2015-10-23 03:57:19 +08:00
|
|
|
; RUN: opt -S -analyze -scalar-evolution < %s | FileCheck %s
|
|
|
|
|
|
|
|
!0 = !{i8 0, i8 127}
|
|
|
|
|
|
|
|
define void @f0(i8* %len_addr) {
|
|
|
|
; CHECK-LABEL: Classifying expressions for: @f0
|
|
|
|
entry:
|
|
|
|
%len = load i8, i8* %len_addr, !range !0
|
|
|
|
%len_norange = load i8, i8* %len_addr
|
Infer alignment of unmarked loads in IR/bitcode parsing.
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
2020-05-15 03:59:45 +08:00
|
|
|
; CHECK: %len = load i8, i8* %len_addr, align 1, !range !0
|
2015-10-23 03:57:19 +08:00
|
|
|
; CHECK-NEXT: --> %len U: [0,127) S: [0,127)
|
|
|
|
; CHECK: %len_norange = load i8, i8* %len_addr
|
|
|
|
; CHECK-NEXT: --> %len_norange U: full-set S: full-set
|
|
|
|
|
|
|
|
%t0 = add i8 %len, 1
|
|
|
|
%t1 = add i8 %len, 2
|
|
|
|
; CHECK: %t0 = add i8 %len, 1
|
|
|
|
; CHECK-NEXT: --> (1 + %len)<nuw><nsw> U: [1,-128) S: [1,-128)
|
|
|
|
; CHECK: %t1 = add i8 %len, 2
|
|
|
|
; CHECK-NEXT: --> (2 + %len)<nuw> U: [2,-127) S: [2,-127)
|
|
|
|
|
|
|
|
%t2 = sub i8 %len, 1
|
|
|
|
%t3 = sub i8 %len, 2
|
|
|
|
; CHECK: %t2 = sub i8 %len, 1
|
|
|
|
; CHECK-NEXT: --> (-1 + %len)<nsw> U: [-1,126) S: [-1,126)
|
|
|
|
; CHECK: %t3 = sub i8 %len, 2
|
|
|
|
; CHECK-NEXT: --> (-2 + %len)<nsw> U: [-2,125) S: [-2,125)
|
|
|
|
|
|
|
|
%q0 = add i8 %len_norange, 1
|
|
|
|
%q1 = add i8 %len_norange, 2
|
|
|
|
; CHECK: %q0 = add i8 %len_norange, 1
|
|
|
|
; CHECK-NEXT: --> (1 + %len_norange) U: full-set S: full-set
|
|
|
|
; CHECK: %q1 = add i8 %len_norange, 2
|
|
|
|
; CHECK-NEXT: --> (2 + %len_norange) U: full-set S: full-set
|
|
|
|
|
|
|
|
%q2 = sub i8 %len_norange, 1
|
|
|
|
%q3 = sub i8 %len_norange, 2
|
|
|
|
; CHECK: %q2 = sub i8 %len_norange, 1
|
|
|
|
; CHECK-NEXT: --> (-1 + %len_norange) U: full-set S: full-set
|
|
|
|
; CHECK: %q3 = sub i8 %len_norange, 2
|
|
|
|
; CHECK-NEXT: --> (-2 + %len_norange) U: full-set S: full-set
|
|
|
|
|
|
|
|
ret void
|
|
|
|
}
|
2015-10-23 03:57:25 +08:00
|
|
|
|
|
|
|
define void @f1(i8* %len_addr) {
|
|
|
|
; CHECK-LABEL: Classifying expressions for: @f1
|
|
|
|
entry:
|
|
|
|
%len = load i8, i8* %len_addr, !range !0
|
|
|
|
%len_norange = load i8, i8* %len_addr
|
Infer alignment of unmarked loads in IR/bitcode parsing.
