forked from OSchip/llvm-project
165 lines
6.4 KiB
C++
165 lines
6.4 KiB
C++
|
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
|
||
|
//
|
||
|
// This file implements inlining of a function into a call site, resolving
|
||
|
// parameters and the return value as appropriate.
|
||
|
//
|
||
|
// FIXME: This pass should transform alloca instructions in the called function
|
||
|
// into malloc/free pairs! Or perhaps it should refuse to inline them!
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Transforms/Utils/Cloning.h"
|
||
|
#include "llvm/Module.h"
|
||
|
#include "llvm/iTerminators.h"
|
||
|
#include "llvm/iPHINode.h"
|
||
|
#include "llvm/iMemory.h"
|
||
|
#include "llvm/iOther.h"
|
||
|
#include "llvm/DerivedTypes.h"
|
||
|
|
||
|
// InlineFunction - This function inlines the called function into the basic
|
||
|
// block of the caller. This returns false if it is not possible to inline this
|
||
|
// call. The program is still in a well defined state if this occurs though.
|
||
|
//
|
||
|
// Note that this only does one level of inlining. For example, if the
|
||
|
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
|
||
|
// exists in the instruction stream. Similiarly this will inline a recursive
|
||
|
// function by one level.
|
||
|
//
|
||
|
bool InlineFunction(CallInst *CI) {
|
||
|
assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes");
|
||
|
assert(CI->getParent() && "Instruction not embedded in basic block!");
|
||
|
assert(CI->getParent()->getParent() && "Instruction not in function!");
|
||
|
|
||
|
const Function *CalledFunc = CI->getCalledFunction();
|
||
|
if (CalledFunc == 0 || // Can't inline external function or indirect
|
||
|
CalledFunc->isExternal() || // call, or call to a vararg function!
|
||
|
CalledFunc->getFunctionType()->isVarArg()) return false;
|
||
|
|
||
|
BasicBlock *OrigBB = CI->getParent();
|
||
|
Function *Caller = OrigBB->getParent();
|
||
|
|
||
|
// Call splitBasicBlock - The original basic block now ends at the instruction
|
||
|
// immediately before the call. The original basic block now ends with an
|
||
|
// unconditional branch to NewBB, and NewBB starts with the call instruction.
|
||
|
//
|
||
|
BasicBlock *NewBB = OrigBB->splitBasicBlock(CI);
|
||
|
NewBB->setName(OrigBB->getName()+".split");
|
||
|
|
||
|
// Remove (unlink) the CallInst from the start of the new basic block.
|
||
|
NewBB->getInstList().remove(CI);
|
||
|
|
||
|
// If we have a return value generated by this call, convert it into a PHI
|
||
|
// node that gets values from each of the old RET instructions in the original
|
||
|
// function.
|
||
|
//
|
||
|
PHINode *PHI = 0;
|
||
|
if (!CI->use_empty()) {
|
||
|
// The PHI node should go at the front of the new basic block to merge all
|
||
|
// possible incoming values.
|
||
|
//
|
||
|
PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(),
|
||
|
NewBB->begin());
|
||
|
|
||
|
// Anything that used the result of the function call should now use the PHI
|
||
|
// node as their operand.
|
||
|
//
|
||
|
CI->replaceAllUsesWith(PHI);
|
||
|
}
|
||
|
|
||
|
// Get an iterator to the last basic block in the function, which will have
|
||
|
// the new function inlined after it.
|
||
|
//
|
||
|
Function::iterator LastBlock = &Caller->back();
|
||
|
|
||
|
// Calculate the vector of arguments to pass into the function cloner...
|
||
|
std::map<const Value*, Value*> ValueMap;
|
||
|
assert((unsigned)std::distance(CalledFunc->abegin(), CalledFunc->aend()) ==
|
||
|
CI->getNumOperands()-1 && "No varargs calls can be inlined yet!");
|
||
|
|
||
|
unsigned i = 1;
|
||
|
for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
|
||
|
I != E; ++I, ++i)
|
||
|
ValueMap[I] = CI->getOperand(i);
|
||
|
|
||
|
// Since we are now done with the CallInst, we can delete it.
|
||
|
delete CI;
|
||
|
|
||
|
// Make a vector to capture the return instructions in the cloned function...
|
||
|
std::vector<ReturnInst*> Returns;
|
||
|
|
||
|
// Populate the value map with all of the globals in the program.
|
||
|
Module &M = *Caller->getParent();
|
||
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||
|
ValueMap[I] = I;
|
||
|
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
|
||
|
ValueMap[I] = I;
|
||
|
|
||
|
// Do all of the hard part of cloning the callee into the caller...
|
||
|
CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
|
||
|
|
||
|
// Loop over all of the return instructions, turning them into unconditional
|
||
|
// branches to the merge point now...
|
||
|
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
|
||
|
ReturnInst *RI = Returns[i];
|
||
|
BasicBlock *BB = RI->getParent();
|
||
|
|
||
|
// Add a branch to the merge point where the PHI node would live...
|
||
|
new BranchInst(NewBB, RI);
|
||
|
|
||
|
if (PHI) { // The PHI node should include this value!
|
||
|
assert(RI->getReturnValue() && "Ret should have value!");
|
||
|
assert(RI->getReturnValue()->getType() == PHI->getType() &&
|
||
|
"Ret value not consistent in function!");
|
||
|
PHI->addIncoming(RI->getReturnValue(), BB);
|
||
|
}
|
||
|
|
||
|
// Delete the return instruction now
|
||
|
BB->getInstList().erase(RI);
|
||
|
}
|
||
|
|
||
|
// Check to see if the PHI node only has one argument. This is a common
|
||
|
// case resulting from there only being a single return instruction in the
|
||
|
// function call. Because this is so common, eliminate the PHI node.
|
||
|
//
|
||
|
if (PHI && PHI->getNumIncomingValues() == 1) {
|
||
|
PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
|
||
|
PHI->getParent()->getInstList().erase(PHI);
|
||
|
}
|
||
|
|
||
|
// Change the branch that used to go to NewBB to branch to the first basic
|
||
|
// block of the inlined function.
|
||
|
//
|
||
|
TerminatorInst *Br = OrigBB->getTerminator();
|
||
|
assert(Br && Br->getOpcode() == Instruction::Br &&
|
||
|
"splitBasicBlock broken!");
|
||
|
Br->setOperand(0, ++LastBlock);
|
||
|
|
||
|
// If there are any alloca instructions in the block that used to be the entry
|
||
|
// block for the callee, move them to the entry block of the caller. First
|
||
|
// calculate which instruction they should be inserted before. We insert the
|
||
|
// instructions at the end of the current alloca list.
|
||
|
//
|
||
|
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
|
||
|
while (isa<AllocaInst>(InsertPoint)) ++InsertPoint;
|
||
|
|
||
|
for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end();
|
||
|
I != E; )
|
||
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
|
||
|
++I; // Move to the next instruction
|
||
|
LastBlock->getInstList().remove(AI);
|
||
|
Caller->front().getInstList().insert(InsertPoint, AI);
|
||
|
|
||
|
} else {
|
||
|
++I;
|
||
|
}
|
||
|
|
||
|
// Now that the function is correct, make it a little bit nicer. In
|
||
|
// particular, move the basic blocks inserted from the end of the function
|
||
|
// into the space made by splitting the source basic block.
|
||
|
//
|
||
|
Caller->getBasicBlockList().splice(NewBB, Caller->getBasicBlockList(),
|
||
|
LastBlock, Caller->end());
|
||
|
|
||
|
return true;
|
||
|
}
|