llvm-project/polly/lib/ScheduleOptimizer.cpp

606 lines
22 KiB
C++
Raw Normal View History

//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass the isl to calculate a schedule that is optimized for parallelism
// and tileablility. The algorithm used in isl is an optimized version of the
// algorithm described in following paper:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI 08, pages 101113. ACM, 2008.
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "isl/aff.h"
#include "isl/band.h"
#include "isl/constraint.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/schedule.h"
#include "isl/space.h"
2013-05-07 16:11:54 +08:00
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/Dependences.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#define DEBUG_TYPE "polly-opt-isl"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace polly;
namespace polly {
bool DisablePollyTiling;
}
static cl::opt<bool, true>
DisableTiling("polly-no-tiling", cl::desc("Disable tiling in the scheduler"),
cl::location(polly::DisablePollyTiling), cl::init(false),
cl::cat(PollyCategory));
static cl::opt<std::string>
OptimizeDeps("polly-opt-optimize-only",
cl::desc("Only a certain kind of dependences (all/raw)"),
cl::Hidden, cl::init("all"), cl::cat(PollyCategory));
static cl::opt<std::string>
SimplifyDeps("polly-opt-simplify-deps",
cl::desc("Dependences should be simplified (yes/no)"), cl::Hidden,
cl::init("yes"), cl::cat(PollyCategory));
static cl::opt<int>
MaxConstantTerm("polly-opt-max-constant-term",
cl::desc("The maximal constant term allowed (-1 is unlimited)"),
cl::Hidden, cl::init(20), cl::cat(PollyCategory));
static cl::opt<int>
MaxCoefficient("polly-opt-max-coefficient",
cl::desc("The maximal coefficient allowed (-1 is unlimited)"),
cl::Hidden, cl::init(20), cl::cat(PollyCategory));
static cl::opt<std::string>
FusionStrategy("polly-opt-fusion",
cl::desc("The fusion strategy to choose (min/max)"), cl::Hidden,
cl::init("min"), cl::cat(PollyCategory));
static cl::opt<std::string>
MaximizeBandDepth("polly-opt-maximize-bands",
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
cl::init("yes"), cl::cat(PollyCategory));
namespace {
class IslScheduleOptimizer : public ScopPass {
public:
static char ID;
explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = NULL; }
~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
virtual bool runOnScop(Scop &S);
void printScop(llvm::raw_ostream &OS) const;
void getAnalysisUsage(AnalysisUsage &AU) const;
private:
isl_schedule *LastSchedule;
static void extendScattering(Scop &S, unsigned NewDimensions);
/// @brief Create a map that describes a n-dimensonal tiling.
///
/// getTileMap creates a map from a n-dimensional scattering space into an
/// 2*n-dimensional scattering space. The map describes a rectangular
/// tiling.
///
/// Example:
/// scheduleDimensions = 2, parameterDimensions = 1, tileSize = 32
///
/// tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]:
/// t0 % 32 = 0 and t0 <= s0 < t0 + 32 and
/// t1 % 32 = 0 and t1 <= s1 < t1 + 32}
///
/// Before tiling:
///
/// for (i = 0; i < N; i++)
/// for (j = 0; j < M; j++)
/// S(i,j)
///
/// After tiling:
///
/// for (t_i = 0; t_i < N; i+=32)
/// for (t_j = 0; t_j < M; j+=32)
/// for (i = t_i; i < min(t_i + 32, N); i++) | Unknown that N % 32 = 0
/// for (j = t_j; j < t_j + 32; j++) | Known that M % 32 = 0
/// S(i,j)
///
static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions,
isl_space *SpaceModel, int tileSize = 32);
/// @brief Get the schedule for this band.
///
/// Polly applies transformations like tiling on top of the isl calculated
/// value. This can influence the number of scheduling dimension. The
/// number of schedule dimensions is returned in the parameter 'Dimension'.
static isl_union_map *getScheduleForBand(isl_band *Band, int *Dimensions);
/// @brief Create a map that pre-vectorizes one scheduling dimension.
///
/// getPrevectorMap creates a map that maps each input dimension to the same
/// output dimension, except for the dimension DimToVectorize.
/// DimToVectorize is strip mined by 'VectorWidth' and the newly created
/// point loop of DimToVectorize is moved to the innermost level.