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
2020-05-15 03:59:45 +08:00
|
|
|
; CHECK: %len = load i8, i8* %len_addr, align 1, !range !0
|
2015-10-23 03:57:25 +08:00
|
|
|
; CHECK-NEXT: --> %len U: [0,127) S: [0,127)
|
|
|
|
; CHECK: %len_norange = load i8, i8* %len_addr
|
|
|
|
; CHECK-NEXT: --> %len_norange U: full-set S: full-set
|
|
|
|
|
|
|
|
%t0 = add i8 %len, -1
|
|
|
|
%t1 = add i8 %len, -2
|
|
|
|
; CHECK: %t0 = add i8 %len, -1
|
|
|
|
; CHECK-NEXT: --> (-1 + %len)<nsw> U: [-1,126) S: [-1,126)
|
|
|
|
; CHECK: %t1 = add i8 %len, -2
|
|
|
|
; CHECK-NEXT: --> (-2 + %len)<nsw> U: [-2,125) S: [-2,125)
|
|
|
|
|
|
|
|
%t0.sext = sext i8 %t0 to i16
|
|
|
|
%t1.sext = sext i8 %t1 to i16
|
|
|
|
; CHECK: %t0.sext = sext i8 %t0 to i16
|
|
|
|
; CHECK-NEXT: --> (-1 + (zext i8 %len to i16))<nsw> U: [-1,126) S: [-1,126)
|
|
|
|
; CHECK: %t1.sext = sext i8 %t1 to i16
|
|
|
|
; CHECK-NEXT: --> (-2 + (zext i8 %len to i16))<nsw> U: [-2,125) S: [-2,125)
|
|
|
|
|
|
|
|
%q0 = add i8 %len_norange, 1
|
|
|
|
%q1 = add i8 %len_norange, 2
|
|
|
|
; CHECK: %q0 = add i8 %len_norange, 1
|
|
|
|
; CHECK-NEXT: --> (1 + %len_norange) U: full-set S: full-set
|
|
|
|
; CHECK: %q1 = add i8 %len_norange, 2
|
|
|
|
; CHECK-NEXT: --> (2 + %len_norange) U: full-set S: full-set
|
|
|
|
|
|
|
|
%q0.sext = sext i8 %q0 to i16
|
|
|
|
%q1.sext = sext i8 %q1 to i16
|
|
|
|
; CHECK: %q0.sext = sext i8 %q0 to i16
|
|
|
|
; CHECK-NEXT: --> (sext i8 (1 + %len_norange) to i16) U: [-128,128) S: [-128,128)
|
|
|
|
; CHECK: %q1.sext = sext i8 %q1 to i16
|
|
|
|
; CHECK-NEXT: --> (sext i8 (2 + %len_norange) to i16) U: [-128,128) S: [-128,128)
|
|
|
|
|
|
|
|
ret void
|
|
|
|
}
|
2015-10-23 03:57:38 +08:00
|
|
|
|
|
|
|
define void @f2(i8* %len_addr) {
|
|
|
|
; CHECK-LABEL: Classifying expressions for: @f2
|
|
|
|
entry:
|
|
|
|
%len = load i8, i8* %len_addr, !range !0
|
|
|
|
%len_norange = load i8, i8* %len_addr
|
Infer alignment of unmarked loads in IR/bitcode parsing.
