If it would have been possibe to insert a COPY instruction and change a register operand (convert to 2-address) in foldMemoryOperandImpl() while trusting that the caller (e.g. InlineSpiller) would update/repair the involved LiveIntervals, the solution involving pseudo instructions would not have been needed. This is perhaps a potential improvement (see Phabricator post). Common code changes: * A new hook TargetPassConfig::addPostRewrite() is utilized to be able to run a target pass immediately before MachineCopyPropagation. * VirtRegMap is passed as an argument to foldMemoryOperand(). Review: Ulrich Weigand, Quentin Colombet https://reviews.llvm.org/D60888 llvm-svn: 362868
2019-06-08 14:19:15 +08:00
NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
}
if (NewMI) {
[MI] Change the array of `MachineMemOperand` pointers to be a generically extensible collection of extra info attached to a `MachineInstr`. The primary change here is cleaning up the APIs used for setting and manipulating the `MachineMemOperand` pointer arrays so chat we can change how they are allocated. Then we introduce an extra info object that using the trailing object pattern to attach some number of MMOs but also other extra info. The design of this is specifically so that this extra info has a fixed necessary cost (the header tracking what extra info is included) and everything else can be tail allocated. This pattern works especially well with a `BumpPtrAllocator` which we use here. I've also added the basic scaffolding for putting interesting pointers into this, namely pre- and post-instruction symbols. These aren't used anywhere yet, they're just there to ensure I've actually gotten the data structure types correct. I'll flesh out support for these in a subsequent patch (MIR dumping, parsing, the works). Finally, I've included an optimization where we store any single pointer inline in the `MachineInstr` to avoid the allocation overhead. This is expected to be the overwhelmingly most common case and so should avoid any memory usage growth due to slightly less clever / dense allocation when dealing with >1 MMO. This did require several ergonomic improvements to the `PointerSumType` to reasonably support the various usage models. This also has a side effect of freeing up 8 bits within the `MachineInstr` which could be repurposed for something else. The suggested direction here came largely from Hal Finkel. I hope it was worth it. ;] It does hopefully clear a path for subsequent extensions w/o nearly as much leg work. Lots of thanks to Reid and Justin for careful reviews and ideas about how to do all of this. Differential Revision: https://reviews.llvm.org/D50701 llvm-svn: 339940
2018-08-17 05:30:05 +08:00
NewMI->setMemRefs(MF, MI.memoperands());
// Add a memory operand, foldMemoryOperandImpl doesn't do that.
assert((!(Flags & MachineMemOperand::MOStore) ||
NewMI->mayStore()) &&
"Folded a def to a non-store!");
assert((!(Flags & MachineMemOperand::MOLoad) ||
NewMI->mayLoad()) &&
"Folded a use to a non-load!");
assert(MFI.getObjectOffset(FI) != -1);
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
MFI.getObjectAlignment(FI));
NewMI->addMemOperand(MF, MMO);
return NewMI;
}
// Straight COPY may fold as load/store.
if (!MI.isCopy() || Ops.size() != 1)
return nullptr;
const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
if (!RC)
return nullptr;
const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
MachineBasicBlock::iterator Pos = MI;
if (Flags == MachineMemOperand::MOStore)
storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
else
loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
return &*--Pos;
}
MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
ArrayRef<unsigned> Ops,
MachineInstr &LoadMI,
LiveIntervals *LIS) const {
assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
#ifndef NDEBUG
for (unsigned OpIdx : Ops)
assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
#endif
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
// Ask the target to do the actual folding.
MachineInstr *NewMI = nullptr;
int FrameIndex = 0;
if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
MI.getOpcode() == TargetOpcode::PATCHPOINT ||
MI.getOpcode() == TargetOpcode::STATEPOINT) &&
isLoadFromStackSlot(LoadMI, FrameIndex)) {
// Fold stackmap/patchpoint.
NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
if (NewMI)
NewMI = &*MBB.insert(MI, NewMI);
} else {
// Ask the target to do the actual folding.
NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
}
if (!NewMI)
return nullptr;
// Copy the memoperands from the load to the folded instruction.
if (MI.memoperands_empty()) {
[MI] Change the array of `MachineMemOperand` pointers to be a generically extensible collection of extra info attached to a `MachineInstr`. The primary change here is cleaning up the APIs used for setting and manipulating the `MachineMemOperand` pointer arrays so chat we can change how they are allocated. Then we introduce an extra info object that using the trailing object pattern to attach some number of MMOs but also other extra info. The design of this is specifically so that this extra info has a fixed necessary cost (the header tracking what extra info is included) and everything else can be tail allocated. This pattern works especially well with a `BumpPtrAllocator` which we use here. I've also added the basic scaffolding for putting interesting pointers into this, namely pre- and post-instruction symbols. These aren't used anywhere yet, they're just there to ensure I've actually gotten the data structure types correct. I'll flesh out support for these in a subsequent patch (MIR dumping, parsing, the works). Finally, I've included an optimization where we store any single pointer inline in the `MachineInstr` to avoid the allocation overhead. This is expected to be the overwhelmingly most common case and so should avoid any memory usage growth due to slightly less clever / dense allocation when dealing with >1 MMO. This did require several ergonomic improvements to the `PointerSumType` to reasonably support the various usage models. This also has a side effect of freeing up 8 bits within the `MachineInstr` which could be repurposed for something else. The suggested direction here came largely from Hal Finkel. I hope it was worth it. ;] It does hopefully clear a path for subsequent extensions w/o nearly as much leg work. Lots of thanks to Reid and Justin for careful reviews and ideas about how to do all of this. Differential Revision: https://reviews.llvm.org/D50701 llvm-svn: 339940
2018-08-17 05:30:05 +08:00
NewMI->setMemRefs(MF, LoadMI.memoperands());
} else {
// Handle the rare case of folding multiple loads.
[MI] Change the array of `MachineMemOperand` pointers to be a generically extensible collection of extra info attached to a `MachineInstr`. The primary change here is cleaning up the APIs used for setting and manipulating the `MachineMemOperand` pointer arrays so chat we can change how they are allocated. Then we introduce an extra info object that using the trailing object pattern to attach some number of MMOs but also other extra info. The design of this is specifically so that this extra info has a fixed necessary cost (the header tracking what extra info is included) and everything else can be tail allocated. This pattern works especially well with a `BumpPtrAllocator` which we use here. I've also added the basic scaffolding for putting interesting pointers into this, namely pre- and post-instruction symbols. These aren't used anywhere yet, they're just there to ensure I've actually gotten the data structure types correct. I'll flesh out support for these in a subsequent patch (MIR dumping, parsing, the works). Finally, I've included an optimization where we store any single pointer inline in the `MachineInstr` to avoid the allocation overhead. This is expected to be the overwhelmingly most common case and so should avoid any memory usage growth due to slightly less clever / dense allocation when dealing with >1 MMO. This did require several ergonomic improvements to the `PointerSumType` to reasonably support the various usage models. This also has a side effect of freeing up 8 bits within the `MachineInstr` which could be repurposed for something else. The suggested direction here came largely from Hal Finkel. I hope it was worth it. ;] It does hopefully clear a path for subsequent extensions w/o nearly as much leg work. Lots of thanks to Reid and Justin for careful reviews and ideas about how to do all of this. Differential Revision: https://reviews.llvm.org/D50701 llvm-svn: 339940
2018-08-17 05:30:05 +08:00
NewMI->setMemRefs(MF, MI.memoperands());
for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
E = LoadMI.memoperands_end();
I != E; ++I) {
NewMI->addMemOperand(MF, *I);
}
}
return NewMI;
}
bool TargetInstrInfo::hasReassociableOperands(
const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
const MachineOperand &Op1 = Inst.getOperand(1);
const MachineOperand &Op2 = Inst.getOperand(2);
const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
// We need virtual register definitions for the operands that we will
// reassociate.
MachineInstr *MI1 = nullptr;
MachineInstr *MI2 = nullptr;
if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg()))
MI1 = MRI.getUniqueVRegDef(Op1.getReg());
if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg()))
MI2 = MRI.getUniqueVRegDef(Op2.getReg());
// And they need to be in the trace (otherwise, they won't have a depth).
return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
}
bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
bool &Commuted) const {
const MachineBasicBlock *MBB = Inst.getParent();
const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
unsigned AssocOpcode = Inst.getOpcode();
// If only one operand has the same opcode and it's the second source operand,
// the operands must be commuted.
Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
if (Commuted)
std::swap(MI1, MI2);
// 1. The previous instruction must be the same type as Inst.
// 2. The previous instruction must have virtual register definitions for its
// operands in the same basic block as Inst.
// 3. The previous instruction's result must only be used by Inst.
return MI1->getOpcode() == AssocOpcode &&
hasReassociableOperands(*MI1, MBB) &&
MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
}
// 1. The operation must be associative and commutative.
// 2. The instruction must have virtual register definitions for its
// operands in the same basic block.
// 3. The instruction must have a reassociable sibling.
bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
bool &Commuted) const {
return isAssociativeAndCommutative(Inst) &&
hasReassociableOperands(Inst, Inst.getParent()) &&
hasReassociableSibling(Inst, Commuted);
}
// The concept of the reassociation pass is that these operations can benefit
// from this kind of transformation:
//
// A = ? op ?
// B = A op X (Prev)
// C = B op Y (Root)
// -->
// A = ? op ?
// B = X op Y
// C = A op B
//
// breaking the dependency between A and B, allowing them to be executed in
// parallel (or back-to-back in a pipeline) instead of depending on each other.
// FIXME: This has the potential to be expensive (compile time) while not
// improving the code at all. Some ways to limit the overhead:
// 1. Track successful transforms; bail out if hit rate gets too low.
// 2. Only enable at -O3 or some other non-default optimization level.
// 3. Pre-screen pattern candidates here: if an operand of the previous
// instruction is known to not increase the critical path, then don't match
// that pattern.
bool TargetInstrInfo::getMachineCombinerPatterns(
MachineInstr &Root,
SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
bool Commute;
if (isReassociationCandidate(Root, Commute)) {
// We found a sequence of instructions that may be suitable for a
// reassociation of operands to increase ILP. Specify each commutation
// possibility for the Prev instruction in the sequence and let the
// machine combiner decide if changing the operands is worthwhile.
if (Commute) {
Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
} else {
Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
}
return true;
}
return false;
}
/// Return true when a code sequence can improve loop throughput.
bool
TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
return false;
}
/// Attempt the reassociation transformation to reduce critical path length.
/// See the above comments before getMachineCombinerPatterns().
void TargetInstrInfo::reassociateOps(
MachineInstr &Root, MachineInstr &Prev,
MachineCombinerPattern Pattern,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
MachineFunction *MF = Root.getMF();
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
// This array encodes the operand index for each parameter because the
// operands may be commuted. Each row corresponds to a pattern value,
// and each column specifies the index of A, B, X, Y.
unsigned OpIdx[4][4] = {
{ 1, 1, 2, 2 },
{ 1, 2, 2, 1 },
{ 2, 1, 1, 2 },
{ 2, 2, 1, 1 }
};
int Row;
switch (Pattern) {
case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
default: llvm_unreachable("unexpected MachineCombinerPattern");
}
MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
MachineOperand &OpC = Root.getOperand(0);
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register RegA = OpA.getReg();
Register RegB = OpB.getReg();
Register RegX = OpX.getReg();
Register RegY = OpY.getReg();
Register RegC = OpC.getReg();
if (Register::isVirtualRegister(RegA))
MRI.constrainRegClass(RegA, RC);
if (Register::isVirtualRegister(RegB))
MRI.constrainRegClass(RegB, RC);
if (Register::isVirtualRegister(RegX))
MRI.constrainRegClass(RegX, RC);
if (Register::isVirtualRegister(RegY))
MRI.constrainRegClass(RegY, RC);
if (Register::isVirtualRegister(RegC))
MRI.constrainRegClass(RegC, RC);
// Create a new virtual register for the result of (X op Y) instead of
// recycling RegB because the MachineCombiner's computation of the critical
// path requires a new register definition rather than an existing one.
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register NewVR = MRI.createVirtualRegister(RC);
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
unsigned Opcode = Root.getOpcode();
bool KillA = OpA.isKill();
bool KillX = OpX.isKill();
bool KillY = OpY.isKill();
// Create new instructions for insertion.
