New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
//===----------- LoopVersioningLICM.cpp - LICM Loop Versioning ------------===//
|
|
|
|
|
//
|
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
|
//
|
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
|
//
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
//
|
|
|
|
|
// When alias analysis is uncertain about the aliasing between any two accesses,
|
|
|
|
|
// it will return MayAlias. This uncertainty from alias analysis restricts LICM
|
|
|
|
|
// from proceeding further. In cases where alias analysis is uncertain we might
|
|
|
|
|
// use loop versioning as an alternative.
|
|
|
|
|
//
|
|
|
|
|
// Loop Versioning will create a version of the loop with aggressive aliasing
|
|
|
|
|
// assumptions in addition to the original with conservative (default) aliasing
|
|
|
|
|
// assumptions. The version of the loop making aggressive aliasing assumptions
|
|
|
|
|
// will have all the memory accesses marked as no-alias. These two versions of
|
|
|
|
|
// loop will be preceded by a memory runtime check. This runtime check consists
|
|
|
|
|
// of bound checks for all unique memory accessed in loop, and it ensures the
|
|
|
|
|
// lack of memory aliasing. The result of the runtime check determines which of
|
|
|
|
|
// the loop versions is executed: If the runtime check detects any memory
|
|
|
|
|
// aliasing, then the original loop is executed. Otherwise, the version with
|
|
|
|
|
// aggressive aliasing assumptions is used.
|
|
|
|
|
//
|
|
|
|
|
// Following are the top level steps:
|
|
|
|
|
//
|
|
|
|
|
// a) Perform LoopVersioningLICM's feasibility check.
|
|
|
|
|
// b) If loop is a candidate for versioning then create a memory bound check,
|
|
|
|
|
// by considering all the memory accesses in loop body.
|
|
|
|
|
// c) Clone original loop and set all memory accesses as no-alias in new loop.
|
|
|
|
|
// d) Set original loop & versioned loop as a branch target of the runtime check
|
|
|
|
|
// result.
|
|
|
|
|
//
|
|
|
|
|
// It transforms loop as shown below:
|
|
|
|
|
//
|
|
|
|
|
// +----------------+
|
|
|
|
|
// |Runtime Memcheck|
|
|
|
|
|
// +----------------+
|
|
|
|
|
// |
|
|
|
|
|
// +----------+----------------+----------+
|
|
|
|
|
// | |
|
|
|
|
|
// +---------+----------+ +-----------+----------+
|
|
|
|
|
// |Orig Loop Preheader | |Cloned Loop Preheader |
|
|
|
|
|
// +--------------------+ +----------------------+
|
|
|
|
|
// | |
|
|
|
|
|
// +--------------------+ +----------------------+
|
|
|
|
|
// |Orig Loop Body | |Cloned Loop Body |
|
|
|
|
|
// +--------------------+ +----------------------+
|
|
|
|
|
// | |
|
|
|
|
|
// +--------------------+ +----------------------+
|
2016-02-11 17:23:53 +08:00
|
|
|
|
// |Orig Loop Exit Block| |Cloned Loop Exit Block|
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
// +--------------------+ +-----------+----------+
|
|
|
|
|
// | |
|
|
|
|
|
// +----------+--------------+-----------+
|
|
|
|
|
// |
|
|
|
|
|
// +-----+----+
|
|
|
|
|
// |Join Block|
|
|
|
|
|
// +----------+
|
|
|
|
|
//
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
|
|
#include "llvm/ADT/MapVector.h"
|
|
|
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
|
|
|
#include "llvm/ADT/StringExtras.h"
|
|
|
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
|
|
|
#include "llvm/Analysis/AliasSetTracker.h"
|
|
|
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
|
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
|
|
|
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
|
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
|
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
|
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
|
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
|
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
|
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
|
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
|
|
|
#include "llvm/IR/Dominators.h"
|
|
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
|
|
|
#include "llvm/IR/MDBuilder.h"
|
|
|
|
|
#include "llvm/IR/PatternMatch.h"
|
|
|
|
|
#include "llvm/IR/PredIteratorCache.h"
|
|
|
|
|
#include "llvm/IR/Type.h"
|
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
|
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
|
|
|
#include "llvm/Transforms/Utils/LoopVersioning.h"
|
|
|
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "loop-versioning-licm"
|
2016-02-11 19:27:51 +08:00
|
|
|
|
static const char* LICMVersioningMetaData =
|
2016-02-11 17:23:53 +08:00
|
|
|
|
"llvm.loop.licm_versioning.disable";
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
|
|
/// Threshold minimum allowed percentage for possible
|
|
|
|
|
/// invariant instructions in a loop.
