llvm-project/clang/lib/AST/RawCommentList.cpp

337 lines
12 KiB
C++
Raw Normal View History

//===--- RawCommentList.cpp - Processing raw comments -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/RawCommentList.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Comment.h"
#include "clang/AST/CommentBriefParser.h"
#include "clang/AST/CommentCommandTraits.h"
#include "clang/AST/CommentLexer.h"
#include "clang/AST/CommentParser.h"
#include "clang/AST/CommentSema.h"
#include "clang/Basic/CharInfo.h"
#include "llvm/ADT/STLExtras.h"
using namespace clang;
namespace {
/// Get comment kind and bool describing if it is a trailing comment.
std::pair<RawComment::CommentKind, bool> getCommentKind(StringRef Comment,
bool ParseAllComments) {
const size_t MinCommentLength = ParseAllComments ? 2 : 3;
if ((Comment.size() < MinCommentLength) || Comment[0] != '/')
return std::make_pair(RawComment::RCK_Invalid, false);
RawComment::CommentKind K;
if (Comment[1] == '/') {
if (Comment.size() < 3)
return std::make_pair(RawComment::RCK_OrdinaryBCPL, false);
if (Comment[2] == '/')
K = RawComment::RCK_BCPLSlash;
else if (Comment[2] == '!')
K = RawComment::RCK_BCPLExcl;
else
return std::make_pair(RawComment::RCK_OrdinaryBCPL, false);
} else {
assert(Comment.size() >= 4);
// Comment lexer does not understand escapes in comment markers, so pretend
// that this is not a comment.
if (Comment[1] != '*' ||
Comment[Comment.size() - 2] != '*' ||
Comment[Comment.size() - 1] != '/')
return std::make_pair(RawComment::RCK_Invalid, false);
if (Comment[2] == '*')
K = RawComment::RCK_JavaDoc;
else if (Comment[2] == '!')
K = RawComment::RCK_Qt;
else
return std::make_pair(RawComment::RCK_OrdinaryC, false);
}
const bool TrailingComment = (Comment.size() > 3) && (Comment[3] == '<');
return std::make_pair(K, TrailingComment);
}
bool mergedCommentIsTrailingComment(StringRef Comment) {
return (Comment.size() > 3) && (Comment[3] == '<');
}
/// Returns true if R1 and R2 both have valid locations that start on the same
/// column.
bool commentsStartOnSameColumn(const SourceManager &SM, const RawComment &R1,
const RawComment &R2) {
SourceLocation L1 = R1.getLocStart();
SourceLocation L2 = R2.getLocStart();
bool Invalid = false;
unsigned C1 = SM.getPresumedColumnNumber(L1, &Invalid);
if (!Invalid) {
unsigned C2 = SM.getPresumedColumnNumber(L2, &Invalid);
return !Invalid && (C1 == C2);
}
return false;
}
} // unnamed namespace
/// \brief Determines whether there is only whitespace in `Buffer` between `P`
/// and the previous line.
/// \param Buffer The buffer to search in.
/// \param P The offset from the beginning of `Buffer` to start from.
/// \return true if all of the characters in `Buffer` ranging from the closest
/// line-ending character before `P` (or the beginning of `Buffer`) to `P - 1`
/// are whitespace.
static bool onlyWhitespaceOnLineBefore(const char *Buffer, unsigned P) {
// Search backwards until we see linefeed or carriage return.
for (unsigned I = P; I != 0; --I) {
char C = Buffer[I - 1];
if (isVerticalWhitespace(C))
return true;
if (!isHorizontalWhitespace(C))
return false;
}
// We hit the beginning of the buffer.
return true;
}
/// Returns whether `K` is an ordinary comment kind.
static bool isOrdinaryKind(RawComment::CommentKind K) {
return (K == RawComment::RCK_OrdinaryBCPL) ||
(K == RawComment::RCK_OrdinaryC);
}
RawComment::RawComment(const SourceManager &SourceMgr, SourceRange SR,
bool Merged, bool ParseAllComments) :
Range(SR), RawTextValid(false), BriefTextValid(false),
IsAttached(false), IsTrailingComment(false), IsAlmostTrailingComment(false),
ParseAllComments(ParseAllComments) {
// Extract raw comment text, if possible.
