2013-07-30 02:12:58 +08:00
; RUN: opt -deadargelim -S < %s | FileCheck %s
2012-10-09 16:13:15 +08:00
; PR14016
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function.
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
2014-10-07 23:10:23 +08:00
; Built with clang (then manually running -mem2reg with opt) from the following source:
; static void f1(int, ...) {
; }
;
; void f2() {
; f1(1);
; }
2012-10-09 16:13:15 +08:00
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function.
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
2014-10-07 23:10:23 +08:00
; Test both varargs removal and removal of a traditional dead arg together, to
; test both the basic functionality, and a particular wrinkle involving updating
; the function->debug info mapping on update to ensure it's accurate when used
; again for the next removal.
2012-10-09 16:13:15 +08:00
2015-04-30 00:38:44 +08:00
; CHECK: !DISubprogram(name: "f1",{{.*}} function: void ()* @_ZL2f1iz
2012-10-09 16:13:15 +08:00
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function.
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
2014-10-07 23:10:23 +08:00
; Check that debug info metadata for subprograms stores pointers to
; updated LLVM functions.
2012-10-09 16:13:15 +08:00
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function.
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
2014-10-07 23:10:23 +08:00
; Function Attrs: uwtable
define void @_Z2f2v ( ) #0 {
2012-10-09 16:13:15 +08:00
entry:
[opaque pointer type] Add textual IR support for explicit type parameter to the call instruction
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
2015-04-17 07:24:18 +08:00
call void ( i32 , . . . ) @_ZL2f1iz ( i32 1 ) , !dbg !15
2012-10-09 16:13:15 +08:00
ret void , !dbg !16
}
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function.
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
2014-10-07 23:10:23 +08:00
; Function Attrs: nounwind uwtable
define internal void @_ZL2f1iz ( i32 , . . . ) #1 {
2012-10-09 16:13:15 +08:00
entry:
IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
2014-12-16 03:07:53 +08:00
call void @llvm.dbg.value ( metadata i32 %0 , i64 0 , metadata !17 , metadata !18 ) , !dbg !19
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function.
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
2014-10-07 23:10:23 +08:00
ret void , !dbg !20
2012-10-09 16:13:15 +08:00
}
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function.
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
2014-10-07 23:10:23 +08:00
; Function Attrs: nounwind readnone
declare void @llvm.dbg.declare ( metadata , metadata , metadata ) #2
2012-10-09 16:13:15 +08:00
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function.
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
2014-10-07 23:10:23 +08:00
; Function Attrs: nounwind readnone
declare void @llvm.dbg.value ( metadata , i64 , metadata , metadata ) #2
2012-10-09 16:13:15 +08:00
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function.
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
2014-10-07 23:10:23 +08:00
attributes #0 = { uwtable "less-precise-fpmad" = "false" "no-frame-pointer-elim" = "true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math" = "false" "no-nans-fp-math" = "false" "stack-protector-buffer-size" = "8" "unsafe-fp-math" = "false" "use-soft-float" = "false" }
attributes #1 = { nounwind uwtable "less-precise-fpmad" = "false" "no-frame-pointer-elim" = "true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math" = "false" "no-nans-fp-math" = "false" "stack-protector-buffer-size" = "8" "unsafe-fp-math" = "false" "use-soft-float" = "false" }
attributes #2 = { nounwind readnone }
2012-10-09 16:13:15 +08:00
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function.
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
2014-10-07 23:10:23 +08:00
!llvm.dbg.cu = ! { !0 }
!llvm.module.flags = ! { !12 , !13 }
!llvm.ident = ! { !14 }
2012-10-09 16:13:15 +08:00
2015-04-30 00:38:44 +08:00
!0 = !DICompileUnit ( language: D W _ L A N G _ C _ p l u s _ p l u s , producer: "clang version 3.6.0 " , isOptimized: false , emissionKind: 1 , file: !1 , enums: !2 , retainedTypes: !2 , subprograms: !3 , globals: !2 , imports: !2 )
!1 = !DIFile ( filename: "dbg.cpp" , directory: "/tmp/dbginfo" )
IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
2014-12-16 03:07:53 +08:00
!2 = ! { }
!3 = ! { !4 , !8 }
2015-04-30 00:38:44 +08:00
!4 = !DISubprogram ( name: "f2" , linkageName: "_Z2f2v" , line: 4 , isLocal: false , isDefinition: true , flags: D I F l a g P r o t o t y p e d , isOptimized: false , scopeLine: 4 , file: !1 , scope: !5 , type: !6 , function: void ( ) * @_Z2f2v , variables: !2 )
!5 = !DIFile ( filename: "dbg.cpp" , directory: "/tmp/dbginfo" )
!6 = !DISubroutineType ( types: !7 )
IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
2014-12-16 03:07:53 +08:00
!7 = ! { null }
2015-04-30 00:38:44 +08:00
!8 = !DISubprogram ( name: "f1" , linkageName: "_ZL2f1iz" , line: 1 , isLocal: true , isDefinition: true , flags: D I F l a g P r o t o t y p e d , isOptimized: false , scopeLine: 1 , file: !1 , scope: !5 , type: !9 , function: void ( i32 , . . . ) * @_ZL2f1iz , variables: !2 )
!9 = !DISubroutineType ( types: !10 )
IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
2014-12-16 03:07:53 +08:00
!10 = ! { null , !11 , null }
2015-04-30 00:38:44 +08:00
!11 = !DIBasicType ( tag: D W _ T A G _ b a s e _ type , name: "int" , size: 32 , align: 32 , encoding: D W _ A T E _ s i g n e d )
IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
2014-12-16 03:07:53 +08:00
!12 = ! { i32 2 , !"Dwarf Version" , i32 4 }
2015-03-04 01:24:31 +08:00
!13 = ! { i32 2 , !"Debug Info Version" , i32 3 }
IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
2014-12-16 03:07:53 +08:00
!14 = ! { !"clang version 3.6.0 " }
2015-04-30 00:38:44 +08:00
!15 = !DILocation ( line: 5 , column: 3 , scope: !4 )
!16 = !DILocation ( line: 6 , column: 1 , scope: !4 )
!17 = !DILocalVariable ( tag: D W _ T A G _ a r g _ v a r i a b l e , name: "" , line: 1 , arg: 1 , scope: !8 , file: !5 , type: !11 )
!18 = !DIExpression ( )
!19 = !DILocation ( line: 1 , column: 19 , scope: !8 )
!20 = !DILocation ( line: 2 , column: 1 , scope: !8 )