llvm-project/lldb/source/Plugins/ABI/SysV-arm64/ABISysV_arm64.cpp

1079 lines
63 KiB
C++
Raw Normal View History

//===-- ABISysV_arm64.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ABISysV_arm64.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "Utility/ARM64_DWARF_Registers.h"
#include <vector>
using namespace lldb;
using namespace lldb_private;
static RegisterInfo g_register_infos[] =
{
Clean up register naming conventions inside lldb. "gcc" register numbers are now correctly referred to as "ehframe" register numbers. In almost all cases, ehframe and dwarf register numbers are identical (the one exception is i386 darwin where ehframe regnums were incorrect). The old "gdb" register numbers, which I incorrectly thought were stabs register numbers, are now referred to as "Process Plugin" register numbers. This is the register numbering scheme that the remote process controller stub (lldb-server, gdbserver, core file support, kdp server, remote jtag devices, etc) uses to refer to the registers. The process plugin register numbers may not be contiguous - there are remote jtag devices that have gaps in their register numbering schemes. I removed all of the enums for "gdb" register numbers that we had in lldb - these were meaningless - and I put LLDB_INVALID_REGNUM in all of the register tables for the Process Plugin regnum slot. This change is almost entirely mechnical; the one actual change in here is to ProcessGDBRemote.cpp's ParseRegisters() which parses the qXfer:features:read:target.xml response. As it parses register definitions from the xml, it will assign sequential numbers as the eRegisterKindLLDB numbers (the lldb register numberings must be sequential, without any gaps) and if the xml file specifies register numbers, those will be used as the eRegisterKindProcessPlugin register numbers (and those may have gaps). A J-Link jtag device's target.xml does contain a gap in register numbers, and it only specifies the register numbers for the registers after that gap. The device supports many different ARM boards and probably selects different part of its register file as appropriate. http://reviews.llvm.org/D12791 <rdar://problem/22623262> llvm-svn: 247741
2015-09-16 07:20:34 +08:00
// NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB NATIVE
// ========== ======= == === ============= =================== =================== ====================== =========================== ======================= ======================
{ "x0", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x0, LLDB_REGNUM_GENERIC_ARG1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x1", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x1, LLDB_REGNUM_GENERIC_ARG2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x2", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x2, LLDB_REGNUM_GENERIC_ARG3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x3", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x3, LLDB_REGNUM_GENERIC_ARG4, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x4", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x4, LLDB_REGNUM_GENERIC_ARG5, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x5", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x5, LLDB_REGNUM_GENERIC_ARG6, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x6", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x6, LLDB_REGNUM_GENERIC_ARG7, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x7", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x7, LLDB_REGNUM_GENERIC_ARG8, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x8", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x8, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x9", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x9, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x10", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x10, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x11", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x11, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x12", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x13", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x14", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x15", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x16", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x17", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x18", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x19", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x20", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x21", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x22", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x23", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x24", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x25", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x26", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x27", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "x28", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "fp", "x29", 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x29, LLDB_REGNUM_GENERIC_FP, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "lr", "x30", 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x30, LLDB_REGNUM_GENERIC_RA, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "sp", "x31", 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::x31, LLDB_REGNUM_GENERIC_SP, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "pc", NULL, 8, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::pc, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "cpsr", "psr", 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, arm64_dwarf::cpsr, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v0", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v1", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v2", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v3", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v4", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v4, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v5", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v5, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v6", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v6, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v7", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v7, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v8", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v8, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v9", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v9, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v10", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v10, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v11", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v11, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v12", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v13", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v14", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v15", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v16", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v17", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v18", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v19", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v20", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v21", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v22", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v23", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v24", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v25", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v26", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v27", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v28", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v29", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v29, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v30", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v30, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "v31", NULL, 16, 0, eEncodingVector , eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, arm64_dwarf::v31, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "fpsr", NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "fpcr", NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s0", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s1", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s2", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s3", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s4", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s5", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s6", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s7", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s8", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s9", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s10", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s11", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s12", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s13", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s14", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s15", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s16", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s17", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s18", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s19", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s20", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s21", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s22", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s23", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s24", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s25", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s26", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s27", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s28", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s29", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s30", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "s31", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d0", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d1", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d2", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d3", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d4", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d5", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d6", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d7", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d8", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d9", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d10", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d11", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d12", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d13", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d14", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d15", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d16", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d17", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d18", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d19", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d20", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d21", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d22", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d23", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d24", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d25", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d26", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d27", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d28", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d29", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d30", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL },
{ "d31", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL }
};
static const uint32_t k_num_register_infos = llvm::array_lengthof(g_register_infos);
static bool g_register_info_names_constified = false;
const lldb_private::RegisterInfo *
ABISysV_arm64::GetRegisterInfoArray (uint32_t &count)
{
// Make the C-string names and alt_names for the register infos into const
// C-string values by having the ConstString unique the names in the global
// constant C-string pool.