if (SR.getBegin() == SR.getEnd() || getRawText(SourceMgr).empty()) {
Kind = RCK_Invalid;
return;
}
// Guess comment kind.
std::pair<CommentKind, bool> K = getCommentKind(RawText, ParseAllComments);
// Guess whether an ordinary comment is trailing.
if (ParseAllComments && isOrdinaryKind(K.first)) {
FileID BeginFileID;
unsigned BeginOffset;
std::tie(BeginFileID, BeginOffset) =
SourceMgr.getDecomposedLoc(Range.getBegin());
if (BeginOffset != 0) {
bool Invalid = false;
const char *Buffer =
SourceMgr.getBufferData(BeginFileID, &Invalid).data();
IsTrailingComment |=
(!Invalid && !onlyWhitespaceOnLineBefore(Buffer, BeginOffset));
}
}
if (!Merged) {
Kind = K.first;
IsTrailingComment |= K.second;
IsAlmostTrailingComment = RawText.startswith("//<") ||
RawText.startswith("/*<");
} else {
Kind = RCK_Merged;
IsTrailingComment =
IsTrailingComment || mergedCommentIsTrailingComment(RawText);
}
}
StringRef RawComment::getRawTextSlow(const SourceManager &SourceMgr) const {
FileID BeginFileID;
FileID EndFileID;
unsigned BeginOffset;
unsigned EndOffset;
std::tie(BeginFileID, BeginOffset) =
SourceMgr.getDecomposedLoc(Range.getBegin());
std::tie(EndFileID, EndOffset) = SourceMgr.getDecomposedLoc(Range.getEnd());
const unsigned Length = EndOffset - BeginOffset;
if (Length < 2)
return StringRef();
// The comment can't begin in one file and end in another.
assert(BeginFileID == EndFileID);
bool Invalid = false;
const char *BufferStart = SourceMgr.getBufferData(BeginFileID,
&Invalid).data();
if (Invalid)
return StringRef();
return StringRef(BufferStart + BeginOffset, Length);
}
const char *RawComment::extractBriefText(const ASTContext &Context) const {
// Lazily initialize RawText using the accessor before using it.
(void)getRawText(Context.getSourceManager());
// Since we will be copying the resulting text, all allocations made during
// parsing are garbage after resulting string is formed. Thus we can use
// a separate allocator for all temporary stuff.
llvm::BumpPtrAllocator Allocator;
comments::Lexer L(Allocator, Context.getDiagnostics(),
Context.getCommentCommandTraits(),
Comment AST: TableGen'ize all command lists in CommentCommandTraits.cpp. Now we have a list of all commands. This is a good thing in itself, but it also enables us to easily implement typo correction for command names. With this change we have objects that contain information about each command, so it makes sense to resolve command name just once during lexing (currently we store command names as strings and do a linear search every time some property value is needed). Thus comment token and AST nodes were changed to contain a command ID -- index into a tables of builtin and registered commands. Unknown commands are registered during parsing and thus are also uniformly assigned an ID. Using an ID instead of a StringRef is also a nice memory optimization since ID is a small integer that fits into a common bitfield in Comment class. This change implies that to get any information about a command (even a command name) we need a CommandTraits object to resolve the command ID to CommandInfo*. Currently a fresh temporary CommandTraits object is created whenever it is needed since it does not have any state. But with this change it has state -- new commands can be registered, so a CommandTraits object was added to ASTContext. Also, in libclang CXComment has to be expanded to include a CXTranslationUnit so that all functions working on comment AST nodes can get a CommandTraits object. This breaks binary compatibility of CXComment APIs. Now clang_FullComment_getAsXML(CXTranslationUnit TU, CXComment CXC) doesn't need TU parameter anymore, so it was removed. This is a source-incompatible change for this C API. llvm-svn: 163540
2012-09-11 04:32:42 +08:00
Range.getBegin(),
RawText.begin(), RawText.end());
Comment AST: TableGen'ize all command lists in CommentCommandTraits.cpp. Now we have a list of all commands. This is a good thing in itself, but it also enables us to easily implement typo correction for command names. With this change we have objects that contain information about each command, so it makes sense to resolve command name just once during lexing (currently we store command names as strings and do a linear search every time some property value is needed). Thus comment token and AST nodes were changed to contain a command ID -- index into a tables of builtin and registered commands. Unknown commands are registered during parsing and thus are also uniformly assigned an ID. Using an ID instead of a StringRef is also a nice memory optimization since ID is a small integer that fits into a common bitfield in Comment class. This change implies that to get any information about a command (even a command name) we need a CommandTraits object to resolve the command ID to CommandInfo*. Currently a fresh temporary CommandTraits object is created whenever it is needed since it does not have any state. But with this change it has state -- new commands can be registered, so a CommandTraits object was added to ASTContext. Also, in libclang CXComment has to be expanded to include a CXTranslationUnit so that all functions working on comment AST nodes can get a CommandTraits object. This breaks binary compatibility of CXComment APIs. Now clang_FullComment_getAsXML(CXTranslationUnit TU, CXComment CXC) doesn't need TU parameter anymore, so it was removed. This is a source-incompatible change for this C API. llvm-svn: 163540