|
|
|
|
|
static cl::opt<float>
|
2016-02-11 17:23:53 +08:00
|
|
|
|
LVInvarThreshold("licm-versioning-invariant-threshold",
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
cl::desc("LoopVersioningLICM's minimum allowed percentage"
|
|
|
|
|
"of possible invariant instructions per loop"),
|
|
|
|
|
cl::init(25), cl::Hidden);
|
|
|
|
|
|
|
|
|
|
/// Threshold for maximum allowed loop nest/depth
|
|
|
|
|
static cl::opt<unsigned> LVLoopDepthThreshold(
|
2016-02-11 17:23:53 +08:00
|
|
|
|
"licm-versioning-max-depth-threshold",
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
cl::desc(
|
|
|
|
|
"LoopVersioningLICM's threshold for maximum allowed loop nest/depth"),
|
|
|
|
|
cl::init(2), cl::Hidden);
|
|
|
|
|
|
|
|
|
|
/// \brief Create MDNode for input string.
|
|
|
|
|
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
|
|
|
|
|
LLVMContext &Context = TheLoop->getHeader()->getContext();
|
|
|
|
|
Metadata *MDs[] = {
|
|
|
|
|
MDString::get(Context, Name),
|
|
|
|
|
ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
|
|
|
|
|
return MDNode::get(Context, MDs);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// \brief Set input string into loop metadata by keeping other values intact.
|
|
|
|
|
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
|
|
|
|
|
unsigned V) {
|
|
|
|
|
SmallVector<Metadata *, 4> MDs(1);
|
|
|
|
|
// If the loop already has metadata, retain it.
|
|
|
|
|
MDNode *LoopID = TheLoop->getLoopID();
|
|
|
|
|
if (LoopID) {
|
|
|
|
|
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
|
|
|
|
|
MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
|
|
|
|
|
MDs.push_back(Node);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Add new metadata.
|
|
|
|
|
MDs.push_back(createStringMetadata(TheLoop, MDString, V));
|
|
|
|
|
// Replace current metadata node with new one.
|
|
|
|
|
LLVMContext &Context = TheLoop->getHeader()->getContext();
|
|
|
|
|
MDNode *NewLoopID = MDNode::get(Context, MDs);
|
|
|
|
|
// Set operand 0 to refer to the loop id itself.
|
|
|
|
|
NewLoopID->replaceOperandWith(0, NewLoopID);
|
|
|
|
|
TheLoop->setLoopID(NewLoopID);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
struct LoopVersioningLICM : public LoopPass {
|
|
|
|
|
static char ID;
|
|
|
|
|
|
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
|
|
|
|
|
|
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
|
|
|
AU.setPreservesCFG();
|
|
|
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
|
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
|
|
|
AU.addRequiredID(LCSSAID);
|
2016-07-09 04:55:26 +08:00
|
|
|
|
AU.addRequired<LoopAccessLegacyAnalysis>();
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
|
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
|
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
|
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
|
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
|
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
LoopVersioningLICM()
|
|
|
|
|
: LoopPass(ID), AA(nullptr), SE(nullptr), LI(nullptr), DT(nullptr),
|
|
|
|
|
TLI(nullptr), LAA(nullptr), LAI(nullptr), Changed(false),
|
|
|
|
|
Preheader(nullptr), CurLoop(nullptr), CurAST(nullptr),
|
|
|
|
|
LoopDepthThreshold(LVLoopDepthThreshold),
|
|
|
|
|
InvariantThreshold(LVInvarThreshold), LoadAndStoreCounter(0),
|
|
|
|
|
InvariantCounter(0), IsReadOnlyLoop(true) {
|
|
|
|
|
initializeLoopVersioningLICMPass(*PassRegistry::getPassRegistry());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
AliasAnalysis *AA; // Current AliasAnalysis information
|
|
|
|
|
ScalarEvolution *SE; // Current ScalarEvolution
|
|
|
|
|
LoopInfo *LI; // Current LoopInfo
|
|
|
|
|
DominatorTree *DT; // Dominator Tree for the current Loop.