if (!g_register_info_names_constified)
{
g_register_info_names_constified = true;
for (uint32_t i=0; i<k_num_register_infos; ++i)
{
if (g_register_infos[i].name)
g_register_infos[i].name = ConstString(g_register_infos[i].name).GetCString();
if (g_register_infos[i].alt_name)
g_register_infos[i].alt_name = ConstString(g_register_infos[i].alt_name).GetCString();
}
}
count = k_num_register_infos;
return g_register_infos;
}
size_t
ABISysV_arm64::GetRedZoneSize () const
{
return 128;
}
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
ABISP
ABISysV_arm64::CreateInstance (const ArchSpec &arch)
{
static ABISP g_abi_sp;
const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch();
const llvm::Triple::VendorType vendor_type = arch.GetTriple().getVendor();
if (vendor_type != llvm::Triple::Apple)
{
if (arch_type == llvm::Triple::aarch64)
{
if (!g_abi_sp)
g_abi_sp.reset (new ABISysV_arm64);
return g_abi_sp;
}
}
return ABISP();
}
bool
ABISysV_arm64::PrepareTrivialCall (Thread &thread,
addr_t sp,
addr_t func_addr,
addr_t return_addr,
llvm::ArrayRef<addr_t> args) const
{
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (log)
{
StreamString s;
s.Printf("ABISysV_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 ", return_addr = 0x%" PRIx64,
thread.GetID(),
(uint64_t)sp,
(uint64_t)func_addr,
(uint64_t)return_addr);
for (size_t i = 0; i < args.size(); ++i)
s.Printf (", arg%d = 0x%" PRIx64, static_cast<int>(i + 1), args[i]);
s.PutCString (")");
log->PutCString(s.GetString().c_str());
}
// x0 - x7 contain first 8 simple args
if (args.size() > 8)
return false;
for (size_t i = 0; i < args.size(); ++i)
{
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i);
if (log)
log->Printf("About to write arg%d (0x%" PRIx64 ") into %s",
static_cast<int>(i + 1), args[i], reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
return false;
}
// Set "lr" to the return address
if (!reg_ctx->WriteRegisterFromUnsigned (reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA), return_addr))
return false;
// Set "sp" to the requested value
if (!reg_ctx->WriteRegisterFromUnsigned (reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP), sp))
return false;
// Set "pc" to the address requested
if (!reg_ctx->WriteRegisterFromUnsigned (reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC), func_addr))
return false;
return true;
}
//TODO: We dont support fp/SIMD arguments in v0-v7
bool
ABISysV_arm64::GetArgumentValues (Thread &thread, ValueList &values) const
{
uint32_t num_values = values.GetSize();
ExecutionContext exe_ctx (thread.shared_from_this());
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
addr_t sp = 0;
for (uint32_t value_idx = 0; value_idx < num_values; ++value_idx)
{
// We currently only support extracting values with Clang QualTypes.
// Do we care about others?
