llvm-project/llvm/lib/Analysis/DataStructure/DataStructure.cpp

1154 lines
42 KiB
C++
Raw Normal View History

//===- DataStructure.cpp - Implement the core data structure analysis -----===//
//
// This file implements the core data structure functionality.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Function.h"
#include "llvm/iOther.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetData.h"
#include "Support/STLExtras.h"
#include "Support/Statistic.h"
#include <algorithm>
#include <set>
using std::vector;
namespace {
2002-11-08 09:21:07 +08:00
Statistic<> NumFolds ("dsnode", "Number of nodes completely folded");
Statistic<> NumCallNodesMerged("dsnode", "Number of call nodes merged");
};
namespace DS { // TODO: FIXME
extern TargetData TD;
}
using namespace DS;
//===----------------------------------------------------------------------===//
// DSNode Implementation
//===----------------------------------------------------------------------===//
DSNode::DSNode(enum NodeTy NT, const Type *T)
: Ty(Type::VoidTy), Size(0), NodeType(NT) {
// Add the type entry if it is specified...
if (T) mergeTypeInfo(T, 0);
}
// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N)
: Links(N.Links), Globals(N.Globals), Ty(N.Ty), Size(N.Size),
NodeType(N.NodeType) {
}
void DSNode::removeReferrer(DSNodeHandle *H) {
// Search backwards, because we depopulate the list from the back for
// efficiency (because it's a vector).
vector<DSNodeHandle*>::reverse_iterator I =
std::find(Referrers.rbegin(), Referrers.rend(), H);
assert(I != Referrers.rend() && "Referrer not pointing to node!");
Referrers.erase(I.base()-1);
}
// addGlobal - Add an entry for a global value to the Globals list. This also
// marks the node with the 'G' flag if it does not already have it.
//
void DSNode::addGlobal(GlobalValue *GV) {
// Keep the list sorted.
vector<GlobalValue*>::iterator I =
std::lower_bound(Globals.begin(), Globals.end(), GV);
if (I == Globals.end() || *I != GV) {
//assert(GV->getType()->getElementType() == Ty);
Globals.insert(I, GV);
NodeType |= GlobalNode;
}
}
/// foldNodeCompletely - If we determine that this node has some funny
/// behavior happening to it that we cannot represent, we fold it down to a
/// single, completely pessimistic, node. This node is represented as a
/// single byte with a single TypeEntry of "void".
///
void DSNode::foldNodeCompletely() {
if (isNodeCompletelyFolded()) return;
++NumFolds;
// We are no longer typed at all...
Ty = DSTypeRec(Type::VoidTy, true);
Size = 1;
// Loop over all of our referrers, making them point to our zero bytes of
// space.
for (vector<DSNodeHandle*>::iterator I = Referrers.begin(), E=Referrers.end();
I != E; ++I)
(*I)->setOffset(0);
// If we have links, merge all of our outgoing links together...
for (unsigned i = 1, e = Links.size(); i < e; ++i)
Links[0].mergeWith(Links[i]);
Links.resize(1);
}
/// isNodeCompletelyFolded - Return true if this node has been completely
/// folded down to something that can never be expanded, effectively losing
/// all of the field sensitivity that may be present in the node.
///
bool DSNode::isNodeCompletelyFolded() const {
return getSize() == 1 && Ty.Ty == Type::VoidTy && Ty.isArray;
}
/// mergeTypeInfo - This method merges the specified type into the current node
/// at the specified offset. This may update the current node's type record if
/// this gives more information to the node, it may do nothing to the node if
/// this information is already known, or it may merge the node completely (and
/// return true) if the information is incompatible with what is already known.
///
/// This method returns true if the node is completely folded, otherwise false.
///
bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset) {
// Check to make sure the Size member is up-to-date. Size can be one of the
// following:
// Size = 0, Ty = Void: Nothing is known about this node.
// Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
// Size = 1, Ty = Void, Array = 1: The node is collapsed
// Otherwise, sizeof(Ty) = Size
//
assert(((Size == 0 && Ty.Ty == Type::VoidTy && !Ty.isArray) ||
(Size == 0 && !Ty.Ty->isSized() && !Ty.isArray) ||
(Size == 1 && Ty.Ty == Type::VoidTy && Ty.isArray) ||
(Size == 0 && !Ty.Ty->isSized() && !Ty.isArray) ||
(TD.getTypeSize(Ty.Ty) == Size)) &&
"Size member of DSNode doesn't match the type structure!");
assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");
if (Offset == 0 && NewTy == Ty.Ty)
return false; // This should be a common case, handle it efficiently
// Return true immediately if the node is completely folded.
if (isNodeCompletelyFolded()) return true;
// If this is an array type, eliminate the outside arrays because they won't
// be used anyway. This greatly reduces the size of large static arrays used
// as global variables, for example.
