2008-09-26 12:40:32 +08:00
|
|
|
set(LLVM_TARGET_DEFINITIONS PPC.td)
|
|
|
|
|
2011-11-05 03:04:23 +08:00
|
|
|
tablegen(LLVM PPCGenAsmWriter.inc -gen-asm-writer)
|
2013-05-04 03:49:39 +08:00
|
|
|
tablegen(LLVM PPCGenAsmMatcher.inc -gen-asm-matcher)
|
2013-12-20 00:13:01 +08:00
|
|
|
tablegen(LLVM PPCGenDisassemblerTables.inc -gen-disassembler)
|
2014-09-03 06:28:02 +08:00
|
|
|
tablegen(LLVM PPCGenMCCodeEmitter.inc -gen-emitter)
|
2011-11-05 03:04:23 +08:00
|
|
|
tablegen(LLVM PPCGenRegisterInfo.inc -gen-register-info)
|
|
|
|
tablegen(LLVM PPCGenInstrInfo.inc -gen-instr-info)
|
|
|
|
tablegen(LLVM PPCGenDAGISel.inc -gen-dag-isel)
|
2013-07-30 08:50:39 +08:00
|
|
|
tablegen(LLVM PPCGenFastISel.inc -gen-fast-isel)
|
2011-11-05 03:04:23 +08:00
|
|
|
tablegen(LLVM PPCGenCallingConv.inc -gen-callingconv)
|
|
|
|
tablegen(LLVM PPCGenSubtargetInfo.inc -gen-subtarget)
|
Clean up a pile of hacks in our CMake build relating to TableGen.
The first problem to fix is to stop creating synthetic *Table_gen
targets next to all of the LLVM libraries. These had no real effect as
CMake specifies that add_custom_command(OUTPUT ...) directives (what the
'tablegen(...)' stuff expands to) are implicitly added as dependencies
to all the rules in that CMakeLists.txt.
These synthetic rules started to cause problems as we started more and
more heavily using tablegen files from *subdirectories* of the one where
they were generated. Within those directories, the set of tablegen
outputs was still available and so these synthetic rules added them as
dependencies of those subdirectories. However, they were no longer
properly associated with the custom command to generate them. Most of
the time this "just worked" because something would get to the parent
directory first, and run tablegen there. Once run, the files existed and
the build proceeded happily. However, as more and more subdirectories
have started using this, the probability of this failing to happen has
increased. Recently with the MC refactorings, it became quite common for
me when touching a large enough number of targets.
To add insult to injury, several of the backends *tried* to fix this by
adding explicit dependencies back to the parent directory's tablegen
rules, but those dependencies didn't work as expected -- they weren't
forming a linear chain, they were adding another thread in the race.
This patch removes these synthetic rules completely, and adds a much
simpler function to declare explicitly that a collection of tablegen'ed
files are referenced by other libraries. From that, we can add explicit
dependencies from the smaller libraries (such as every architectures
Desc library) on this and correctly form a linear sequence. All of the
backends are updated to use it, sometimes replacing the existing attempt
at adding a dependency, sometimes adding a previously missing dependency
edge.
Please let me know if this causes any problems, but it fixes a rather
persistent and problematic source of build flakiness on our end.
llvm-svn: 136023
2011-07-26 08:09:08 +08:00
|
|
|
add_public_tablegen_target(PowerPCCommonTableGen)
|
2008-09-26 12:40:32 +08:00
|
|
|
|
|
|
|
add_llvm_target(PowerPCCodeGen
|
2010-11-15 02:33:33 +08:00
|
|
|
PPCAsmPrinter.cpp
|
2008-09-26 12:40:32 +08:00
|
|
|
PPCBranchSelector.cpp
|
2012-06-08 23:38:21 +08:00
|
|
|
PPCCTRLoops.cpp
|
2008-09-26 12:40:32 +08:00
|
|
|
PPCHazardRecognizers.cpp
|
|
|
|
PPCInstrInfo.cpp
|
|
|
|
PPCISelDAGToDAG.cpp
|
|
|
|
PPCISelLowering.cpp
|
2015-02-02 06:58:46 +08:00
|
|
|
PPCEarlyReturn.cpp
|
2013-07-30 08:50:39 +08:00
|
|
|
PPCFastISel.cpp
|
2011-01-10 20:39:23 +08:00
|
|
|
PPCFrameLowering.cpp
|
[PowerPC] Loop Data Prefetching for the BG/Q
The IBM BG/Q supercomputer's A2 cores have a hardware prefetching unit, the
L1P, but it does not prefetch directly into the A2's L1 cache. Instead, it
prefetches into its own L1P buffer, and the latency to access that buffer is
significantly higher than that to the L1 cache (although smaller than the
latency to the L2 cache). As a result, especially when multiple hardware
threads are not actively busy, explicitly prefetching data into the L1 cache is
advantageous.