Value *value = values.GetValueAtIndex(value_idx);
if (!value)
return false;
Final bit of type system cleanup that abstracts declaration contexts into lldb_private::CompilerDeclContext and renames ClangType to CompilerType in many accessors and functions. Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files. Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types. Bulk renames for things that used to return a ClangASTType which is now CompilerType: "Type::GetClangFullType()" to "Type::GetFullCompilerType()" "Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()" "Type::GetClangForwardType()" to "Type::GetForwardCompilerType()" "Value::GetClangType()" to "Value::GetCompilerType()" "Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)" "ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()" many more renames that are similar. llvm-svn: 245905
2015-08-25 07:46:31 +08:00
CompilerType value_type = value->GetCompilerType();
if (value_type)
{
bool is_signed = false;
size_t bit_width = 0;
if (value_type.IsIntegerType (is_signed))
{
bit_width = value_type.GetBitSize(&thread);
}
else if (value_type.IsPointerOrReferenceType ())
{
bit_width = value_type.GetBitSize(&thread);
}
else
{
// We only handle integer, pointer and reference types currently...
return false;
}
if (bit_width <= (exe_ctx.GetProcessRef().GetAddressByteSize() * 8))
{
if (value_idx < 8)
{
// Arguments 1-8 are in x0-x7...
const RegisterInfo *reg_info = NULL;
reg_info= reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + value_idx);
if (reg_info)
{
RegisterValue reg_value;
if (reg_ctx->ReadRegister(reg_info, reg_value))
{
if (is_signed)
reg_value.SignExtend(bit_width);
if (!reg_value.GetScalarValue(value->GetScalar()))
return false;
continue;
}
}
return false;
}
else
{
//TODO: Verify for stack layout for SysV
if (sp == 0)
{
// Read the stack pointer if we already haven't read it
sp = reg_ctx->GetSP(0);
if (sp == 0)
return false;
}
// Arguments 5 on up are on the stack
const uint32_t arg_byte_size = (bit_width + (8-1)) / 8;
Error error;
if (!exe_ctx.GetProcessRef().ReadScalarIntegerFromMemory(sp, arg_byte_size, is_signed, value->GetScalar(), error))
return false;
sp += arg_byte_size;
// Align up to the next 8 byte boundary if needed
if (sp % 8)
{
sp >>= 3;
sp += 1;
sp <<= 3;
}
}
}
}
}
return true;
}
Error
ABISysV_arm64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp)
{
Error error;
if (!new_value_sp)
{
error.SetErrorString("Empty value object for return value.");
return error;
}
Final bit of type system cleanup that abstracts declaration contexts into lldb_private::CompilerDeclContext and renames ClangType to CompilerType in many accessors and functions. Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files. Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types. Bulk renames for things that used to return a ClangASTType which is now CompilerType: "Type::GetClangFullType()" to "Type::GetFullCompilerType()" "Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()" "Type::GetClangForwardType()" to "Type::GetForwardCompilerType()" "Value::GetClangType()" to "Value::GetCompilerType()" "Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)" "ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()" many more renames that are similar. llvm-svn: 245905
2015-08-25 07:46:31 +08:00
CompilerType return_value_type = new_value_sp->GetCompilerType();
if (!return_value_type)
{
error.SetErrorString ("Null clang type for return value.");
return error;
}
Thread *thread = frame_sp->GetThread().get();
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
if (reg_ctx)
{
DataExtractor data;
Error data_error;
const uint64_t byte_size = new_value_sp->GetData(data, data_error);
if (data_error.Fail())
{
error.SetErrorStringWithFormat("Couldn't convert return value to raw data: %s", data_error.AsCString());
return error;
}
const uint32_t type_flags = return_value_type.GetTypeInfo (NULL);
if (type_flags & eTypeIsScalar ||
type_flags & eTypeIsPointer)
{
if (type_flags & eTypeIsInteger ||
type_flags & eTypeIsPointer )
{
// Extract the register context so we can read arguments from registers
lldb::offset_t offset = 0;
if (byte_size <= 16)
{
const RegisterInfo *x0_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1);
if (byte_size <= 8)
{
uint64_t raw_value = data.GetMaxU64(&offset, byte_size);
if (!reg_ctx->WriteRegisterFromUnsigned (x0_info, raw_value))
error.SetErrorString ("failed to write register x0");
}
else
{
uint64_t raw_value = data.GetMaxU64(&offset, 8);
if (reg_ctx->WriteRegisterFromUnsigned (x0_info, raw_value))
{
const RegisterInfo *x1_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2);
raw_value = data.GetMaxU64(&offset, byte_size - offset);
if (!reg_ctx->WriteRegisterFromUnsigned (x1_info, raw_value))
error.SetErrorString ("failed to write register x1");
}
}
}
else
{
error.SetErrorString("We don't support returning longer than 128 bit integer values at present.");
}
}
else if (type_flags & eTypeIsFloat)
{
if (type_flags & eTypeIsComplex)
{
// Don't handle complex yet.
