llvm-project/llvm/lib/Support/SmallVector.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

155 lines
6.1 KiB
C++
Raw Normal View History

//===- llvm/ADT/SmallVector.cpp - 'Normally small' vectors ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SmallVector class.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
[llvm] Cleanup header dependencies in ADT and Support The cleanup was manual, but assisted by "include-what-you-use". It consists in 1. Removing unused forward declaration. No impact expected. 2. Removing unused headers in .cpp files. No impact expected. 3. Removing unused headers in .h files. This removes implicit dependencies and is generally considered a good thing, but this may break downstream builds. I've updated llvm, clang, lld, lldb and mlir deps, and included a list of the modification in the second part of the commit. 4. Replacing header inclusion by forward declaration. This has the same impact as 3. Notable changes: - llvm/Support/TargetParser.h no longer includes llvm/Support/AArch64TargetParser.h nor llvm/Support/ARMTargetParser.h - llvm/Support/TypeSize.h no longer includes llvm/Support/WithColor.h - llvm/Support/YAMLTraits.h no longer includes llvm/Support/Regex.h - llvm/ADT/SmallVector.h no longer includes llvm/Support/MemAlloc.h nor llvm/Support/ErrorHandling.h You may need to add some of these headers in your compilation units, if needs be. As an hint to the impact of the cleanup, running clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Support/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l before: 8000919 lines after: 7917500 lines Reduced dependencies also helps incremental rebuilds and is more ccache friendly, something not shown by the above metric :-) Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
2022-01-20 19:55:14 +08:00
#include "llvm/Support/MemAlloc.h"
#include <cstdint>
#ifdef LLVM_ENABLE_EXCEPTIONS
#include <stdexcept>
#endif
using namespace llvm;
// Check that no bytes are wasted and everything is well-aligned.
namespace {
// These structures may cause binary compat warnings on AIX. Suppress the
// warning since we are only using these types for the static assertions below.
#if defined(_AIX)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Waix-compat"
#endif
struct Struct16B {
alignas(16) void *X;
};
struct Struct32B {
alignas(32) void *X;
};
#if defined(_AIX)
#pragma GCC diagnostic pop
#endif
}
static_assert(sizeof(SmallVector<void *, 0>) ==
sizeof(unsigned) * 2 + sizeof(void *),
"wasted space in SmallVector size 0");
static_assert(alignof(SmallVector<Struct16B, 0>) >= alignof(Struct16B),
"wrong alignment for 16-byte aligned T");
static_assert(alignof(SmallVector<Struct32B, 0>) >= alignof(Struct32B),
"wrong alignment for 32-byte aligned T");
static_assert(sizeof(SmallVector<Struct16B, 0>) >= alignof(Struct16B),
"missing padding for 16-byte aligned T");
static_assert(sizeof(SmallVector<Struct32B, 0>) >= alignof(Struct32B),
"missing padding for 32-byte aligned T");
static_assert(sizeof(SmallVector<void *, 1>) ==
sizeof(unsigned) * 2 + sizeof(void *) * 2,
"wasted space in SmallVector size 1");
static_assert(sizeof(SmallVector<char, 0>) ==
sizeof(void *) * 2 + sizeof(void *),
"1 byte elements have word-sized type for size and capacity");
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
/// Report that MinSize doesn't fit into this vector's size type. Throws
/// std::length_error or calls report_fatal_error.
[[noreturn]] static void report_size_overflow(size_t MinSize, size_t MaxSize);
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
static void report_size_overflow(size_t MinSize, size_t MaxSize) {
std::string Reason = "SmallVector unable to grow. Requested capacity (" +
std::to_string(MinSize) +
") is larger than maximum value for size type (" +
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
std::to_string(MaxSize) + ")";
#ifdef LLVM_ENABLE_EXCEPTIONS
throw std::length_error(Reason);
#else
report_fatal_error(Twine(Reason));
#endif
}
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
/// Report that this vector is already at maximum capacity. Throws
/// std::length_error or calls report_fatal_error.
[[noreturn]] static void report_at_maximum_capacity(size_t MaxSize);
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
static void report_at_maximum_capacity(size_t MaxSize) {
std::string Reason =
"SmallVector capacity unable to grow. Already at maximum size " +
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
std::to_string(MaxSize);
#ifdef LLVM_ENABLE_EXCEPTIONS
throw std::length_error(Reason);
#else
report_fatal_error(Twine(Reason));
#endif
}
// Note: Moving this function into the header may cause performance regression.
template <class Size_T>
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
static size_t getNewCapacity(size_t MinSize, size_t TSize, size_t OldCapacity) {
constexpr size_t MaxSize = std::numeric_limits<Size_T>::max();
// Ensure we can fit the new capacity.