//
bool WillBeArray = false;
while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
// FIXME: we might want to keep small arrays, but must be careful about
// things like: [2 x [10000 x int*]]
NewTy = AT->getElementType();
WillBeArray = true;
}
// Figure out how big the new type we're merging in is...
unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0;
// Otherwise check to see if we can fold this type into the current node. If
// we can't, we fold the node completely, if we can, we potentially update our
// internal state.
//
if (Ty.Ty == Type::VoidTy) {
// If this is the first type that this node has seen, just accept it without
// question....
assert(Offset == 0 && "Cannot have an offset into a void node!");
assert(!Ty.isArray && "This shouldn't happen!");
Ty.Ty = NewTy;
Ty.isArray = WillBeArray;
Size = NewTySize;
// Calculate the number of outgoing links from this node.
Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
return false;
}
// Handle node expansion case here...
if (Offset+NewTySize > Size) {
// It is illegal to grow this node if we have treated it as an array of
// objects...
if (Ty.isArray) {
foldNodeCompletely();
return true;
}
if (Offset) { // We could handle this case, but we don't for now...
DEBUG(std::cerr << "UNIMP: Trying to merge a growth type into "
<< "offset != 0: Collapsing!\n");
foldNodeCompletely();
return true;
}
// Okay, the situation is nice and simple, we are trying to merge a type in
// at offset 0 that is bigger than our current type. Implement this by
// switching to the new type and then merge in the smaller one, which should
// hit the other code path here. If the other code path decides it's not
// ok, it will collapse the node as appropriate.
//
const Type *OldTy = Ty.Ty;
Ty.Ty = NewTy;
Ty.isArray = WillBeArray;
Size = NewTySize;
// Must grow links to be the appropriate size...
Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
// Merge in the old type now... which is guaranteed to be smaller than the
// "current" type.
return mergeTypeInfo(OldTy, 0);
}
assert(Offset <= Size &&
"Cannot merge something into a part of our type that doesn't exist!");
// Find the section of Ty.Ty that NewTy overlaps with... first we find the
// type that starts at offset Offset.
//
unsigned O = 0;
const Type *SubType = Ty.Ty;
while (O < Offset) {
assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");
switch (SubType->getPrimitiveID()) {
case Type::StructTyID: {
const StructType *STy = cast<StructType>(SubType);
const StructLayout &SL = *TD.getStructLayout(STy);
unsigned i = 0, e = SL.MemberOffsets.size();
for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i)
/* empty */;
// The offset we are looking for must be in the i'th element...
SubType = STy->getElementTypes()[i];
O += SL.MemberOffsets[i];
break;
}
case Type::ArrayTyID: {
SubType = cast<ArrayType>(SubType)->getElementType();
unsigned ElSize = TD.getTypeSize(SubType);
unsigned Remainder = (Offset-O) % ElSize;
O = Offset-Remainder;
break;
}
default:
assert(0 && "Unknown type!");
}
}
assert(O == Offset && "Could not achieve the correct offset!");
// If we found our type exactly, early exit
if (SubType == NewTy) return false;
// Okay, so we found the leader type at the offset requested. Search the list
// of types that starts at this offset. If SubType is currently an array or
// structure, the type desired may actually be the first element of the
// composite type...
//
unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0;
while (SubType != NewTy) {
const Type *NextSubType = 0;
unsigned NextSubTypeSize = 0;
switch (SubType->getPrimitiveID()) {
case Type::StructTyID:
NextSubType = cast<StructType>(SubType)->getElementTypes()[0];
NextSubTypeSize = TD.getTypeSize(SubType);
break;
case Type::ArrayTyID:
NextSubType = cast<ArrayType>(SubType)->getElementType();
NextSubTypeSize = TD.getTypeSize(SubType);
break;
default: ;
// fall out
}
if (NextSubType == 0)
break; // In the default case, break out of the loop
if (NextSubTypeSize < NewTySize)
break; // Don't allow shrinking to a smaller type than NewTySize
SubType = NextSubType;
SubTypeSize = NextSubTypeSize;
}
// If we found the type exactly, return it...
if (SubType == NewTy)
return false;
// Check to see if we have a compatible, but different type...
if (NewTySize == SubTypeSize) {
// Check to see if this type is obviously convertable... int -> uint f.e.
if (NewTy->isLosslesslyConvertableTo(SubType))
return false;
// Check to see if we have a pointer & integer mismatch going on here,
// loading a pointer as a long, for example.
//
if (SubType->isInteger() && isa<PointerType>(NewTy) ||
NewTy->isInteger() && isa<PointerType>(SubType))
return false;
}
DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: " << Ty.Ty
<< "\n due to:" << NewTy << " @ " << Offset << "!\n"
<< "SubType: " << SubType << "\n\n");
foldNodeCompletely();
return true;
}
// addEdgeTo - Add an edge from the current node to the specified node. This
// can cause merging of nodes in the graph.