error.SetErrorString ("returning complex float values are not supported");
}
else
{
const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName("v0", 0);
if (v0_info)
{
if (byte_size <= 16)
{
if (byte_size <= RegisterValue::GetMaxByteSize())
{
RegisterValue reg_value;
error = reg_value.SetValueFromData (v0_info, data, 0, true);
if (error.Success())
{
if (!reg_ctx->WriteRegister (v0_info, reg_value))
error.SetErrorString ("failed to write register v0");
}
}
else
{
error.SetErrorStringWithFormat ("returning float values with a byte size of %" PRIu64 " are not supported", byte_size);
}
}
else
{
error.SetErrorString("returning float values longer than 128 bits are not supported");
}
}
else
{
error.SetErrorString("v0 register is not available on this target");
}
}
}
}
else if (type_flags & eTypeIsVector)
{
if (byte_size > 0)
{
const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName("v0", 0);
if (v0_info)
{
if (byte_size <= v0_info->byte_size)
{
RegisterValue reg_value;
error = reg_value.SetValueFromData (v0_info, data, 0, true);
if (error.Success())
{
if (!reg_ctx->WriteRegister (v0_info, reg_value))
error.SetErrorString ("failed to write register v0");
}
}
}
}
}
}
else
{
error.SetErrorString("no registers are available");
}
return error;
}
bool
ABISysV_arm64::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
unwind_plan.Clear();
unwind_plan.SetRegisterKind (eRegisterKindDWARF);
uint32_t lr_reg_num = arm64_dwarf::lr;
uint32_t sp_reg_num = arm64_dwarf::sp;
uint32_t pc_reg_num = arm64_dwarf::pc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
// Our previous Call Frame Address is the stack pointer
row->GetCFAValue().SetIsRegisterPlusOffset (sp_reg_num, 0);
// Our previous PC is in the LR
row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
unwind_plan.AppendRow (row);
// All other registers are the same.
unwind_plan.SetSourceName ("arm64 at-func-entry default");
unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
return true;
}
bool
ABISysV_arm64::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
unwind_plan.Clear();
unwind_plan.SetRegisterKind (eRegisterKindDWARF);
uint32_t fp_reg_num = arm64_dwarf::fp;
uint32_t pc_reg_num = arm64_dwarf::pc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 8;
row->GetCFAValue().SetIsRegisterPlusOffset (fp_reg_num, 2 * ptr_size);
row->SetOffset (0);
row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
unwind_plan.AppendRow (row);
unwind_plan.SetSourceName ("arm64 default unwind plan");
unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
return true;
}
// AAPCS64 (Procedure Call Standard for the ARM 64-bit Architecture) says
// registers x19 through x28 and sp are callee preserved.
// v8-v15 are non-volatile (and specifically only the lower 8 bytes of these regs),
// the rest of the fp/SIMD registers are volatile.