// This is only going to be applicable when the capacity is 32 bit.
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
if (MinSize > MaxSize)
report_size_overflow(MinSize, MaxSize);
// Ensure we can meet the guarantee of space for at least one more element.
// The above check alone will not catch the case where grow is called with a
// default MinSize of 0, but the current capacity cannot be increased.
// This is only going to be applicable when the capacity is 32 bit.
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
if (OldCapacity == MaxSize)
report_at_maximum_capacity(MaxSize);
// In theory 2*capacity can overflow if the capacity is 64 bit, but the
// original capacity would never be large enough for this to be a problem.
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
size_t NewCapacity = 2 * OldCapacity + 1; // Always grow.
return std::min(std::max(NewCapacity, MinSize), MaxSize);
}
ADT: Fix reference invalidation in SmallVector::emplace_back and assign(N,V) This fixes the final (I think?) reference invalidation in `SmallVector` that we need to fix to align with `std::vector`. (There is still some left in the range insert / append / assign, but the standard calls that UB for `std::vector` so I think we don't care?) For POD-like types, reimplement `emplace_back()` in terms of `push_back()`, taking a copy even for large `T` rather than lose the realloc optimization in `grow_pod()`. For other types, split the grow operation in three and construct the new element in the middle. - `mallocForGrow()` calculates the new capacity and returns the result of `safe_malloc()`. We only need a single definition per `SmallVectorBase` so this is defined in SmallVector.cpp to avoid code size bloat. Moving this part of non-POD grow to the source file also allows the logic to be easily shared with `grow_pod`, and `report_size_overflow()` and `report_at_maximum_capacity()` can move there too. - `moveElementsForGrow()` moves elements from the old to the new allocation. - `takeAllocationForGrow()` frees the old allocation and saves the new allocation and capacity . `SmallVector:assign(size_type, const T&)` also uses the split-grow operations for non-POD, but it also has a semantic change when not growing. Previously, assign would start with `clear()`, and so the old elements were destructed and all elements of the new vector were copy-constructed (potentially invalidating references). The new implementation skips destruction and uses copy-assignment for the prefix of the new vector that fits. The new semantics match what libc++ does for `std::vector::assign()`. Note that the following is another possible implementation: ``` void assign(size_type NumElts, ValueParamT Elt) { std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); this->resize(NumElts, Elt); } ``` The downside of this simpler implementation is that if the vector has to grow there will be `size()` redundant copy operations. (I had planned on splitting this patch up into three for committing (after getting performance numbers / initial review), but I've realized that if this does for some reason need to be reverted we'll probably want to revert the whole package...) Differential Revision: https://reviews.llvm.org/D94739
2021-01-15 08:40:41 +08:00
// Note: Moving this function into the header may cause performance regression.
template <class Size_T>
void *SmallVectorBase<Size_T>::mallocForGrow(size_t MinSize, size_t TSize,
size_t &NewCapacity) {
NewCapacity = getNewCapacity<Size_T>(MinSize, TSize, this->capacity());
return llvm::safe_malloc(NewCapacity * TSize);
}
// Note: Moving this function into the header may cause performance regression.
template <class Size_T>
void SmallVectorBase<Size_T>::grow_pod(void *FirstEl, size_t MinSize,
size_t TSize) {
size_t NewCapacity = getNewCapacity<Size_T>(MinSize, TSize, this->capacity());
void *NewElts;
if (BeginX == FirstEl) {
NewElts = safe_malloc(NewCapacity * TSize);
// Copy the elements over. No need to run dtors on PODs.
memcpy(NewElts, this->BeginX, size() * TSize);
} else {
// If this wasn't grown from the inline copy, grow the allocated space.
NewElts = safe_realloc(this->BeginX, NewCapacity * TSize);
}
this->BeginX = NewElts;
this->Capacity = NewCapacity;
}
template class llvm::SmallVectorBase<uint32_t>;
// Disable the uint64_t instantiation for 32-bit builds.
// Both uint32_t and uint64_t instantiations are needed for 64-bit builds.
// This instantiation will never be used in 32-bit builds, and will cause
// warnings when sizeof(Size_T) > sizeof(size_t).
#if SIZE_MAX > UINT32_MAX
template class llvm::SmallVectorBase<uint64_t>;
// Assertions to ensure this #if stays in sync with SmallVectorSizeType.
static_assert(sizeof(SmallVectorSizeType<char>) == sizeof(uint64_t),
"Expected SmallVectorBase<uint64_t> variant to be in use.");
#else
static_assert(sizeof(SmallVectorSizeType<char>) == sizeof(uint32_t),
"Expected SmallVectorBase<uint32_t> variant to be in use.");
#endif