//
void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
if (NH.getNode() == 0) return; // Nothing to do
DSNodeHandle &ExistingEdge = getLink(Offset);
if (ExistingEdge.getNode()) {
// Merge the two nodes...
ExistingEdge.mergeWith(NH);
} else { // No merging to perform...
setLink(Offset, NH); // Just force a link in there...
}
}
// MergeSortedVectors - Efficiently merge a vector into another vector where
// duplicates are not allowed and both are sorted. This assumes that 'T's are
// efficiently copyable and have sane comparison semantics.
//
template<typename T>
void MergeSortedVectors(vector<T> &Dest, const vector<T> &Src) {
// By far, the most common cases will be the simple ones. In these cases,
// avoid having to allocate a temporary vector...
//
if (Src.empty()) { // Nothing to merge in...
return;
} else if (Dest.empty()) { // Just copy the result in...
Dest = Src;
} else if (Src.size() == 1) { // Insert a single element...
const T &V = Src[0];
typename vector<T>::iterator I =
std::lower_bound(Dest.begin(), Dest.end(), V);
if (I == Dest.end() || *I != Src[0]) // If not already contained...
Dest.insert(I, Src[0]);
} else if (Dest.size() == 1) {
T Tmp = Dest[0]; // Save value in temporary...
Dest = Src; // Copy over list...
typename vector<T>::iterator I =
std::lower_bound(Dest.begin(), Dest.end(),Tmp);
if (I == Dest.end() || *I != Src[0]) // If not already contained...
Dest.insert(I, Src[0]);
} else {
// Make a copy to the side of Dest...
vector<T> Old(Dest);
// Make space for all of the type entries now...
Dest.resize(Dest.size()+Src.size());
// Merge the two sorted ranges together... into Dest.
std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
// Now erase any duplicate entries that may have accumulated into the
// vectors (because they were in both of the input sets)
Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
}
}
// mergeWith - Merge this node and the specified node, moving all links to and
// from the argument node into the current node, deleting the node argument.
// Offset indicates what offset the specified node is to be merged into the
// current node.
//
// The specified node may be a null pointer (in which case, nothing happens).
//
void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
DSNode *N = NH.getNode();
if (N == 0 || (N == this && NH.getOffset() == Offset))
return; // Noop
assert((N->NodeType & DSNode::DEAD) == 0);
assert((NodeType & DSNode::DEAD) == 0);
assert(!hasNoReferrers() && "Should not try to fold a useless node!");
if (N == this) {
// We cannot merge two pieces of the same node together, collapse the node
// completely.
DEBUG(std::cerr << "Attempting to merge two chunks of"
<< " the same node together!\n");
foldNodeCompletely();
return;
}
// Merge the type entries of the two nodes together...
if (N->Ty.Ty != Type::VoidTy) {
mergeTypeInfo(N->Ty.Ty, Offset);
// mergeTypeInfo can cause collapsing, which can cause this node to become
// dead.
if (hasNoReferrers()) return;
}
assert((NodeType & DSNode::DEAD) == 0);
// If we are merging a node with a completely folded node, then both nodes are
// now completely folded.
//
if (isNodeCompletelyFolded()) {
if (!N->isNodeCompletelyFolded()) {
N->foldNodeCompletely();
if (hasNoReferrers()) return;
}
} else if (N->isNodeCompletelyFolded()) {
foldNodeCompletely();
Offset = 0;
if (hasNoReferrers()) return;
}
N = NH.getNode();
assert((NodeType & DSNode::DEAD) == 0);
if (this == N || N == 0) return;
assert((NodeType & DSNode::DEAD) == 0);
// If both nodes are not at offset 0, make sure that we are merging the node
// at an later offset into the node with the zero offset.
//
if (Offset > NH.getOffset()) {
N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
return;
} else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
// If the offsets are the same, merge the smaller node into the bigger node
N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
return;
}
#if 0
std::cerr << "\n\nMerging:\n";
N->print(std::cerr, 0);
std::cerr << " and:\n";
print(std::cerr, 0);
#endif
// Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with
// respect to NH.Offset) is now zero.
//
unsigned NOffset = NH.getOffset()-Offset;
unsigned NSize = N->getSize();
assert((NodeType & DSNode::DEAD) == 0);
// Remove all edges pointing at N, causing them to point to 'this' instead.
// Make sure to adjust their offset, not just the node pointer.
//
while (!N->Referrers.empty()) {
DSNodeHandle &Ref = *N->Referrers.back();
Ref = DSNodeHandle(this, NOffset+Ref.getOffset());
}
assert((NodeType & DSNode::DEAD) == 0);
// Make all of the outgoing links of N now be outgoing links of this. This
// can cause recursive merging!
