forked from OSchip/llvm-project
150 lines
4.9 KiB
ReStructuredText
150 lines
4.9 KiB
ReStructuredText
|
=============================================
|
||
|
Enable std::unique_ptr [[clang::trivial_abi]]
|
||
|
=============================================
|
||
|
|
||
|
Background
|
||
|
==========
|
||
|
|
||
|
Consider the follow snippets
|
||
|
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
void raw_func(Foo* raw_arg) { ... }
|
||
|
void smart_func(std::unique_ptr<Foo> smart_arg) { ... }
|
||
|
|
||
|
Foo* raw_ptr_retval() { ... }
|
||
|
std::unique_ptr<Foo*> smart_ptr_retval() { ... }
|
||
|
|
||
|
|
||
|
|
||
|
The argument ``raw_arg`` could be passed in a register but ``smart_arg`` could not, due to current
|
||
|
implementation.
|
||
|
|
||
|
Specifically, in the ``smart_arg`` case, the caller secretly constructs a temporary ``std::unique_ptr``
|
||
|
in its stack-frame, and then passes a pointer to it to the callee in a hidden parameter.
|
||
|
Similarly, the return value from ``smart_ptr_retval`` is secretly allocated in the caller and
|
||
|
passed as a secret reference to the callee.
|
||
|
|
||
|
|
||
|
Goal
|
||
|
===================
|
||
|
|
||
|
``std::unique_ptr`` is passed directly in a register.
|
||
|
|
||
|
Design
|
||
|
======
|
||
|
|
||
|
* Annotate the two definitions of ``std::unique_ptr`` with ``clang::trivial_abi`` attribute.
|
||
|
* Put the attribuate behind a flag because this change has potential compilation and runtime breakages.
|
||
|
|
||
|
|
||
|
This comes with some side effects:
|
||
|
|
||
|
* ``std::unique_ptr`` parameters will now be destroyed by callees, rather than callers.
|
||
|
It is worth noting that destruction by callee is not unique to the use of trivial_abi attribute.
|
||
|
In most Microsoft's ABIs, arguments are always destroyed by the callee.
|
||
|
|
||
|
Consequently, this may change the destruction order for function parameters to an order that is non-conforming to the standard.
|
||
|
For example:
|
||
|
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
struct A { ~A(); };
|
||
|
struct B { ~B(); };
|
||
|
struct C { C(A, unique_ptr<B>, A) {} };
|
||
|
C c{{}, make_unique<B>, {}};
|
||
|
|
||
|
|
||
|
In a conforming implementation, the destruction order for C::C's parameters is required to be ``~A(), ~B(), ~A()`` but with this mode enabled, we'll instead see ``~B(), ~A(), ~A()``.
|
||
|
|
||
|
* Reduced code-size.
|
||
|
|
||
|
|
||
|
Performance impact
|
||
|
------------------
|
||
|
|
||
|
Google has measured performance improvements of up to 1.6% on some large server macrobenchmarks, and a small reduction in binary sizes.
|
||
|
|
||
|
This also affects null pointer optimization
|
||
|
|
||
|
Clang's optimizer can now figure out when a `std::unique_ptr` is known to contain *non*-null.
|
||
|
(Actually, this has been a *missed* optimization all along.)
|
||
|
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
struct Foo {
|
||
|
~Foo();
|
||
|
};
|
||
|
std::unique_ptr<Foo> make_foo();
|
||
|
void do_nothing(const Foo&)
|
||
|
|
||
|
void bar() {
|
||
|
auto x = make_foo();
|
||
|
do_nothing(*x);
|
||
|
}
|
||
|
|
||
|
|
||
|
With this change, ``~Foo()`` will be called even if ``make_foo`` returns ``unique_ptr<Foo>(nullptr)``.
|
||
|
The compiler can now assume that ``x.get()`` cannot be null by the end of ``bar()``, because
|
||
|
the deference of ``x`` would be UB if it were ``nullptr``. (This dereference would not have caused
|
||
|
a segfault, because no load is generated for dereferencing a pointer to a reference. This can be detected with ``-fsanitize=null``).
|
||
|
|
||
|
|
||
|
Potential breakages
|
||
|
-------------------
|
||
|
|
||
|
The following breakages were discovered by enabling this change and fixing the resulting issues in a large code base.
|
||
|
|
||
|
- Compilation failures
|
||
|
|
||
|
- Function definitions now require complete type ``T`` for parameters with type ``std::unique_ptr<T>``. The following code will no longer compile.
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
class Foo;
|
||
|
void func(std::unique_ptr<Foo> arg) { /* never use `arg` directly */ }
|
||
|
|
||
|
- Fix: Remove forward-declaration of ``Foo`` and include its proper header.
|
||
|
|
||
|
- Runtime Failures
|
||
|
|
||
|
- Lifetime of ``std::unique_ptr<>`` arguments end earlier (at the end of the callee's body, rather than at the end of the full expression containing the call).
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
util::Status run_worker(std::unique_ptr<Foo>);
|
||
|
void func() {
|
||
|
std::unique_ptr<Foo> smart_foo = ...;
|
||
|
Foo* owned_foo = smart_foo.get();
|
||
|
// Currently, the following would "work" because the argument to run_worker() is deleted at the end of func()
|
||
|
// With the new calling convention, it will be deleted at the end of run_worker(),
|
||
|
// making this an access to freed memory.
|
||
|
owned_foo->Bar(run_worker(std::move(smart_foo)));
|
||
|
^
|
||
|
// <<<Crash expected here
|
||
|
}
|
||
|
|
||
|
- Lifetime of local *returned* ``std::unique_ptr<>`` ends earlier.
|
||
|
|
||
|
Spot the bug:
|
||
|
|
||
|
.. code-block:: cpp
|
||
|
|
||
|
std::unique_ptr<Foo> create_and_subscribe(Bar* subscriber) {
|
||
|
auto foo = std::make_unique<Foo>();
|
||
|
subscriber->sub([&foo] { foo->do_thing();} );
|
||
|
return foo;
|
||
|
}
|
||
|
|
||
|
One could point out this is an obvious stack-use-after return bug.
|
||
|
With the current calling convention, running this code with ASAN enabled, however, would not yield any "issue".
|
||
|
So is this a bug in ASAN? (Spoiler: No)
|
||
|
|
||
|
This currently would "work" only because the storage for ``foo`` is in the caller's stackframe.
|
||
|
In other words, ``&foo`` in callee and ``&foo`` in the caller are the same address.
|
||
|
|
||
|
ASAN can be used to detect both of these.
|