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
2020-05-15 03:59:45 +08:00
|
|
|
; CHECK: %len = load i8, i8* %len_addr, align 1, !range !0
|
2015-10-23 03:57:38 +08:00
|
|
|
; CHECK-NEXT: --> %len U: [0,127) S: [0,127)
|
|
|
|
; CHECK: %len_norange = load i8, i8* %len_addr
|
|
|
|
; CHECK-NEXT: --> %len_norange U: full-set S: full-set
|
|
|
|
|
|
|
|
%t0 = add i8 %len, 1
|
|
|
|
%t1 = add i8 %len, 2
|
|
|
|
; CHECK: %t0 = add i8 %len, 1
|
|
|
|
; CHECK-NEXT: --> (1 + %len)<nuw><nsw>
|
|
|
|
; CHECK: %t1 = add i8 %len, 2
|
|
|
|
; CHECK-NEXT: --> (2 + %len)<nuw>
|
|
|
|
|
|
|
|
%t0.zext = zext i8 %t0 to i16
|
|
|
|
%t1.zext = zext i8 %t1 to i16
|
|
|
|
; CHECK: %t0.zext = zext i8 %t0 to i16
|
|
|
|
; CHECK-NEXT: --> (1 + (zext i8 %len to i16))<nuw><nsw> U: [1,128) S: [1,128)
|
|
|
|
; CHECK: %t1.zext = zext i8 %t1 to i16
|
|
|
|
; CHECK-NEXT: --> (2 + (zext i8 %len to i16))<nuw><nsw> U: [2,129) S: [2,129)
|
|
|
|
|
|
|
|
%q0 = add i8 %len_norange, 1
|
|
|
|
%q1 = add i8 %len_norange, 2
|
|
|
|
%q0.zext = zext i8 %q0 to i16
|
|
|
|
%q1.zext = zext i8 %q1 to i16
|
|
|
|
|
|
|
|
; CHECK: %q0.zext = zext i8 %q0 to i16
|
|
|
|
; CHECK-NEXT: --> (zext i8 (1 + %len_norange) to i16) U: [0,256) S: [0,256)
|
|
|
|
; CHECK: %q1.zext = zext i8 %q1 to i16
|
|
|
|
; CHECK-NEXT: --> (zext i8 (2 + %len_norange) to i16) U: [0,256) S: [0,256)
|
|
|
|
|
|
|
|
ret void
|
|
|
|
}
|
2018-07-25 05:48:56 +08:00
|
|
|
|
|
|
|
@z_addr = external global [16 x i8], align 4
|
|
|
|
@z_addr_noalign = external global [16 x i8]
|
|
|
|
|
|
|
|
%union = type { [10 x [4 x float]] }
|
|
|
|
@tmp_addr = external unnamed_addr global { %union, [2000 x i8] }
|
|
|
|
|
|
|
|
define void @f3(i8* %x_addr, i8* %y_addr, i32* %tmp_addr) {
|
|
|
|
; CHECK-LABEL: Classifying expressions for: @f3
|
|
|
|
entry:
|
|
|
|
%x = load i8, i8* %x_addr
|
|
|
|
%t0 = mul i8 %x, 4
|
|
|
|
%t1 = add i8 %t0, 5
|
|
|
|
%t1.zext = zext i8 %t1 to i16
|
|
|
|
; CHECK: %t1.zext = zext i8 %t1 to i16
|
|
|
|
; CHECK-NEXT: --> (1 + (zext i8 (4 + (4 * %x)) to i16))<nuw><nsw> U: [1,254) S: [1,257)
|
|
|
|
|
|
|
|
%q0 = mul i8 %x, 4
|
|
|
|
%q1 = add i8 %q0, 7
|
|
|
|
%q1.zext = zext i8 %q1 to i16
|
|
|
|
; CHECK: %q1.zext = zext i8 %q1 to i16
|
|
|
|
; CHECK-NEXT: --> (3 + (zext i8 (4 + (4 * %x)) to i16))<nuw><nsw> U: [3,256) S: [3,259)
|
|
|
|
|
|
|
|
%p0 = mul i8 %x, 4
|
|
|
|
%p1 = add i8 %p0, 8
|
|
|
|
%p1.zext = zext i8 %p1 to i16
|
|
|
|
; CHECK: %p1.zext = zext i8 %p1 to i16
|
|
|
|
; CHECK-NEXT: --> (zext i8 (8 + (4 * %x)) to i16) U: [0,253) S: [0,256)
|
|
|
|
|
|
|
|
%r0 = mul i8 %x, 4
|
|
|
|