I've been using this pass out-of-tree for data prefetching on the BG/Q for well
over a year, and it has worked quite well. It is enabled by default only for
the BG/Q, but can be enabled for other cores as well via a command-line option.
Eventually, we might want to add some TTI interfaces and move this into
Transforms/Scalar (there is nothing particularly target dependent about it,
although only machines like the BG/Q will benefit from its simplistic
strategy).
llvm-svn: 229966
2015-02-20 13:08:21 +08:00
|
|
|
PPCLoopDataPrefetch.cpp
|
[PowerPC] Prepare loops for pre-increment loads/stores
PowerPC supports pre-increment load/store instructions (except for Altivec/VSX
vector load/stores). Using these on embedded cores can be very important, but
most loops are not naturally set up to use them. We can often change that,
however, by placing loops into a non-canonical form. Generically, this means
transforming loops like this:
for (int i = 0; i < n; ++i)
array[i] = c;
to look like this:
T *p = array[-1];
for (int i = 0; i < n; ++i)
*++p = c;
the key point is that addresses accessed are pulled into dedicated PHIs and
"pre-decremented" in the loop preheader. This allows the use of pre-increment
load/store instructions without loop peeling.
A target-specific late IR-level pass (running post-LSR), PPCLoopPreIncPrep, is
introduced to perform this transformation. I've used this code out-of-tree for
generating code for the PPC A2 for over a year. Somewhat to my surprise,
running the test suite + externals on a P7 with this transformation enabled
showed no performance regressions, and one speedup:
External/SPEC/CINT2006/483.xalancbmk/483.xalancbmk
-2.32514% +/- 1.03736%
So I'm going to enable it on everything for now. I was surprised by this
because, on the POWER cores, these pre-increment load/store instructions are
cracked (and, thus, harder to schedule effectively). But seeing no regressions,
and feeling that it is generally easier to split instructions apart late than
it is to combine them late, this might be the better approach regardless.
In the future, we might want to integrate this functionality into LSR (but
currently LSR does not create new PHI nodes, so (for that and other reasons)
significant work would need to be done).
llvm-svn: 228328
2015-02-06 02:43:00 +08:00
|
|
|
PPCLoopPreIncPrep.cpp
|
2010-11-15 03:53:02 +08:00
|
|
|
PPCMCInstLower.cpp
|
2011-12-20 16:42:11 +08:00
|
|
|
PPCMachineFunctionInfo.cpp
|
2008-09-26 12:40:32 +08:00
|
|
|
PPCRegisterInfo.cpp
|
|
|
|
PPCSubtarget.cpp
|
|
|
|
PPCTargetMachine.cpp
|
2013-05-14 03:34:37 +08:00
|
|
|
PPCTargetObjectFile.cpp
|
2013-01-26 07:05:59 +08:00
|
|
|
PPCTargetTransformInfo.cpp
|
2010-04-17 07:04:22 +08:00
|
|
|
PPCSelectionDAGInfo.cpp
|
2015-02-11 03:09:05 +08:00
|
|
|
PPCTLSDynamicCall.cpp
|
2015-02-02 06:01:29 +08:00
|
|
|
PPCVSXCopy.cpp
|
2015-02-02 05:51:22 +08:00
|
|
|
PPCVSXFMAMutate.cpp
|
2008-09-26 12:40:32 +08:00
|
|
|
)
|
2011-02-20 10:55:27 +08:00
|
|
|
|
2013-05-04 03:49:39 +08:00
|
|
|
add_subdirectory(AsmParser)
|
2013-12-20 00:13:01 +08:00
|
|
|
add_subdirectory(Disassembler)
|
2011-02-20 10:55:27 +08:00
|
|
|
add_subdirectory(InstPrinter)
|
|
|
|
add_subdirectory(TargetInfo)
|
2011-07-15 04:59:42 +08:00
|
|
|
add_subdirectory(MCTargetDesc)
|