2012-09-11 04:32:42 +08:00
comments::BriefParser P(L, Context.getCommentCommandTraits());
const std::string Result = P.Parse();
const unsigned BriefTextLength = Result.size();
char *BriefTextPtr = new (Context) char[BriefTextLength + 1];
memcpy(BriefTextPtr, Result.c_str(), BriefTextLength + 1);
BriefText = BriefTextPtr;
BriefTextValid = true;
return BriefTextPtr;
}
comments::FullComment *RawComment::parse(const ASTContext &Context,
const Preprocessor *PP,
const Decl *D) const {
// Lazily initialize RawText using the accessor before using it.
(void)getRawText(Context.getSourceManager());
comments::Lexer L(Context.getAllocator(), Context.getDiagnostics(),
Context.getCommentCommandTraits(),
getSourceRange().getBegin(),
RawText.begin(), RawText.end());
comments::Sema S(Context.getAllocator(), Context.getSourceManager(),
Comment AST: TableGen'ize all command lists in CommentCommandTraits.cpp. Now we have a list of all commands. This is a good thing in itself, but it also enables us to easily implement typo correction for command names. With this change we have objects that contain information about each command, so it makes sense to resolve command name just once during lexing (currently we store command names as strings and do a linear search every time some property value is needed). Thus comment token and AST nodes were changed to contain a command ID -- index into a tables of builtin and registered commands. Unknown commands are registered during parsing and thus are also uniformly assigned an ID. Using an ID instead of a StringRef is also a nice memory optimization since ID is a small integer that fits into a common bitfield in Comment class. This change implies that to get any information about a command (even a command name) we need a CommandTraits object to resolve the command ID to CommandInfo*. Currently a fresh temporary CommandTraits object is created whenever it is needed since it does not have any state. But with this change it has state -- new commands can be registered, so a CommandTraits object was added to ASTContext. Also, in libclang CXComment has to be expanded to include a CXTranslationUnit so that all functions working on comment AST nodes can get a CommandTraits object. This breaks binary compatibility of CXComment APIs. Now clang_FullComment_getAsXML(CXTranslationUnit TU, CXComment CXC) doesn't need TU parameter anymore, so it was removed. This is a source-incompatible change for this C API. llvm-svn: 163540
2012-09-11 04:32:42 +08:00
Context.getDiagnostics(),
Context.getCommentCommandTraits(),
PP);
S.setDecl(D);
comments::Parser P(L, S, Context.getAllocator(), Context.getSourceManager(),
Comment AST: TableGen'ize all command lists in CommentCommandTraits.cpp. Now we have a list of all commands. This is a good thing in itself, but it also enables us to easily implement typo correction for command names. With this change we have objects that contain information about each command, so it makes sense to resolve command name just once during lexing (currently we store command names as strings and do a linear search every time some property value is needed). Thus comment token and AST nodes were changed to contain a command ID -- index into a tables of builtin and registered commands. Unknown commands are registered during parsing and thus are also uniformly assigned an ID. Using an ID instead of a StringRef is also a nice memory optimization since ID is a small integer that fits into a common bitfield in Comment class. This change implies that to get any information about a command (even a command name) we need a CommandTraits object to resolve the command ID to CommandInfo*. Currently a fresh temporary CommandTraits object is created whenever it is needed since it does not have any state. But with this change it has state -- new commands can be registered, so a CommandTraits object was added to ASTContext. Also, in libclang CXComment has to be expanded to include a CXTranslationUnit so that all functions working on comment AST nodes can get a CommandTraits object. This breaks binary compatibility of CXComment APIs. Now clang_FullComment_getAsXML(CXTranslationUnit TU, CXComment CXC) doesn't need TU parameter anymore, so it was removed. This is a source-incompatible change for this C API. llvm-svn: 163540
2012-09-11 04:32:42 +08:00
Context.getDiagnostics(),
Context.getCommentCommandTraits());
return P.parseFullComment();
}
static bool onlyWhitespaceBetween(SourceManager &SM,
SourceLocation Loc1, SourceLocation Loc2,
unsigned MaxNewlinesAllowed) {
std::pair<FileID, unsigned> Loc1Info = SM.getDecomposedLoc(Loc1);
std::pair<FileID, unsigned> Loc2Info = SM.getDecomposedLoc(Loc2);
// Question does not make sense if locations are in different files.