MachineInstrBuilder MIB1 =
BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
.addReg(RegX, getKillRegState(KillX))
.addReg(RegY, getKillRegState(KillY));
MachineInstrBuilder MIB2 =
BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
.addReg(RegA, getKillRegState(KillA))
.addReg(NewVR, getKillRegState(true));
setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
// Record new instructions for insertion and old instructions for deletion.
InsInstrs.push_back(MIB1);
InsInstrs.push_back(MIB2);
DelInstrs.push_back(&Prev);
DelInstrs.push_back(&Root);
}
void TargetInstrInfo::genAlternativeCodeSequence(
MachineInstr &Root, MachineCombinerPattern Pattern,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
// Select the previous instruction in the sequence based on the input pattern.
MachineInstr *Prev = nullptr;
switch (Pattern) {
case MachineCombinerPattern::REASSOC_AX_BY:
case MachineCombinerPattern::REASSOC_XA_BY:
Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
break;
case MachineCombinerPattern::REASSOC_AX_YB:
case MachineCombinerPattern::REASSOC_XA_YB:
Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
break;
default:
break;
}
assert(Prev && "Unknown pattern for machine combiner");
reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
}
bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
const MachineInstr &MI, AAResults *AA) const {
const MachineFunction &MF = *MI.getMF();
const MachineRegisterInfo &MRI = MF.getRegInfo();
// Remat clients assume operand 0 is the defined register.
if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
return false;
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register DefReg = MI.getOperand(0).getReg();
// A sub-register definition can only be rematerialized if the instruction
// doesn't read the other parts of the register. Otherwise it is really a
// read-modify-write operation on the full virtual register which cannot be
// moved safely.
if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() &&
MI.readsVirtualRegister(DefReg))
return false;
// A load from a fixed stack slot can be rematerialized. This may be
// redundant with subsequent checks, but it's target-independent,
// simple, and a common case.
int FrameIdx = 0;
if (isLoadFromStackSlot(MI, FrameIdx) &&
MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
return true;
// Avoid instructions obviously unsafe for remat.
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
MI.hasUnmodeledSideEffects())
return false;
// Don't remat inline asm. We have no idea how expensive it is
// even if it's side effect free.
if (MI.isInlineAsm())
return false;
// Avoid instructions which load from potentially varying memory.
if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
return false;
// If any of the registers accessed are non-constant, conservatively assume
// the instruction is not rematerializable.
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg()) continue;
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register Reg = MO.getReg();
if (Reg == 0)
continue;
// Check for a well-behaved physical register.
if (Register::isPhysicalRegister(Reg)) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
if (!MRI.isConstantPhysReg(Reg))
return false;
} else {
// A physreg def. We can't remat it.
return false;
}
continue;
}
// Only allow one virtual-register def. There may be multiple defs of the
// same virtual register, though.
if (MO.isDef() && Reg != DefReg)
return false;
// Don't allow any virtual-register uses. Rematting an instruction with
// virtual register uses would length the live ranges of the uses, which
// is not necessarily a good idea, certainly not "trivial".
if (MO.isUse())
return false;
}
// Everything checked out.
return true;
}
int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
const MachineFunction *MF = MI.getMF();
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
bool StackGrowsDown =
TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
if (!isFrameInstr(MI))
return 0;
int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
(StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
SPAdj = -SPAdj;
return SPAdj;
}
/// isSchedulingBoundary - Test if the given instruction should be
/// considered a scheduling boundary. This primarily includes labels
/// and terminators.
bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const {
// Terminators and labels can't be scheduled around.
if (MI.isTerminator() || MI.isPosition())
return true;
// Don't attempt to schedule around any instruction that defines
// a stack-oriented pointer, as it's unlikely to be profitable. This
// saves compile time, because it doesn't require every single
// stack slot reference to depend on the instruction that does the
// modification.
const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
}
// Provide a global flag for disabling the PreRA hazard recognizer that targets
// may choose to honor.
bool TargetInstrInfo::usePreRAHazardRecognizer() const {
return !DisableHazardRecognizer;
}
// Default implementation of CreateTargetRAHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
const ScheduleDAG *DAG) const {
// Dummy hazard recognizer allows all instructions to issue.
return new ScheduleHazardRecognizer();
}
// Default implementation of CreateTargetMIHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const {
return (ScheduleHazardRecognizer *)
new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
}
// Default implementation of CreateTargetPostRAHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const {
return (ScheduleHazardRecognizer *)
new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
}
//===----------------------------------------------------------------------===//
// SelectionDAG latency interface.