//
for (unsigned i = 0; i < NSize; i += DS::PointerSize) {
DSNodeHandle &Link = N->getLink(i);
if (Link.getNode()) {
addEdgeTo((i+NOffset) % getSize(), Link);
// It's possible that after adding the new edge that some recursive
// merging just occured, causing THIS node to get merged into oblivion.
// If that happens, we must not try to merge any more edges into it!
//
if (Size == 0) return;
}
}
// Now that there are no outgoing edges, all of the Links are dead.
N->Links.clear();
N->Size = 0;
N->Ty.Ty = Type::VoidTy;
N->Ty.isArray = false;
// Merge the node types
NodeType |= N->NodeType;
2002-11-08 09:21:07 +08:00
N->NodeType = DEAD; // N is now a dead node.
// Merge the globals list...
if (!N->Globals.empty()) {
MergeSortedVectors(Globals, N->Globals);
// Delete the globals from the old node...
N->Globals.clear();
}
}
//===----------------------------------------------------------------------===//
// DSCallSite Implementation
//===----------------------------------------------------------------------===//
// Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
Function &DSCallSite::getCaller() const {
return *Inst->getParent()->getParent();
}
//===----------------------------------------------------------------------===//
// DSGraph Implementation
//===----------------------------------------------------------------------===//
DSGraph::DSGraph(const DSGraph &G) : Func(G.Func), GlobalsGraph(0) {
PrintAuxCalls = false;
std::map<const DSNode*, DSNodeHandle> NodeMap;
RetNode = cloneInto(G, ScalarMap, NodeMap);
}
DSGraph::DSGraph(const DSGraph &G,
std::map<const DSNode*, DSNodeHandle> &NodeMap)
: Func(G.Func), GlobalsGraph(0) {
PrintAuxCalls = false;
RetNode = cloneInto(G, ScalarMap, NodeMap);
}
DSGraph::~DSGraph() {
FunctionCalls.clear();
AuxFunctionCalls.clear();
ScalarMap.clear();
RetNode.setNode(0);
// Drop all intra-node references, so that assertions don't fail...
std::for_each(Nodes.begin(), Nodes.end(),
std::mem_fun(&DSNode::dropAllReferences));
// Delete all of the nodes themselves...
std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
}
// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }
/// remapLinks - Change all of the Links in the current node according to the
/// specified mapping.
///
void DSNode::remapLinks(std::map<const DSNode*, DSNodeHandle> &OldNodeMap) {
for (unsigned i = 0, e = Links.size(); i != e; ++i) {
DSNodeHandle &H = OldNodeMap[Links[i].getNode()];
Links[i].setNode(H.getNode());
Links[i].setOffset(Links[i].getOffset()+H.getOffset());
}
}
// cloneInto - Clone the specified DSGraph into the current graph, returning the
// Return node of the graph. The translated ScalarMap for the old function is
// filled into the OldValMap member. If StripAllocas is set to true, Alloca
// markers are removed from the graph, as the graph is being cloned into a
// calling function's graph.
//
DSNodeHandle DSGraph::cloneInto(const DSGraph &G,
std::map<Value*, DSNodeHandle> &OldValMap,
std::map<const DSNode*, DSNodeHandle> &OldNodeMap,
unsigned CloneFlags) {
assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
2002-11-08 09:21:07 +08:00
assert(&G != this && "Cannot clone graph into itself!");
unsigned FN = Nodes.size(); // First new node...
// Duplicate all of the nodes, populating the node map...
Nodes.reserve(FN+G.Nodes.size());
for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
DSNode *Old = G.Nodes[i];
DSNode *New = new DSNode(*Old);
New->NodeType &= ~DSNode::DEAD; // Clear dead flag...
Nodes.push_back(New);
OldNodeMap[Old] = New;
}
// Rewrite the links in the new nodes to point into the current graph now.
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
Nodes[i]->remapLinks(OldNodeMap);
// Remove alloca markers as specified
if (CloneFlags & StripAllocaBit)
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
Nodes[i]->NodeType &= ~DSNode::AllocaNode;
// Copy the value map... and merge all of the global nodes...
for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ScalarMap.begin(),
E = G.ScalarMap.end(); I != E; ++I) {
DSNodeHandle &H = OldValMap[I->first];
DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
H.setNode(MappedNode.getNode());
H.setOffset(I->second.getOffset()+MappedNode.getOffset());
if (isa<GlobalValue>(I->first)) { // Is this a global?
std::map<Value*, DSNodeHandle>::iterator GVI = ScalarMap.find(I->first);
if (GVI != ScalarMap.end()) { // Is the global value in this fn already?