if (Loc1Info.first != Loc2Info.first)
return false;
bool Invalid = false;
const char *Buffer = SM.getBufferData(Loc1Info.first, &Invalid).data();
if (Invalid)
return false;
unsigned NumNewlines = 0;
assert(Loc1Info.second <= Loc2Info.second && "Loc1 after Loc2!");
// Look for non-whitespace characters and remember any newlines seen.
for (unsigned I = Loc1Info.second; I != Loc2Info.second; ++I) {
switch (Buffer[I]) {
default:
return false;
case ' ':
case '\t':
case '\f':
case '\v':
break;
case '\r':
case '\n':
++NumNewlines;
// Check if we have found more than the maximum allowed number of
// newlines.
if (NumNewlines > MaxNewlinesAllowed)
return false;
// Collapse \r\n and \n\r into a single newline.
if (I + 1 != Loc2Info.second &&
(Buffer[I + 1] == '\n' || Buffer[I + 1] == '\r') &&
Buffer[I] != Buffer[I + 1])
++I;
break;
}
}
return true;
}
void RawCommentList::addComment(const RawComment &RC,
llvm::BumpPtrAllocator &Allocator) {
if (RC.isInvalid())
return;
// Check if the comments are not in source order.
while (!Comments.empty() &&
!SourceMgr.isBeforeInTranslationUnit(Comments.back()->getLocStart(),
RC.getLocStart())) {
// If they are, just pop a few last comments that don't fit.
// This happens if an \#include directive contains comments.
Comments.pop_back();
}
// Ordinary comments are not interesting for us.
if (RC.isOrdinary())
return;
// If this is the first Doxygen comment, save it (because there isn't
// anything to merge it with).
if (Comments.empty()) {
Comments.push_back(new (Allocator) RawComment(RC));
return;
}
const RawComment &C1 = *Comments.back();
const RawComment &C2 = RC;
// Merge comments only if there is only whitespace between them.
// Can't merge trailing and non-trailing comments unless the second is
// non-trailing ordinary in the same column, as in the case:
// int x; // documents x
// // more text
// versus:
// int x; // documents x
// int y; // documents y
// or:
// int x; // documents x
// // documents y
// int y;
// Merge comments if they are on same or consecutive lines.
if ((C1.isTrailingComment() == C2.isTrailingComment() ||
(C1.isTrailingComment() && !C2.isTrailingComment() &&
isOrdinaryKind(C2.getKind()) &&
commentsStartOnSameColumn(SourceMgr, C1, C2))) &&
onlyWhitespaceBetween(SourceMgr, C1.getLocEnd(), C2.getLocStart(),
/*MaxNewlinesAllowed=*/1)) {
SourceRange MergedRange(C1.getLocStart(), C2.getLocEnd());
*Comments.back() = RawComment(SourceMgr, MergedRange, true,
RC.isParseAllComments());
} else {
Comments.push_back(new (Allocator) RawComment(RC));
}
}
void RawCommentList::addDeserializedComments(ArrayRef<RawComment *> DeserializedComments) {
std::vector<RawComment *> MergedComments;
MergedComments.reserve(Comments.size() + DeserializedComments.size());
std::merge(Comments.begin(), Comments.end(),
DeserializedComments.begin(), DeserializedComments.end(),
std::back_inserter(MergedComments),
BeforeThanCompare<RawComment>(SourceMgr));
std::swap(Comments, MergedComments);
}