|
|
|
|
|
TargetLibraryInfo *TLI; // TargetLibraryInfo for constant folding.
|
2016-07-09 04:55:26 +08:00
|
|
|
|
LoopAccessLegacyAnalysis *LAA; // Current LoopAccessAnalysis
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
const LoopAccessInfo *LAI; // Current Loop's LoopAccessInfo
|
|
|
|
|
|
|
|
|
|
bool Changed; // Set to true when we change anything.
|
|
|
|
|
BasicBlock *Preheader; // The preheader block of the current loop.
|
|
|
|
|
Loop *CurLoop; // The current loop we are working on.
|
|
|
|
|
AliasSetTracker *CurAST; // AliasSet information for the current loop.
|
|
|
|
|
ValueToValueMap Strides;
|
|
|
|
|
|
|
|
|
|
unsigned LoopDepthThreshold; // Maximum loop nest threshold
|
|
|
|
|
float InvariantThreshold; // Minimum invariant threshold
|
|
|
|
|
unsigned LoadAndStoreCounter; // Counter to track num of load & store
|
|
|
|
|
unsigned InvariantCounter; // Counter to track num of invariant
|
|
|
|
|
bool IsReadOnlyLoop; // Read only loop marker.
|
|
|
|
|
|
|
|
|
|
bool isLegalForVersioning();
|
|
|
|
|
bool legalLoopStructure();
|
|
|
|
|
bool legalLoopInstructions();
|
|
|
|
|
bool legalLoopMemoryAccesses();
|
|
|
|
|
bool isLoopAlreadyVisited();
|
|
|
|
|
void setNoAliasToLoop(Loop *);
|
|
|
|
|
bool instructionSafeForVersioning(Instruction *);
|
|
|
|
|
const char *getPassName() const override { return "Loop Versioning"; }
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// \brief Check loop structure and confirms it's good for LoopVersioningLICM.
|
|
|
|
|
bool LoopVersioningLICM::legalLoopStructure() {
|
|
|
|
|
// Loop must have a preheader, if not return false.
|
|
|
|
|
if (!CurLoop->getLoopPreheader()) {
|
|
|
|
|
DEBUG(dbgs() << " loop preheader is missing\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Loop should be innermost loop, if not return false.
|
|
|
|
|
if (CurLoop->getSubLoops().size()) {
|
|
|
|
|
DEBUG(dbgs() << " loop is not innermost\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Loop should have a single backedge, if not return false.
|
|
|
|
|
if (CurLoop->getNumBackEdges() != 1) {
|
|
|
|
|
DEBUG(dbgs() << " loop has multiple backedges\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Loop must have a single exiting block, if not return false.
|
|
|
|
|
if (!CurLoop->getExitingBlock()) {
|
|
|
|
|
DEBUG(dbgs() << " loop has multiple exiting block\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// We only handle bottom-tested loop, i.e. loop in which the condition is
|
|
|
|
|
// checked at the end of each iteration. With that we can assume that all
|
|
|
|
|
// instructions in the loop are executed the same number of times.
|
|
|
|
|
if (CurLoop->getExitingBlock() != CurLoop->getLoopLatch()) {
|
|
|
|
|
DEBUG(dbgs() << " loop is not bottom tested\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Parallel loops must not have aliasing loop-invariant memory accesses.
|
|
|
|
|
// Hence we don't need to version anything in this case.
|
|
|
|
|
if (CurLoop->isAnnotatedParallel()) {
|
|
|
|
|
DEBUG(dbgs() << " Parallel loop is not worth versioning\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Loop depth more then LoopDepthThreshold are not allowed
|
|
|
|
|
if (CurLoop->getLoopDepth() > LoopDepthThreshold) {
|
|
|
|
|
DEBUG(dbgs() << " loop depth is more then threshold\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Loop should have a dedicated exit block, if not return false.
|
|
|
|
|
if (!CurLoop->hasDedicatedExits()) {
|
|
|
|
|
DEBUG(dbgs() << " loop does not has dedicated exit blocks\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// We need to be able to compute the loop trip count in order
|
|
|
|
|
// to generate the bound checks.