///
/// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4):
///
/// | Before transformation
/// |
/// | A[i,j] -> [i,j]
/// |
/// | for (i = 0; i < 128; i++)
/// | for (j = 0; j < 128; j++)
/// | A(i,j);
///
/// Prevector map:
/// [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
///
/// | After transformation:
/// |
/// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
/// |
/// | for (it = 0; it < 128; it+=4)
/// | for (j = 0; j < 128; j++)
/// | for (ip = max(0,it); ip < min(128, it + 3); ip++)
/// | A(ip,j);
///
/// The goal of this transformation is to create a trivially vectorizable
/// loop. This means a parallel loop at the innermost level that has a
/// constant number of iterations corresponding to the target vector width.
///
/// This transformation creates a loop at the innermost level. The loop has
/// a constant number of iterations, if the number of loop iterations at
/// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
/// currently constant and not yet target specific. This function does not
/// reason about parallelism.
static isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
int ScheduleDimensions, int VectorWidth = 4);
/// @brief Get the scheduling map for a list of bands.
///
/// Walk recursively the forest of bands to combine the schedules of the
/// individual bands to the overall schedule. In case tiling is requested,
/// the individual bands are tiled.
static isl_union_map *getScheduleForBandList(isl_band_list *BandList);
static isl_union_map *getScheduleMap(isl_schedule *Schedule);
bool doFinalization() {
isl_schedule_free(LastSchedule);
LastSchedule = NULL;
return true;
}
};
}
char IslScheduleOptimizer::ID = 0;
void IslScheduleOptimizer::extendScattering(Scop &S, unsigned NewDimensions) {
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) {
ScopStmt *Stmt = *SI;
unsigned OldDimensions = Stmt->getNumScattering();
isl_space *Space;
isl_map *Map, *New;
Space = isl_space_alloc(Stmt->getIslCtx(), 0, OldDimensions, NewDimensions);
Map = isl_map_universe(Space);
for (unsigned i = 0; i < OldDimensions; i++)
Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
for (unsigned i = OldDimensions; i < NewDimensions; i++)
Map = isl_map_fix_si(Map, isl_dim_out, i, 0);
Map = isl_map_align_params(Map, S.getParamSpace());
New = isl_map_apply_range(Stmt->getScattering(), Map);
Stmt->setScattering(New);
}
}
isl_basic_map *IslScheduleOptimizer::getTileMap(isl_ctx *ctx,
int scheduleDimensions,
isl_space *SpaceModel,
int tileSize) {
// We construct
//
// tileMap := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]:
// s0 = a0 * 32 and s0 = p0 and t0 <= p0 < t0 + 32 and
// s1 = a1 * 32 and s1 = p1 and t1 <= p1 < t1 + 32}
//
// and project out the auxilary dimensions a0 and a1.
isl_space *Space =
isl_space_alloc(ctx, 0, scheduleDimensions, scheduleDimensions * 3);
isl_basic_map *tileMap = isl_basic_map_universe(isl_space_copy(Space));
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
for (int x = 0; x < scheduleDimensions; x++) {
int sX = x;
int tX = x;
int pX = scheduleDimensions + x;
int aX = 2 * scheduleDimensions + x;
isl_constraint *c;
// sX = aX * tileSize;
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, sX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, aX, -tileSize);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// pX = sX;
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_in, sX, -1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// tX <= pX
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, tX, -1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// pX <= tX + (tileSize - 1)
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, tX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, -1);
isl_constraint_set_constant_si(c, tileSize - 1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
}
// Project out auxilary dimensions.
//
// The auxilary dimensions are transformed into existentially quantified ones.
// This reduces the number of visible scattering dimensions and allows Cloog
// to produces better code.
tileMap = isl_basic_map_project_out(
tileMap, isl_dim_out, 2 * scheduleDimensions, scheduleDimensions);
isl_local_space_free(LocalSpace);
return tileMap;
}
isl_union_map *IslScheduleOptimizer::getScheduleForBand(isl_band *Band,
int *Dimensions) {
isl_union_map *PartialSchedule;
isl_ctx *ctx;
isl_space *Space;
isl_basic_map *TileMap;
isl_union_map *TileUMap;
PartialSchedule = isl_band_get_partial_schedule(Band);
*Dimensions = isl_band_n_member(Band);
if (DisableTiling)
return PartialSchedule;
// It does not make any sense to tile a band with just one dimension.