GVI->second.mergeWith(H);
} else {
ScalarMap[I->first] = H; // Add global pointer to this graph
}
}
}
if (!(CloneFlags & DontCloneCallNodes)) {
// Copy the function calls list...
unsigned FC = FunctionCalls.size(); // FirstCall
FunctionCalls.reserve(FC+G.FunctionCalls.size());
for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i)
FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap));
}
if (!(CloneFlags & DontCloneAuxCallNodes)) {
// Copy the auxillary function calls list...
unsigned FC = AuxFunctionCalls.size(); // FirstCall
AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size());
for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i)
AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap));
}
// Return the returned node pointer...
DSNodeHandle &MappedRet = OldNodeMap[G.RetNode.getNode()];
return DSNodeHandle(MappedRet.getNode(),
MappedRet.getOffset()+G.RetNode.getOffset());
}
/// mergeInGraph - The method is used for merging graphs together. If the
/// argument graph is not *this, it makes a clone of the specified graph, then
/// merges the nodes specified in the call site with the formal arguments in the
/// graph.
///
void DSGraph::mergeInGraph(DSCallSite &CS, const DSGraph &Graph,
unsigned CloneFlags) {
std::map<Value*, DSNodeHandle> OldValMap;
DSNodeHandle RetVal;
std::map<Value*, DSNodeHandle> *ScalarMap = &OldValMap;
// If this is not a recursive call, clone the graph into this graph...
if (&Graph != this) {
// Clone the callee's graph into the current graph, keeping
// track of where scalars in the old graph _used_ to point,
// and of the new nodes matching nodes of the old graph.
std::map<const DSNode*, DSNodeHandle> OldNodeMap;
// The clone call may invalidate any of the vectors in the data
// structure graph. Strip locals and don't copy the list of callers
RetVal = cloneInto(Graph, OldValMap, OldNodeMap, CloneFlags);
ScalarMap = &OldValMap;
} else {
RetVal = getRetNode();
ScalarMap = &getScalarMap();
}
// Merge the return value with the return value of the context...
RetVal.mergeWith(CS.getRetVal());
// Resolve all of the function arguments...
Function &F = Graph.getFunction();
Function::aiterator AI = F.abegin();
for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) {
// Advance the argument iterator to the first pointer argument...
while (!isPointerType(AI->getType())) {
++AI;
#ifndef NDEBUG
if (AI == F.aend())
std::cerr << "Bad call to Function: " << F.getName() << "\n";
#endif
assert(AI != F.aend() && "# Args provided is not # Args required!");
}
// Add the link from the argument scalar to the provided value
DSNodeHandle &NH = (*ScalarMap)[AI];
assert(NH.getNode() && "Pointer argument without scalarmap entry?");
NH.mergeWith(CS.getPtrArg(i));
}
}
#if 0
// cloneGlobalInto - Clone the given global node and all its target links
// (and all their llinks, recursively).
//
DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) {
if (GNode == 0 || GNode->getGlobals().size() == 0) return 0;
// If a clone has already been created for GNode, return it.
DSNodeHandle& ValMapEntry = ScalarMap[GNode->getGlobals()[0]];
if (ValMapEntry != 0)
return ValMapEntry;
// Clone the node and update the ValMap.
DSNode* NewNode = new DSNode(*GNode);
ValMapEntry = NewNode; // j=0 case of loop below!
Nodes.push_back(NewNode);
for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j)
ScalarMap[NewNode->getGlobals()[j]] = NewNode;
// Rewrite the links in the new node to point into the current graph.
for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j)
NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j)));
return NewNode;
}
#endif
// markIncompleteNodes - Mark the specified node as having contents that are not
// known with the current analysis we have performed. Because a node makes all
// of the nodes it can reach imcomplete if the node itself is incomplete, we
// must recursively traverse the data structure graph, marking all reachable
// nodes as incomplete.
//
static void markIncompleteNode(DSNode *N) {
// Stop recursion if no node, or if node already marked...
if (N == 0 || (N->NodeType & DSNode::Incomplete)) return;
// Actually mark the node
N->NodeType |= DSNode::Incomplete;
// Recusively process children...
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
if (DSNode *DSN = N->getLink(i).getNode())
markIncompleteNode(DSN);
}
static void markIncomplete(DSCallSite &Call) {
// Then the return value is certainly incomplete!
markIncompleteNode(Call.getRetVal().getNode());
// All objects pointed to by function arguments are incomplete!
for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
markIncompleteNode(Call.getPtrArg(i).getNode());
}
// markIncompleteNodes - Traverse the graph, identifying nodes that may be
// modified by other functions that have not been resolved yet. This marks
// nodes that are reachable through three sources of "unknownness":
//
// Global Variables, Function Calls, and Incoming Arguments
//
// For any node that may have unknown components (because something outside the
// scope of current analysis may have modified it), the 'Incomplete' flag is
// added to the NodeType.