|
|
|
|
|
const SCEV *ExitCount = SE->getBackedgeTakenCount(CurLoop);
|
|
|
|
|
if (ExitCount == SE->getCouldNotCompute()) {
|
|
|
|
|
DEBUG(dbgs() << " loop does not has trip count\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// \brief Check memory accesses in loop and confirms it's good for
|
|
|
|
|
/// LoopVersioningLICM.
|
|
|
|
|
bool LoopVersioningLICM::legalLoopMemoryAccesses() {
|
|
|
|
|
bool HasMayAlias = false;
|
|
|
|
|
bool TypeSafety = false;
|
|
|
|
|
bool HasMod = false;
|
|
|
|
|
// Memory check:
|
|
|
|
|
// Transform phase will generate a versioned loop and also a runtime check to
|
|
|
|
|
// ensure the pointers are independent and they don’t alias.
|
|
|
|
|
// In version variant of loop, alias meta data asserts that all access are
|
|
|
|
|
// mutually independent.
|
|
|
|
|
//
|
|
|
|
|
// Pointers aliasing in alias domain are avoided because with multiple
|
|
|
|
|
// aliasing domains we may not be able to hoist potential loop invariant
|
|
|
|
|
// access out of the loop.
|
|
|
|
|
//
|
|
|
|
|
// Iterate over alias tracker sets, and confirm AliasSets doesn't have any
|
|
|
|
|
// must alias set.
|
|
|
|
|
for (const auto &I : *CurAST) {
|
|
|
|
|
const AliasSet &AS = I;
|
|
|
|
|
// Skip Forward Alias Sets, as this should be ignored as part of
|
|
|
|
|
// the AliasSetTracker object.
|
|
|
|
|
if (AS.isForwardingAliasSet())
|
|
|
|
|
continue;
|
|
|
|
|
// With MustAlias its not worth adding runtime bound check.
|
|
|
|
|
if (AS.isMustAlias())
|
|
|
|
|
return false;
|
|
|
|
|
Value *SomePtr = AS.begin()->getValue();
|
|
|
|
|
bool TypeCheck = true;
|
|
|
|
|
// Check for Mod & MayAlias
|
|
|
|
|
HasMayAlias |= AS.isMayAlias();
|
|
|
|
|
HasMod |= AS.isMod();
|
|
|
|
|
for (const auto &A : AS) {
|
|
|
|
|
Value *Ptr = A.getValue();
|
|
|
|
|
// Alias tracker should have pointers of same data type.
|
|
|
|
|
TypeCheck = (TypeCheck && (SomePtr->getType() == Ptr->getType()));
|
|
|
|
|
}
|
|
|
|
|
// At least one alias tracker should have pointers of same data type.
|
|
|
|
|
TypeSafety |= TypeCheck;
|
|
|
|
|
}
|
|
|
|
|
// Ensure types should be of same type.
|
|
|
|
|
if (!TypeSafety) {
|
|
|
|
|
DEBUG(dbgs() << " Alias tracker type safety failed!\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Ensure loop body shouldn't be read only.
|
|
|
|
|
if (!HasMod) {
|
|
|
|
|
DEBUG(dbgs() << " No memory modified in loop body\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Make sure alias set has may alias case.
|
|
|
|
|
// If there no alias memory ambiguity, return false.
|
|
|
|
|
if (!HasMayAlias) {
|
|
|
|
|
DEBUG(dbgs() << " No ambiguity in memory access.\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// \brief Check loop instructions safe for Loop versioning.
|
|
|
|
|
/// It returns true if it's safe else returns false.
|
|
|
|
|
/// Consider following:
|
|
|
|
|
/// 1) Check all load store in loop body are non atomic & non volatile.
|
|
|
|
|
/// 2) Check function call safety, by ensuring its not accessing memory.
|
|
|
|
|
/// 3) Loop body shouldn't have any may throw instruction.