// We treat x29 as callee preserved also, else the unwinder won't try to
// retrieve fp saves.
bool
ABISysV_arm64::RegisterIsVolatile (const RegisterInfo *reg_info)
{
if (reg_info)
{
const char *name = reg_info->name;
// Sometimes we'll be called with the "alternate" name for these registers;
// recognize them as non-volatile.
if (name[0] == 'p' && name[1] == 'c') // pc
return false;
if (name[0] == 'f' && name[1] == 'p') // fp
return false;
if (name[0] == 's' && name[1] == 'p') // sp
return false;
if (name[0] == 'l' && name[1] == 'r') // lr
return false;
if (name[0] == 'x')
{
// Volatile registers: x0-x18
// Although documentation says only x19-28 + sp are callee saved
// We ll also have to treat x30 as non-volatile.
// Each dwarf frame has its own value of lr.
// Return false for the non-volatile gpr regs, true for everything else
switch (name[1])
{
case '1':
switch (name[2])
{
case '9':
return false; // x19 is non-volatile
default:
return true;
}
break;
case '2':
switch (name[2])
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
return false; // x20 - 28 are non-volatile
case '9':
return false; // x29 aka fp treat as non-volatile
default:
return true;
}
case '3': // x30 (lr) and x31 (sp) treat as non-volatile
if (name[2] == '0' || name[2] == '1')
return false;
default:
return true; // all volatile cases not handled above fall here.
}
}
else if (name[0] == 'v' || name[0] == 's' || name[0] == 'd')
{
// Volatile registers: v0-7, v16-v31
// Return false for non-volatile fp/SIMD regs, true for everything else
switch (name[1])
{
case '8':
case '9':
return false; // v8-v9 are non-volatile
case '1':
switch (name[2])
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
return false; // v10-v15 are non-volatile
default:
return true;
}
default:
return true;
}
}
}
return true;
}
static bool
LoadValueFromConsecutiveGPRRegisters (ExecutionContext &exe_ctx,
RegisterContext *reg_ctx,
const CompilerType &value_type,
bool is_return_value, // false => parameter, true => return value
uint32_t &NGRN, // NGRN (see ABI documentation)
uint32_t &NSRN, // NSRN (see ABI documentation)
DataExtractor &data)
{
const size_t byte_size = value_type.GetByteSize(nullptr);
if (byte_size == 0)
return false;
std::unique_ptr<DataBufferHeap> heap_data_ap (new DataBufferHeap(byte_size, 0));
const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder();
Error error;
CompilerType base_type;
const uint32_t homogeneous_count = value_type.IsHomogeneousAggregate (&base_type);
if (homogeneous_count > 0 && homogeneous_count <= 8)
{
// Make sure we have enough registers
if (NSRN < 8 && (8-NSRN) >= homogeneous_count)
{
if (!base_type)
return false;
const size_t base_byte_size = base_type.GetByteSize(nullptr);
uint32_t data_offset = 0;
for (uint32_t i=0; i<homogeneous_count; ++i)
{
char v_name[8];
::snprintf (v_name, sizeof(v_name), "v%u", NSRN);
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(v_name, 0);
if (reg_info == NULL)
return false;
if (base_byte_size > reg_info->byte_size)
return false;
RegisterValue reg_value;
if (!reg_ctx->ReadRegister(reg_info, reg_value))
return false;
// Make sure we have enough room in "heap_data_ap"
if ((data_offset + base_byte_size) <= heap_data_ap->GetByteSize())
{
const size_t bytes_copied = reg_value.GetAsMemoryData (reg_info,
heap_data_ap->GetBytes()+data_offset,
base_byte_size,
byte_order,
error);
if (bytes_copied != base_byte_size)
return false;
data_offset += bytes_copied;
++NSRN;
}
else
return false;
}
data.SetByteOrder(byte_order);
data.SetAddressByteSize(exe_ctx.GetProcessRef().GetAddressByteSize());
data.SetData(DataBufferSP (heap_data_ap.release()));
return true;
}
}
const size_t max_reg_byte_size = 16;
if (byte_size <= max_reg_byte_size)
{
size_t bytes_left = byte_size;
uint32_t data_offset = 0;
while (data_offset < byte_size)
{
if (NGRN >= 8)
return false;
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + NGRN);
if (reg_info == NULL)
return false;
RegisterValue reg_value;
if (!reg_ctx->ReadRegister(reg_info, reg_value))
return false;
const size_t curr_byte_size = std::min<size_t>(8,bytes_left);
const size_t bytes_copied = reg_value.GetAsMemoryData (reg_info, heap_data_ap->GetBytes()+data_offset, curr_byte_size, byte_order, error);