%r1 = add i8 %r0, 254
|
|
|
|
%r1.zext = zext i8 %r1 to i16
|
|
|
|
; CHECK: %r1.zext = zext i8 %r1 to i16
|
|
|
|
; CHECK-NEXT: --> (2 + (zext i8 (-4 + (4 * %x)) to i16))<nuw><nsw> U: [2,255) S: [2,258)
|
|
|
|
|
|
|
|
%y = load i8, i8* %y_addr
|
|
|
|
%s0 = mul i8 %x, 32
|
|
|
|
%s1 = mul i8 %y, 36
|
|
|
|
%s2 = add i8 %s0, %s1
|
|
|
|
%s3 = add i8 %s2, 5
|
|
|
|
%s3.zext = zext i8 %s3 to i16
|
|
|
|
; CHECK: %s3.zext = zext i8 %s3 to i16
|
|
|
|
; CHECK-NEXT: --> (1 + (zext i8 (4 + (32 * %x) + (36 * %y)) to i16))<nuw><nsw> U: [1,254) S: [1,257)
|
|
|
|
|
|
|
|
%ptr = bitcast [16 x i8]* @z_addr to i8*
|
|
|
|
%int0 = ptrtoint i8* %ptr to i32
|
|
|
|
%int5 = add i32 %int0, 5
|
|
|
|
%int.zext = zext i32 %int5 to i64
|
|
|
|
; CHECK: %int.zext = zext i32 %int5 to i64
|
|
|
|
; CHECK-NEXT: --> (1 + (zext i32 (4 + %int0) to i64))<nuw><nsw> U: [1,4294967294) S: [1,4294967297)
|
|
|
|
|
|
|
|
%ptr_noalign = bitcast [16 x i8]* @z_addr_noalign to i8*
|
|
|
|
%int0_na = ptrtoint i8* %ptr_noalign to i32
|
|
|
|
%int5_na = add i32 %int0_na, 5
|
|
|
|
%int.zext_na = zext i32 %int5_na to i64
|
|
|
|
; CHECK: %int.zext_na = zext i32 %int5_na to i64
|
|
|
|
; CHECK-NEXT: --> (zext i32 (5 + %int0_na) to i64) U: [0,4294967296) S: [0,4294967296)
|
|
|
|
|
|
|
|
%tmp = load i32, i32* %tmp_addr
|
|
|
|
%mul = and i32 %tmp, -4
|
|
|
|
%add4 = add i32 %mul, 4
|
|
|
|
%add4.zext = zext i32 %add4 to i64
|
|
|
|
%sunkaddr3 = mul i64 %add4.zext, 4
|
|
|
|
%sunkaddr4 = getelementptr inbounds i8, i8* bitcast ({ %union, [2000 x i8] }* @tmp_addr to i8*), i64 %sunkaddr3
|
|
|
|
%sunkaddr5 = getelementptr inbounds i8, i8* %sunkaddr4, i64 4096
|
|
|
|
%addr4.cast = bitcast i8* %sunkaddr5 to i32*
|
|
|
|
%addr4.incr = getelementptr i32, i32* %addr4.cast, i64 1
|
|
|
|
; CHECK: %addr4.incr = getelementptr i32, i32* %addr4.cast, i64 1
|
|
|
|
; CHECK-NEXT: --> ([[C:4100]] + ([[SIZE:4]] * (zext i32 ([[OFFSET:4]] + ([[STRIDE:4]] * (%tmp /u [[STRIDE]]))<nuw>) to i64))<nuw><nsw> + @tmp_addr)
|
|
|
|
|
|
|
|
%add5 = add i32 %mul, 5
|
|
|
|
%add5.zext = zext i32 %add5 to i64
|
|
|
|
%sunkaddr0 = mul i64 %add5.zext, 4
|
|
|
|
%sunkaddr1 = getelementptr inbounds i8, i8* bitcast ({ %union, [2000 x i8] }* @tmp_addr to i8*), i64 %sunkaddr0
|
|
|
|
%sunkaddr2 = getelementptr inbounds i8, i8* %sunkaddr1, i64 4096
|
|
|
|
%addr5.cast = bitcast i8* %sunkaddr2 to i32*
|
|
|
|
; CHECK: %addr5.cast = bitcast i8* %sunkaddr2 to i32*
|
|
|
|
; CHECK-NEXT: --> ([[C]] + ([[SIZE]] * (zext i32 ([[OFFSET]] + ([[STRIDE]] * (%tmp /u [[STRIDE]]))<nuw>) to i64))<nuw><nsw> + @tmp_addr)
|
|
|
|
|
|
|
|
ret void
|
|
|
|
}
|