|
|
|
|
|
bool LoopVersioningLICM::instructionSafeForVersioning(Instruction *I) {
|
|
|
|
|
assert(I != nullptr && "Null instruction found!");
|
|
|
|
|
// Check function call safety
|
2016-02-11 17:23:53 +08:00
|
|
|
|
if (isa<CallInst>(I) && !AA->doesNotAccessMemory(CallSite(I))) {
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
DEBUG(dbgs() << " Unsafe call site found.\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Avoid loops with possiblity of throw
|
|
|
|
|
if (I->mayThrow()) {
|
|
|
|
|
DEBUG(dbgs() << " May throw instruction found in loop body\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// If current instruction is load instructions
|
|
|
|
|
// make sure it's a simple load (non atomic & non volatile)
|
|
|
|
|
if (I->mayReadFromMemory()) {
|
|
|
|
|
LoadInst *Ld = dyn_cast<LoadInst>(I);
|
|
|
|
|
if (!Ld || !Ld->isSimple()) {
|
|
|
|
|
DEBUG(dbgs() << " Found a non-simple load.\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
LoadAndStoreCounter++;
|
|
|
|
|
Value *Ptr = Ld->getPointerOperand();
|
|
|
|
|
// Check loop invariant.
|
|
|
|
|
if (SE->isLoopInvariant(SE->getSCEV(Ptr), CurLoop))
|
|
|
|
|
InvariantCounter++;
|
|
|
|
|
}
|
|
|
|
|
// If current instruction is store instruction
|
|
|
|
|
// make sure it's a simple store (non atomic & non volatile)
|
|
|
|
|
else if (I->mayWriteToMemory()) {
|
|
|
|
|
StoreInst *St = dyn_cast<StoreInst>(I);
|
|
|
|
|
if (!St || !St->isSimple()) {
|
|
|
|
|
DEBUG(dbgs() << " Found a non-simple store.\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
LoadAndStoreCounter++;
|
|
|
|
|
Value *Ptr = St->getPointerOperand();
|
|
|
|
|
// Check loop invariant.
|
|
|
|
|
if (SE->isLoopInvariant(SE->getSCEV(Ptr), CurLoop))
|
|
|
|
|
InvariantCounter++;
|
|
|
|
|
|
|
|
|
|
IsReadOnlyLoop = false;
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// \brief Check loop instructions and confirms it's good for
|
|
|
|
|
/// LoopVersioningLICM.
|
|
|
|
|
bool LoopVersioningLICM::legalLoopInstructions() {
|
|
|
|
|
// Resetting counters.
|
|
|
|
|
LoadAndStoreCounter = 0;
|
|
|
|
|
InvariantCounter = 0;
|
|
|
|
|
IsReadOnlyLoop = true;
|
|
|
|
|
// Iterate over loop blocks and instructions of each block and check
|
|
|
|
|
// instruction safety.
|
|
|
|
|
for (auto *Block : CurLoop->getBlocks())
|
|
|
|
|
for (auto &Inst : *Block) {
|
2016-02-11 17:23:53 +08:00
|
|
|
|
// If instruction is unsafe just return false.
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
if (!instructionSafeForVersioning(&Inst))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Get LoopAccessInfo from current loop.
|
2016-06-18 06:35:41 +08:00
|
|
|
|
LAI = &LAA->getInfo(CurLoop);
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
// Check LoopAccessInfo for need of runtime check.
|
|
|
|
|
if (LAI->getRuntimePointerChecking()->getChecks().empty()) {
|
|
|
|
|
DEBUG(dbgs() << " LAA: Runtime check not found !!\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Number of runtime-checks should be less then RuntimeMemoryCheckThreshold
|
|
|
|
|
if (LAI->getNumRuntimePointerChecks() >
|
|
|
|
|
VectorizerParams::RuntimeMemoryCheckThreshold) {
|
|
|
|
|
DEBUG(dbgs() << " LAA: Runtime checks are more than threshold !!\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Loop should have at least one invariant load or store instruction.
|
|
|
|
|
if (!InvariantCounter) {
|
|
|
|
|
DEBUG(dbgs() << " Invariant not found !!\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Read only loop not allowed.
|
|
|
|
|
if (IsReadOnlyLoop) {
|
|
|
|
|
DEBUG(dbgs() << " Found a read-only loop!\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Profitablity check:
|
|
|
|
|
// Check invariant threshold, should be in limit.