if (bytes_copied == 0)
return false;
if (bytes_copied >= bytes_left)
break;
data_offset += bytes_copied;
bytes_left -= bytes_copied;
++NGRN;
}
}
else
{
const RegisterInfo *reg_info = NULL;
if (is_return_value)
{
// We are assuming we are decoding this immediately after returning
// from a function call and that the address of the structure is in x8
reg_info = reg_ctx->GetRegisterInfoByName("x8", 0);
}
else
{
// We are assuming we are stopped at the first instruction in a function
// and that the ABI is being respected so all parameters appear where they
// should be (functions with no external linkage can legally violate the ABI).
if (NGRN >= 8)
return false;
reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + NGRN);
if (reg_info == NULL)
return false;
++NGRN;
}
if (reg_info == NULL)
return false;
const lldb::addr_t value_addr = reg_ctx->ReadRegisterAsUnsigned(reg_info, LLDB_INVALID_ADDRESS);
if (value_addr == LLDB_INVALID_ADDRESS)
return false;
if (exe_ctx.GetProcessRef().ReadMemory (value_addr,
heap_data_ap->GetBytes(),
heap_data_ap->GetByteSize(),
error) != heap_data_ap->GetByteSize())
{
return false;
}
}
data.SetByteOrder(byte_order);
data.SetAddressByteSize(exe_ctx.GetProcessRef().GetAddressByteSize());
data.SetData(DataBufferSP (heap_data_ap.release()));
return true;
}
ValueObjectSP
ABISysV_arm64::GetReturnValueObjectImpl (Thread &thread, CompilerType &return_compiler_type) const
{
ValueObjectSP return_valobj_sp;
Value value;
ExecutionContext exe_ctx (thread.shared_from_this());
if (exe_ctx.GetTargetPtr() == NULL || exe_ctx.GetProcessPtr() == NULL)
return return_valobj_sp;
//value.SetContext (Value::eContextTypeClangType, return_compiler_type);
value.SetCompilerType(return_compiler_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
const size_t byte_size = return_compiler_type.GetByteSize(nullptr);
const uint32_t type_flags = return_compiler_type.GetTypeInfo (NULL);
if (type_flags & eTypeIsScalar ||
type_flags & eTypeIsPointer)
{
value.SetValueType(Value::eValueTypeScalar);
bool success = false;
if (type_flags & eTypeIsInteger ||
type_flags & eTypeIsPointer )
{
// Extract the register context so we can read arguments from registers
if (byte_size <= 8)
{
const RegisterInfo *x0_reg_info = NULL;
x0_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1);
if (x0_reg_info)
{
uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(x0_reg_info, 0);
const bool is_signed = (type_flags & eTypeIsSigned) != 0;
switch (byte_size)
{
default:
break;
case 16: // uint128_t
// In register x0 and x1
{
const RegisterInfo *x1_reg_info = NULL;
x1_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2);
if (x1_reg_info)
{
if (byte_size <= x0_reg_info->byte_size + x1_reg_info->byte_size)
{
std::unique_ptr<DataBufferHeap> heap_data_ap (new DataBufferHeap(byte_size, 0));
const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder();
RegisterValue x0_reg_value;
RegisterValue x1_reg_value;
if (reg_ctx->ReadRegister(x0_reg_info, x0_reg_value) &&
reg_ctx->ReadRegister(x1_reg_info, x1_reg_value))
{
Error error;
if (x0_reg_value.GetAsMemoryData (x0_reg_info, heap_data_ap->GetBytes()+0, 8, byte_order, error) &&
x1_reg_value.GetAsMemoryData (x1_reg_info, heap_data_ap->GetBytes()+8, 8, byte_order, error))
{
DataExtractor data (DataBufferSP (heap_data_ap.release()),
byte_order,
exe_ctx.GetProcessRef().GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create (&thread,
return_compiler_type,
ConstString(""),
data);
return return_valobj_sp;
}
}
}
}
}
break;
case sizeof(uint64_t):
if (is_signed)
value.GetScalar() = (int64_t)(raw_value);
else
value.GetScalar() = (uint64_t)(raw_value);
success = true;
break;
case sizeof(uint32_t):
if (is_signed)
value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
success = true;
break;
case sizeof(uint16_t):
if (is_signed)
value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
success = true;
break;
case sizeof(uint8_t):
if (is_signed)
value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
success = true;
break;
}
}
}
}
else if (type_flags & eTypeIsFloat)
{
if (type_flags & eTypeIsComplex)
{
// Don't handle complex yet.