if (*Dimensions == 1)
return PartialSchedule;
ctx = isl_union_map_get_ctx(PartialSchedule);
Space = isl_union_map_get_space(PartialSchedule);
TileMap = getTileMap(ctx, *Dimensions, Space);
TileUMap = isl_union_map_from_map(isl_map_from_basic_map(TileMap));
TileUMap = isl_union_map_align_params(TileUMap, Space);
*Dimensions = 2 * *Dimensions;
return isl_union_map_apply_range(PartialSchedule, TileUMap);
}
isl_map *IslScheduleOptimizer::getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
int ScheduleDimensions,
int VectorWidth) {
isl_space *Space;
isl_local_space *LocalSpace, *LocalSpaceRange;
isl_set *Modulo;
isl_map *TilingMap;
isl_constraint *c;
isl_aff *Aff;
int PointDimension; /* ip */
int TileDimension; /* it */
isl_val *VectorWidthMP;
assert(0 <= DimToVectorize && DimToVectorize < ScheduleDimensions);
Space = isl_space_alloc(ctx, 0, ScheduleDimensions, ScheduleDimensions + 1);
TilingMap = isl_map_universe(isl_space_copy(Space));
LocalSpace = isl_local_space_from_space(Space);
PointDimension = ScheduleDimensions;
TileDimension = DimToVectorize;
// Create an identity map for everything except DimToVectorize and map
// DimToVectorize to the point loop at the innermost dimension.
for (int i = 0; i < ScheduleDimensions; i++) {
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
if (i == DimToVectorize)
isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1);
else
isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1);
TilingMap = isl_map_add_constraint(TilingMap, c);
}
// it % 'VectorWidth' = 0
LocalSpaceRange = isl_local_space_range(isl_local_space_copy(LocalSpace));
Aff = isl_aff_zero_on_domain(LocalSpaceRange);
Aff = isl_aff_set_constant_si(Aff, VectorWidth);
Aff = isl_aff_set_coefficient_si(Aff, isl_dim_in, TileDimension, 1);
VectorWidthMP = isl_val_int_from_si(ctx, VectorWidth);
Aff = isl_aff_mod_val(Aff, VectorWidthMP);
Modulo = isl_pw_aff_zero_set(isl_pw_aff_from_aff(Aff));
TilingMap = isl_map_intersect_range(TilingMap, Modulo);
// it <= ip
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, -1);
isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1);
TilingMap = isl_map_add_constraint(TilingMap, c);
// ip <= it + ('VectorWidth' - 1)
c = isl_inequality_alloc(LocalSpace);
isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, -1);
isl_constraint_set_constant_si(c, VectorWidth - 1);
TilingMap = isl_map_add_constraint(TilingMap, c);
return TilingMap;
}
isl_union_map *
IslScheduleOptimizer::getScheduleForBandList(isl_band_list *BandList) {
int NumBands;
isl_union_map *Schedule;
isl_ctx *ctx;
ctx = isl_band_list_get_ctx(BandList);
NumBands = isl_band_list_n_band(BandList);
Schedule = isl_union_map_empty(isl_space_params_alloc(ctx, 0));
for (int i = 0; i < NumBands; i++) {
isl_band *Band;
isl_union_map *PartialSchedule;
int ScheduleDimensions;
isl_space *Space;
Band = isl_band_list_get_band(BandList, i);
PartialSchedule = getScheduleForBand(Band, &ScheduleDimensions);
Space = isl_union_map_get_space(PartialSchedule);
if (isl_band_has_children(Band)) {
isl_band_list *Children;
isl_union_map *SuffixSchedule;
Children = isl_band_get_children(Band);
SuffixSchedule = getScheduleForBandList(Children);
PartialSchedule =
isl_union_map_flat_range_product(PartialSchedule, SuffixSchedule);
isl_band_list_free(Children);
} else if (PollyVectorizerChoice != VECTORIZER_NONE) {
for (int j = 0; j < isl_band_n_member(Band); j++) {
if (isl_band_member_is_coincident(Band, j)) {
isl_map *TileMap;
isl_union_map *TileUMap;
TileMap = getPrevectorMap(ctx, ScheduleDimensions - j - 1,
ScheduleDimensions);
TileUMap = isl_union_map_from_map(TileMap);
TileUMap =
isl_union_map_align_params(TileUMap, isl_space_copy(Space));
PartialSchedule =
isl_union_map_apply_range(PartialSchedule, TileUMap);
break;
}
}
}
Schedule = isl_union_map_union(Schedule, PartialSchedule);
isl_band_free(Band);
isl_space_free(Space);
}
return Schedule;
}
isl_union_map *IslScheduleOptimizer::getScheduleMap(isl_schedule *Schedule) {
isl_band_list *BandList = isl_schedule_get_band_forest(Schedule);
isl_union_map *ScheduleMap = getScheduleForBandList(BandList);
isl_band_list_free(BandList);
return ScheduleMap;
}
bool IslScheduleOptimizer::runOnScop(Scop &S) {
Dependences *D = &getAnalysis<Dependences>();
if (!D->hasValidDependences())
return false;
isl_schedule_free(LastSchedule);
LastSchedule = NULL;
// Build input data.
int ValidityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
int ProximityKinds;
if (OptimizeDeps == "all")
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
else if (OptimizeDeps == "raw")
ProximityKinds = Dependences::TYPE_RAW;
else {
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
<< " Falling back to optimizing all dependences.\n";
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
}
isl_union_set *Domain = S.getDomains();
if (!Domain)
return false;
isl_union_map *Validity = D->getDependences(ValidityKinds);
isl_union_map *Proximity = D->getDependences(ProximityKinds);
// Simplify the dependences by removing the constraints introduced by the
// domains. This can speed up the scheduling time significantly, as large
// constant coefficients will be removed from the dependences. The
// introduction of some additional dependences reduces the possible
// transformations, but in most cases, such transformation do not seem to be
// interesting anyway. In some cases this option may stop the scheduler to
// find any schedule.
if (SimplifyDeps == "yes") {
Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
Proximity =
isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
} else if (SimplifyDeps != "no") {
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
"or 'no'. Falling back to default: 'yes'\n";
}
DEBUG(dbgs() << "\n\nCompute schedule from: ");
DEBUG(dbgs() << "Domain := "; isl_union_set_dump(Domain); dbgs() << ";\n");
DEBUG(dbgs() << "Proximity := "; isl_union_map_dump(Proximity);
dbgs() << ";\n");
DEBUG(dbgs() << "Validity := "; isl_union_map_dump(Validity);
dbgs() << ";\n");
int IslFusionStrategy;
if (FusionStrategy == "max") {
IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
} else if (FusionStrategy == "min") {
IslFusionStrategy = ISL_SCHEDULE_FUSE_MIN;
} else {
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
"fusion.\n";
IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
}
int IslMaximizeBands;
if (MaximizeBandDepth == "yes") {
IslMaximizeBands = 1;
} else if (MaximizeBandDepth == "no") {
IslMaximizeBands = 0;
} else {
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
" or 'no'. Falling back to default: 'yes'\n";
IslMaximizeBands = 1;
}
isl_options_set_schedule_fuse(S.getIslCtx(), IslFusionStrategy);
isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands);
isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm);
isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient);
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);
isl_schedule_constraints *ScheduleConstraints;
ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
ScheduleConstraints =
isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
ScheduleConstraints = isl_schedule_constraints_set_validity(
ScheduleConstraints, isl_union_map_copy(Validity));
ScheduleConstraints =
isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
isl_schedule *Schedule;
Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);
// In cases the scheduler is not able to optimize the code, we just do not
// touch the schedule.
if (!Schedule)
return false;
DEBUG(dbgs() << "Schedule := "; isl_schedule_dump(Schedule); dbgs() << ";\n");
isl_union_map *ScheduleMap = getScheduleMap(Schedule);
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) {
ScopStmt *Stmt = *SI;
isl_map *StmtSchedule;
isl_set *Domain = Stmt->getDomain();
isl_union_map *StmtBand;
StmtBand = isl_union_map_intersect_domain(isl_union_map_copy(ScheduleMap),
isl_union_set_from_set(Domain));
if (isl_union_map_is_empty(StmtBand)) {
StmtSchedule = isl_map_from_domain(isl_set_empty(Stmt->getDomainSpace()));
isl_union_map_free(StmtBand);
} else {
assert(isl_union_map_n_map(StmtBand) == 1);
StmtSchedule = isl_map_from_union_map(StmtBand);
}
Stmt->setScattering(StmtSchedule);
}
isl_union_map_free(ScheduleMap);
LastSchedule = Schedule;
unsigned MaxScatDims = 0;
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI)
MaxScatDims = std::max((*SI)->getNumScattering(), MaxScatDims);
extendScattering(S, MaxScatDims);
return false;
}
void IslScheduleOptimizer::printScop(raw_ostream &OS) const {
isl_printer *p;
char *ScheduleStr;
OS << "Calculated schedule:\n";
if (!LastSchedule) {
OS << "n/a\n";
return;
}
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
p = isl_printer_print_schedule(p, LastSchedule);
ScheduleStr = isl_printer_get_str(p);
isl_printer_free(p);
OS << ScheduleStr << "\n";
}
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<Dependences>();
}
Pass *polly::createIslScheduleOptimizerPass() {
return new IslScheduleOptimizer();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(Dependences);
INITIALIZE_PASS_DEPENDENCY(ScopInfo);
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)