|
|
|
|
|
if (InvariantCounter * 100 < InvariantThreshold * LoadAndStoreCounter) {
|
|
|
|
|
DEBUG(dbgs()
|
|
|
|
|
<< " Invariant load & store are less then defined threshold\n");
|
|
|
|
|
DEBUG(dbgs() << " Invariant loads & stores: "
|
|
|
|
|
<< ((InvariantCounter * 100) / LoadAndStoreCounter) << "%\n");
|
|
|
|
|
DEBUG(dbgs() << " Invariant loads & store threshold: "
|
|
|
|
|
<< InvariantThreshold << "%\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// \brief It checks loop is already visited or not.
|
2016-02-11 17:23:53 +08:00
|
|
|
|
/// check loop meta data, if loop revisited return true
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
/// else false.
|
|
|
|
|
bool LoopVersioningLICM::isLoopAlreadyVisited() {
|
|
|
|
|
// Check LoopVersioningLICM metadata into loop
|
2016-04-22 01:33:12 +08:00
|
|
|
|
if (findStringMetadataForLoop(CurLoop, LICMVersioningMetaData)) {
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// \brief Checks legality for LoopVersioningLICM by considering following:
|
|
|
|
|
/// a) loop structure legality b) loop instruction legality
|
|
|
|
|
/// c) loop memory access legality.
|
|
|
|
|
/// Return true if legal else returns false.
|
|
|
|
|
bool LoopVersioningLICM::isLegalForVersioning() {
|
|
|
|
|
DEBUG(dbgs() << "Loop: " << *CurLoop);
|
|
|
|
|
// Make sure not re-visiting same loop again.
|
|
|
|
|
if (isLoopAlreadyVisited()) {
|
|
|
|
|
DEBUG(
|
|
|
|
|
dbgs() << " Revisiting loop in LoopVersioningLICM not allowed.\n\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Check loop structure leagality.
|
|
|
|
|
if (!legalLoopStructure()) {
|
|
|
|
|
DEBUG(
|
|
|
|
|
dbgs() << " Loop structure not suitable for LoopVersioningLICM\n\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Check loop instruction leagality.
|
|
|
|
|
if (!legalLoopInstructions()) {
|
|
|
|
|
DEBUG(dbgs()
|
|
|
|
|
<< " Loop instructions not suitable for LoopVersioningLICM\n\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Check loop memory access leagality.
|
|
|
|
|
if (!legalLoopMemoryAccesses()) {
|
|
|
|
|
DEBUG(dbgs()
|
|
|
|
|
<< " Loop memory access not suitable for LoopVersioningLICM\n\n");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Loop versioning is feasible, return true.
|
|
|
|
|
DEBUG(dbgs() << " Loop Versioning found to be beneficial\n\n");
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// \brief Update loop with aggressive aliasing assumptions.
|
|
|
|
|
/// It marks no-alias to any pairs of memory operations by assuming
|
|
|
|
|
/// loop should not have any must-alias memory accesses pairs.
|
|
|
|
|
/// During LoopVersioningLICM legality we ignore loops having must
|
|
|
|
|
/// aliasing memory accesses.
|
|
|
|
|
void LoopVersioningLICM::setNoAliasToLoop(Loop *VerLoop) {
|
|
|
|
|
// Get latch terminator instruction.
|
|
|
|
|
Instruction *I = VerLoop->getLoopLatch()->getTerminator();
|
|
|
|
|
// Create alias scope domain.
|
|
|
|
|
MDBuilder MDB(I->getContext());
|
|
|
|
|
MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("LVDomain");
|
|
|
|
|
StringRef Name = "LVAliasScope";
|
|
|
|
|
SmallVector<Metadata *, 4> Scopes, NoAliases;
|
|
|
|
|
MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
|
|
|
|
|
// Iterate over each instruction of loop.
|
|
|
|
|
// set no-alias for all load & store instructions.
|
|
|
|
|
for (auto *Block : CurLoop->getBlocks()) {
|
|
|
|
|
for (auto &Inst : *Block) {
|
|
|
|
|
// Only interested in instruction that may modify or read memory.
|
|
|
|
|
if (!Inst.mayReadFromMemory() && !Inst.mayWriteToMemory())
|
|
|
|
|
continue;
|
|
|
|
|
Scopes.push_back(NewScope);
|
|
|
|
|
NoAliases.push_back(NewScope);
|
|
|
|
|
// Set no-alias for current instruction.