}
else
{
if (byte_size <= sizeof(long double))
{
const RegisterInfo *v0_reg_info = reg_ctx->GetRegisterInfoByName("v0", 0);
RegisterValue v0_value;
if (reg_ctx->ReadRegister (v0_reg_info, v0_value))
{
DataExtractor data;
if (v0_value.GetData(data))
{
lldb::offset_t offset = 0;
if (byte_size == sizeof(float))
{
value.GetScalar() = data.GetFloat(&offset);
success = true;
}
else if (byte_size == sizeof(double))
{
value.GetScalar() = data.GetDouble(&offset);
success = true;
}
else if (byte_size == sizeof(long double))
{
value.GetScalar() = data.GetLongDouble(&offset);
success = true;
}
}
}
}
}
}
if (success)
return_valobj_sp = ValueObjectConstResult::Create (thread.GetStackFrameAtIndex(0).get(),
value,
ConstString(""));
}
else if (type_flags & eTypeIsVector)
{
if (byte_size > 0)
{
const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName("v0", 0);
if (v0_info)
{
if (byte_size <= v0_info->byte_size)
{
std::unique_ptr<DataBufferHeap> heap_data_ap (new DataBufferHeap(byte_size, 0));
const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder();
RegisterValue reg_value;
if (reg_ctx->ReadRegister(v0_info, reg_value))
{
Error error;
if (reg_value.GetAsMemoryData (v0_info,
heap_data_ap->GetBytes(),
heap_data_ap->GetByteSize(),
byte_order,
error))
{
DataExtractor data (DataBufferSP (heap_data_ap.release()),
byte_order,
exe_ctx.GetProcessRef().GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create (&thread,
return_compiler_type,
ConstString(""),
data);
}
}
}
}
}
}
else if (type_flags & eTypeIsStructUnion ||
type_flags & eTypeIsClass)
{
DataExtractor data;
uint32_t NGRN = 0; // Search ABI docs for NGRN
uint32_t NSRN = 0; // Search ABI docs for NSRN
const bool is_return_value = true;
if (LoadValueFromConsecutiveGPRRegisters (exe_ctx, reg_ctx, return_compiler_type, is_return_value, NGRN, NSRN, data))
{
return_valobj_sp = ValueObjectConstResult::Create (&thread,
return_compiler_type,
ConstString(""),
data);
}
}
return return_valobj_sp;
}
void
ABISysV_arm64::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
"SysV ABI for AArch64 targets",
CreateInstance);
}
void
ABISysV_arm64::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
lldb_private::ConstString
ABISysV_arm64::GetPluginNameStatic()
{
static ConstString g_name("SysV-arm64");
return g_name;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
ConstString
ABISysV_arm64::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
ABISysV_arm64::GetPluginVersion()
{
return 1;
}