//
void DSGraph::markIncompleteNodes(bool markFormalArgs) {
// Mark any incoming arguments as incomplete...
if (markFormalArgs && Func)
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I)
if (isPointerType(I->getType()) && ScalarMap.find(I) != ScalarMap.end())
markIncompleteNode(ScalarMap[I].getNode());
// Mark stuff passed into functions calls as being incomplete...
if (!shouldPrintAuxCalls())
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
markIncomplete(FunctionCalls[i]);
else
for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
markIncomplete(AuxFunctionCalls[i]);
// Mark all of the nodes pointed to by global nodes as incomplete...
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
if (Nodes[i]->NodeType & DSNode::GlobalNode) {
DSNode *N = Nodes[i];
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
if (DSNode *DSN = N->getLink(i).getNode())
markIncompleteNode(DSN);
}
}
// removeRefsToGlobal - Helper function that removes globals from the
// ScalarMap so that the referrer count will go down to zero.
static void removeRefsToGlobal(DSNode* N,
std::map<Value*, DSNodeHandle> &ScalarMap) {
while (!N->getGlobals().empty()) {
GlobalValue *GV = N->getGlobals().back();
N->getGlobals().pop_back();
ScalarMap.erase(GV);
}
}
// isNodeDead - This method checks to see if a node is dead, and if it isn't, it
// checks to see if there are simple transformations that it can do to make it
// dead.
//
bool DSGraph::isNodeDead(DSNode *N) {
// Is it a trivially dead shadow node?
return N->getReferrers().empty() && (N->NodeType & ~DSNode::DEAD) == 0;
}
static inline void killIfUselessEdge(DSNodeHandle &Edge) {
if (DSNode *N = Edge.getNode()) // Is there an edge?
if (N->getReferrers().size() == 1) // Does it point to a lonely node?
if ((N->NodeType & ~DSNode::Incomplete) == 0 && // No interesting info?
N->getType().Ty == Type::VoidTy && !N->isNodeCompletelyFolded())
Edge.setNode(0); // Kill the edge!
}
static inline bool nodeContainsExternalFunction(const DSNode *N) {
const std::vector<GlobalValue*> &Globals = N->getGlobals();
for (unsigned i = 0, e = Globals.size(); i != e; ++i)
if (Globals[i]->isExternal())
return true;
return false;
}
static void removeIdenticalCalls(vector<DSCallSite> &Calls,
const std::string &where) {
// Remove trivially identical function calls
unsigned NumFns = Calls.size();
std::sort(Calls.begin(), Calls.end()); // Sort by callee as primary key!
// Scan the call list cleaning it up as necessary...
DSNode *LastCalleeNode = 0;
unsigned NumDuplicateCalls = 0;
bool LastCalleeContainsExternalFunction = false;
for (unsigned i = 0, e = Calls.size(); i != e; ++i) {
DSCallSite &CS = Calls[i];
// If the return value or any arguments point to a void node with no
// information at all in it, and the call node is the only node to point
// to it, remove the edge to the node (killing the node).
//
killIfUselessEdge(CS.getRetVal());
for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a)
killIfUselessEdge(CS.getPtrArg(a));
// If this call site calls the same function as the last call site, and if
// the function pointer contains an external function, this node will never
// be resolved. Merge the arguments of the call node because no information
// will be lost.
//
if (CS.getCallee().getNode() == LastCalleeNode) {
++NumDuplicateCalls;
if (NumDuplicateCalls == 1) {
LastCalleeContainsExternalFunction =
nodeContainsExternalFunction(LastCalleeNode);
}
if (LastCalleeContainsExternalFunction ||
// This should be more than enough context sensitivity!
// FIXME: Evaluate how many times this is tripped!
NumDuplicateCalls > 20) {
DSCallSite &OCS = Calls[i-1];
OCS.mergeWith(CS);
// The node will now be eliminated as a duplicate!
if (CS.getNumPtrArgs() < OCS.getNumPtrArgs())
CS = OCS;
else if (CS.getNumPtrArgs() > OCS.getNumPtrArgs())
OCS = CS;
}
} else {
LastCalleeNode = CS.getCallee().getNode();
NumDuplicateCalls = 0;
}
}
Calls.erase(std::unique(Calls.begin(), Calls.end()),
Calls.end());
2002-11-08 09:21:07 +08:00
// Track the number of call nodes merged away...
NumCallNodesMerged += NumFns-Calls.size();
DEBUG(if (NumFns != Calls.size())
std::cerr << "Merged " << (NumFns-Calls.size())
<< " call nodes in " << where << "\n";);
}
// removeTriviallyDeadNodes - After the graph has been constructed, this method
// removes all unreachable nodes that are created because they got merged with
// other nodes in the graph. These nodes will all be trivially unreachable, so
// we don't have to perform any non-trivial analysis here.