|
|
|
|
|
Inst.setMetadata(
|
|
|
|
|
LLVMContext::MD_noalias,
|
|
|
|
|
MDNode::concatenate(Inst.getMetadata(LLVMContext::MD_noalias),
|
|
|
|
|
MDNode::get(Inst.getContext(), NoAliases)));
|
|
|
|
|
// set alias-scope for current instruction.
|
|
|
|
|
Inst.setMetadata(
|
|
|
|
|
LLVMContext::MD_alias_scope,
|
|
|
|
|
MDNode::concatenate(Inst.getMetadata(LLVMContext::MD_alias_scope),
|
|
|
|
|
MDNode::get(Inst.getContext(), Scopes)));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool LoopVersioningLICM::runOnLoop(Loop *L, LPPassManager &LPM) {
|
2016-04-23 06:06:11 +08:00
|
|
|
|
if (skipLoop(L))
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
return false;
|
|
|
|
|
Changed = false;
|
|
|
|
|
// Get Analysis information.
|
|
|
|
|
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
|
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
|
|
|
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
|
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
|
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
2016-07-09 04:55:26 +08:00
|
|
|
|
LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
LAI = nullptr;
|
|
|
|
|
// Set Current Loop
|
|
|
|
|
CurLoop = L;
|
|
|
|
|
// Get the preheader block.
|
|
|
|
|
Preheader = L->getLoopPreheader();
|
|
|
|
|
// Initial allocation
|
|
|
|
|
CurAST = new AliasSetTracker(*AA);
|
|
|
|
|
|
|
|
|
|
// Loop over the body of this loop, construct AST.
|
|
|
|
|
for (auto *Block : L->getBlocks()) {
|
|
|
|
|
if (LI->getLoopFor(Block) == L) // Ignore blocks in subloop.
|
|
|
|
|
CurAST->add(*Block); // Incorporate the specified basic block
|
|
|
|
|
}
|
|
|
|
|
// Check feasiblity of LoopVersioningLICM.
|
|
|
|
|
// If versioning found to be feasible and beneficial then proceed
|
|
|
|
|
// else simply return, by cleaning up memory.
|
|
|
|
|
if (isLegalForVersioning()) {
|
|
|
|
|
// Do loop versioning.
|
|
|
|
|
// Create memcheck for memory accessed inside loop.
|
|
|
|
|
// Clone original loop, and set blocks properly.
|
|
|
|
|
LoopVersioning LVer(*LAI, CurLoop, LI, DT, SE, true);
|
|
|
|
|
LVer.versionLoop();
|
|
|
|
|
// Set Loop Versioning metaData for original loop.
|
2016-02-11 17:23:53 +08:00
|
|
|
|
addStringMetadataToLoop(LVer.getNonVersionedLoop(), LICMVersioningMetaData);
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
// Set Loop Versioning metaData for version loop.
|
2016-02-11 17:23:53 +08:00
|
|
|
|
addStringMetadataToLoop(LVer.getVersionedLoop(), LICMVersioningMetaData);
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
// Set "llvm.mem.parallel_loop_access" metaData to versioned loop.
|
|
|
|
|
addStringMetadataToLoop(LVer.getVersionedLoop(),
|
|
|
|
|
"llvm.mem.parallel_loop_access");
|
|
|
|
|
// Update version loop with aggressive aliasing assumption.
|
|
|
|
|
setNoAliasToLoop(LVer.getVersionedLoop());
|
|
|
|
|
Changed = true;
|
|
|
|
|
}
|
|
|
|
|
// Delete allocated memory.
|
|
|
|
|
delete CurAST;
|
|
|
|
|
return Changed;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
char LoopVersioningLICM::ID = 0;
|
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopVersioningLICM, "loop-versioning-licm",
|
|
|
|
|
"Loop Versioning For LICM", false, false)
|
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
2016-06-10 03:44:46 +08:00
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
|
2016-07-09 04:55:26 +08:00
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
|
New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
2016-02-06 15:47:48 +08:00
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
|
|
|
INITIALIZE_PASS_END(LoopVersioningLICM, "loop-versioning-licm",
|
|
|
|
|
"Loop Versioning For LICM", false, false)
|
|
|
|
|
|
|
|
|
|
Pass *llvm::createLoopVersioningLICMPass() { return new LoopVersioningLICM(); }
|