//===----------------------------------------------------------------------===//
int
TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode, unsigned UseIdx) const {
if (!ItinData || ItinData->isEmpty())
return -1;
if (!DefNode->isMachineOpcode())
return -1;
unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
if (!UseNode->isMachineOpcode())
return ItinData->getOperandCycle(DefClass, DefIdx);
unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}
int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
SDNode *N) const {
if (!ItinData || ItinData->isEmpty())
return 1;
if (!N->isMachineOpcode())
return 1;
return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
}
//===----------------------------------------------------------------------===//
// MachineInstr latency interface.
//===----------------------------------------------------------------------===//
unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
const MachineInstr &MI) const {
if (!ItinData || ItinData->isEmpty())
return 1;
unsigned Class = MI.getDesc().getSchedClass();
int UOps = ItinData->Itineraries[Class].NumMicroOps;
if (UOps >= 0)
return UOps;
// The # of u-ops is dynamically determined. The specific target should
// override this function to return the right number.
return 1;
}
/// Return the default expected latency for a def based on it's opcode.
unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
const MachineInstr &DefMI) const {
if (DefMI.isTransient())
return 0;
if (DefMI.mayLoad())
return SchedModel.LoadLatency;
if (isHighLatencyDef(DefMI.getOpcode()))
return SchedModel.HighLatency;
return 1;
}
unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
return 0;
}
unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
unsigned *PredCost) const {
// Default to one cycle for no itinerary. However, an "empty" itinerary may
// still have a MinLatency property, which getStageLatency checks.
if (!ItinData)
return MI.mayLoad() ? 2 : 1;
return ItinData->getStageLatency(MI.getDesc().getSchedClass());
}
bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
const MachineInstr &DefMI,
unsigned DefIdx) const {
const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
if (!ItinData || ItinData->isEmpty())
return false;
unsigned DefClass = DefMI.getDesc().getSchedClass();
int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
return (DefCycle != -1 && DefCycle <= 1);
}
Optional<ParamLoadedValue>
TargetInstrInfo::describeLoadedValue(const MachineInstr &MI) const {
const MachineFunction *MF = MI.getMF();
DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
const MachineOperand *SrcRegOp, *DestRegOp;
int64_t Offset;
if (isCopyInstr(MI, SrcRegOp, DestRegOp)) {
return ParamLoadedValue(*SrcRegOp, Expr);
} else if (isAddImmediate(MI, DestRegOp, SrcRegOp, Offset)) {
Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
return ParamLoadedValue(*SrcRegOp, Expr);
}
return None;
}
/// Both DefMI and UseMI must be valid. By default, call directly to the
/// itinerary. This may be overriden by the target.
int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr &DefMI,
unsigned DefIdx,
const MachineInstr &UseMI,
unsigned UseIdx) const {
unsigned DefClass = DefMI.getDesc().getSchedClass();
unsigned UseClass = UseMI.getDesc().getSchedClass();
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}
/// If we can determine the operand latency from the def only, without itinerary
/// lookup, do so. Otherwise return -1.
int TargetInstrInfo::computeDefOperandLatency(
const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
// Let the target hook getInstrLatency handle missing itineraries.
if (!ItinData)
return getInstrLatency(ItinData, DefMI);
if(ItinData->isEmpty())
return defaultDefLatency(ItinData->SchedModel, DefMI);
// ...operand lookup required
return -1;
}
bool TargetInstrInfo::getRegSequenceInputs(
const MachineInstr &MI, unsigned DefIdx,
SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
assert((MI.isRegSequence() ||
MI.isRegSequenceLike()) && "Instruction do not have the proper type");
if (!MI.isRegSequence())
return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
// We are looking at:
// Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
OpIdx += 2) {
const MachineOperand &MOReg = MI.getOperand(OpIdx);
if (MOReg.isUndef())
continue;
const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
assert(MOSubIdx.isImm() &&
"One of the subindex of the reg_sequence is not an immediate");
// Record Reg:SubReg, SubIdx.
InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
(unsigned)MOSubIdx.getImm()));
}
return true;
}
bool TargetInstrInfo::getExtractSubregInputs(
const MachineInstr &MI, unsigned DefIdx,
RegSubRegPairAndIdx &InputReg) const {
assert((MI.isExtractSubreg() ||
MI.isExtractSubregLike()) && "Instruction do not have the proper type");
if (!MI.isExtractSubreg())
return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
// We are looking at:
// Def = EXTRACT_SUBREG v0.sub1, sub0.
assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
const MachineOperand &MOReg = MI.getOperand(1);
if (MOReg.isUndef())
return false;
const MachineOperand &MOSubIdx = MI.getOperand(2);
assert(MOSubIdx.isImm() &&
"The subindex of the extract_subreg is not an immediate");
InputReg.Reg = MOReg.getReg();
InputReg.SubReg = MOReg.getSubReg();
InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
return true;
}
bool TargetInstrInfo::getInsertSubregInputs(
const MachineInstr &MI, unsigned DefIdx,
RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
assert((MI.isInsertSubreg() ||
MI.isInsertSubregLike()) && "Instruction do not have the proper type");
if (!MI.isInsertSubreg())
return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
// We are looking at:
// Def = INSERT_SEQUENCE v0, v1, sub0.
assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
const MachineOperand &MOBaseReg = MI.getOperand(1);
const MachineOperand &MOInsertedReg = MI.getOperand(2);
if (MOInsertedReg.isUndef())
return false;
const MachineOperand &MOSubIdx = MI.getOperand(3);
assert(MOSubIdx.isImm() &&
"One of the subindex of the reg_sequence is not an immediate");
BaseReg.Reg = MOBaseReg.getReg();
BaseReg.SubReg = MOBaseReg.getSubReg();
InsertedReg.Reg = MOInsertedReg.getReg();
InsertedReg.SubReg = MOInsertedReg.getSubReg();
InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
return true;
}
[MachinePipeliner] Improve the TargetInstrInfo API analyzeLoop/reduceLoopCount Recommit: fix asan errors. The way MachinePipeliner uses these target hooks is stateful - we reduce trip count by one per call to reduceLoopCount. It's a little overfit for hardware loops, where we don't have to worry about stitching a loop induction variable across prologs and epilogs (the induction variable is implicit). This patch introduces a new API: /// Analyze loop L, which must be a single-basic-block loop, and if the /// conditions can be understood enough produce a PipelinerLoopInfo object. virtual std::unique_ptr<PipelinerLoopInfo> analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const; The return value is expected to be an implementation of the abstract class: /// Object returned by analyzeLoopForPipelining. Allows software pipelining /// implementations to query attributes of the loop being pipelined. class PipelinerLoopInfo { public: virtual ~PipelinerLoopInfo(); /// Return true if the given instruction should not be pipelined and should /// be ignored. An example could be a loop comparison, or induction variable /// update with no users being pipelined. virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0; /// Create a condition to determine if the trip count of the loop is greater /// than TC. /// /// If the trip count is statically known to be greater than TC, return /// true. If the trip count is statically known to be not greater than TC, /// return false. Otherwise return nullopt and fill out Cond with the test /// condition. virtual Optional<bool> createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &Cond) = 0; /// Modify the loop such that the trip count is /// OriginalTC + TripCountAdjust. virtual void adjustTripCount(int TripCountAdjust) = 0; /// Called when the loop's preheader has been modified to NewPreheader. virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0; /// Called when the loop is being removed. virtual void disposed() = 0; }; The Pipeliner (ModuloSchedule.cpp) can use this object to modify the loop while allowing the target to hold its own state across all calls. This API, in particular the disjunction of creating a trip count check condition and adjusting the loop, improves the code quality in ModuloSchedule.cpp. llvm-svn: 372463
2019-09-21 16:19:41 +08:00
TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() {}