//
void DSGraph::removeTriviallyDeadNodes() {
removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : "");
removeIdenticalCalls(AuxFunctionCalls, Func ? Func->getName() : "");
for (unsigned i = 0; i != Nodes.size(); ++i)
if (isNodeDead(Nodes[i])) { // This node is dead!
delete Nodes[i]; // Free memory...
Nodes.erase(Nodes.begin()+i--); // Remove from node list...
}
}
// markAlive - Simple graph walker that recursively traverses the graph, marking
// stuff to be alive.
//
static void markAlive(DSNode *N, std::set<DSNode*> &Alive) {
if (N == 0) return;
std::set<DSNode*>::iterator I = Alive.lower_bound(N);
if (I != Alive.end() && *I == N) return; // Already marked alive
Alive.insert(I, N); // Is alive now
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
markAlive(N->getLink(i).getNode(), Alive);
}
// markAliveIfCanReachAlive - Simple graph walker that recursively traverses the
// graph looking for a node that is marked alive. If the node is marked alive,
// the recursive unwind marks node alive that can point to the alive node. This
// is basically just a post-order traversal.
//
// This function returns true if the specified node is alive.
//
static bool markAliveIfCanReachAlive(DSNode *N, std::set<DSNode*> &Alive,
std::set<DSNode*> &Visited) {
if (N == 0) return false;
// If we know that this node is alive, return so!
if (Alive.count(N)) return true;
// Otherwise, we don't think the node is alive yet, check for infinite
// recursion.
std::set<DSNode*>::iterator VI = Visited.lower_bound(N);
if (VI != Visited.end() && *VI == N) return false; // Found a cycle
// No recursion, insert into Visited...
Visited.insert(VI, N);
if (N->NodeType & DSNode::GlobalNode)
return false; // Global nodes will be marked on their own
bool ChildrenAreAlive = false;
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
ChildrenAreAlive |= markAliveIfCanReachAlive(N->getLink(i).getNode(),
Alive, Visited);
if (ChildrenAreAlive)
markAlive(N, Alive);
return ChildrenAreAlive;
}
static bool CallSiteUsesAliveArgs(DSCallSite &CS, std::set<DSNode*> &Alive,
std::set<DSNode*> &Visited) {
if (markAliveIfCanReachAlive(CS.getRetVal().getNode(), Alive, Visited) ||
markAliveIfCanReachAlive(CS.getCallee().getNode(), Alive, Visited))
return true;
for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j)
if (markAliveIfCanReachAlive(CS.getPtrArg(j).getNode(), Alive, Visited))
return true;
return false;
}
static void markAlive(DSCallSite &CS, std::set<DSNode*> &Alive) {
markAlive(CS.getRetVal().getNode(), Alive);
markAlive(CS.getCallee().getNode(), Alive);
for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j)
markAlive(CS.getPtrArg(j).getNode(), Alive);
}
// removeDeadNodes - Use a more powerful reachability analysis to eliminate
// subgraphs that are unreachable. This often occurs because the data
// structure doesn't "escape" into it's caller, and thus should be eliminated
// from the caller's graph entirely. This is only appropriate to use when
// inlining graphs.
//
void DSGraph::removeDeadNodes() {
// Reduce the amount of work we have to do...
removeTriviallyDeadNodes();
// FIXME: Merge nontrivially identical call nodes...
// Alive - a set that holds all nodes found to be reachable/alive.
std::set<DSNode*> Alive;
std::vector<std::pair<Value*, DSNode*> > GlobalNodes;
// Mark all nodes reachable by (non-global) scalar nodes as alive...
for (std::map<Value*, DSNodeHandle>::iterator I = ScalarMap.begin(),
E = ScalarMap.end(); I != E; ++I)
if (!isa<GlobalValue>(I->first)) // Don't mark globals!
markAlive(I->second.getNode(), Alive);
else // Keep track of global nodes
GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode()));
// The return value is alive as well...
markAlive(RetNode.getNode(), Alive);
// If any global nodes points to a non-global that is "alive", the global is
// "alive" as well...
//
std::set<DSNode*> Visited;
for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
markAliveIfCanReachAlive(GlobalNodes[i].second, Alive, Visited);
std::vector<bool> FCallsAlive(FunctionCalls.size());
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
if (CallSiteUsesAliveArgs(FunctionCalls[i], Alive, Visited)) {
markAlive(FunctionCalls[i], Alive);
FCallsAlive[i] = true;
}
std::vector<bool> AuxFCallsAlive(AuxFunctionCalls.size());
for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
if (CallSiteUsesAliveArgs(AuxFunctionCalls[i], Alive, Visited)) {
markAlive(AuxFunctionCalls[i], Alive);
AuxFCallsAlive[i] = true;
}
// Remove all dead function calls...
unsigned CurIdx = 0;
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
if (FCallsAlive[i])
FunctionCalls[CurIdx++].swap(FunctionCalls[i]);
// Crop all the bad ones out...
FunctionCalls.erase(FunctionCalls.begin()+CurIdx, FunctionCalls.end());
// Remove all dead aux function calls...
CurIdx = 0;
for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
if (AuxFCallsAlive[i])
AuxFunctionCalls[CurIdx++].swap(AuxFunctionCalls[i]);
// Crop all the bad ones out...
AuxFunctionCalls.erase(AuxFunctionCalls.begin()+CurIdx,
AuxFunctionCalls.end());
// Remove all unreachable globals from the ScalarMap
for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
if (!Alive.count(GlobalNodes[i].second))
ScalarMap.erase(GlobalNodes[i].first);
// Loop over all unreachable nodes, dropping their references...
vector<DSNode*> DeadNodes;
DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed.
for (unsigned i = 0; i != Nodes.size(); ++i)
if (!Alive.count(Nodes[i])) {
DSNode *N = Nodes[i];
Nodes.erase(Nodes.begin()+i--); // Erase node from alive list.
DeadNodes.push_back(N); // Add node to our list of dead nodes
N->dropAllReferences(); // Drop all outgoing edges
}
// Delete all dead nodes...
std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>);
}
#if 0
//===----------------------------------------------------------------------===//
// GlobalDSGraph Implementation
//===----------------------------------------------------------------------===//
#if 0
// Bits used in the next function
static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::HeapNode;
// GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally
// visible target links (and recursively their such links) into this graph.
// NodeCache maps the node being cloned to its clone in the Globals graph,
// in order to track cycles.
// GlobalsAreFinal is a flag that says whether it is safe to assume that
// an existing global node is complete. This is important to avoid
// reinserting all globals when inserting Calls to functions.
// This is a helper function for cloneGlobals and cloneCalls.
//
DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
std::map<const DSNode*, DSNode*> &NodeCache,
bool GlobalsAreFinal) {
if (OldNode == 0) return 0;
// The caller should check this is an external node. Just more efficient...
assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node");
// If a clone has already been created for OldNode, return it.
DSNode*& CacheEntry = NodeCache[OldNode];
if (CacheEntry != 0)
return CacheEntry;
// The result value...
DSNode* NewNode = 0;
// If nodes already exist for any of the globals of OldNode,
// merge all such nodes together since they are merged in OldNode.
// If ValueCacheIsFinal==true, look for an existing node that has
// an identical list of globals and return it if it exists.
//
for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j)
if (DSNode *PrevNode = ScalarMap[OldNode->getGlobals()[j]].getNode()) {
if (NewNode == 0) {
NewNode = PrevNode; // first existing node found
if (GlobalsAreFinal && j == 0)
if (OldNode->getGlobals() == PrevNode->getGlobals()) {
CacheEntry = NewNode;
return NewNode;
}
}
else if (NewNode != PrevNode) { // found another, different from prev
// update ValMap *before* merging PrevNode into NewNode
for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k)
ScalarMap[PrevNode->getGlobals()[k]] = NewNode;
NewNode->mergeWith(PrevNode);
}
} else if (NewNode != 0) {
ScalarMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node
}
// If no existing node was found, clone the node and update the ValMap.
if (NewNode == 0) {
NewNode = new DSNode(*OldNode);
Nodes.push_back(NewNode);
for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j)
NewNode->setLink(j, 0);
for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j)
ScalarMap[NewNode->getGlobals()[j]] = NewNode;
}
else
NewNode->NodeType |= OldNode->NodeType; // Markers may be different!
// Add the entry to NodeCache
CacheEntry = NewNode;
// Rewrite the links in the new node to point into the current graph,
// but only for links to external nodes. Set other links to NULL.
for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) {
DSNode* OldTarget = OldNode->getLink(j);
if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) {
DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache);
if (NewNode->getLink(j))
NewNode->getLink(j)->mergeWith(NewLink);
else
NewNode->setLink(j, NewLink);
}
}
// Remove all local markers
NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode);
return NewNode;
}
// GlobalDSGraph::cloneCalls - Clone function calls and their visible target
// links (and recursively their such links) into this graph.
//
void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
std::map<const DSNode*, DSNode*> NodeCache;
vector<DSCallSite >& FromCalls =Graph.FunctionCalls;
FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size());
for (int i = 0, ei = FromCalls.size(); i < ei; ++i) {
DSCallSite& callCopy = FunctionCalls.back();
callCopy.reserve(FromCalls[i].size());
for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j)
callCopy.push_back
((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits))
? cloneNodeInto(FromCalls[i][j], NodeCache, true)
: 0);
}
// remove trivially identical function calls
removeIdenticalCalls(FunctionCalls, "Globals Graph");
}
#endif
#endif