llvm-project/llvm/lib/Target/Mips/MCTargetDesc/MipsTargetStreamer.cpp

1165 lines
41 KiB
C++
Raw Normal View History

//===-- MipsTargetStreamer.cpp - Mips Target Streamer Methods -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides Mips specific target streamer methods.
//
//===----------------------------------------------------------------------===//
#include "MipsTargetStreamer.h"
#include "InstPrinter/MipsInstPrinter.h"
#include "MipsELFStreamer.h"
[mips] Use MipsMCExpr instead of MCSymbolRefExpr for all relocations. Summary: This is much closer to the way MIPS relocation expressions work (%hi(foo + 2) rather than %hi(foo) + 2) and removes the need for the various bodges in MipsAsmParser::evaluateRelocExpr(). Removing those bodges ensures that the constant stored in MCValue is the full 32 or 64-bit (depending on ABI) offset from the symbol. This will be used to correct the %hi/%lo matching needed to sort the relocation table correctly. As part of this: * Gave MCExpr::print() the ability to omit parenthesis when emitting a symbol reference inside a MipsMCExpr operator like %hi(X). Without this we print things like %lo(($L1)). * %hi(%neg(%gprel(X))) is now three MipsMCExpr's instead of one. Most of the related special cases have been removed or moved to MipsMCExpr. We can remove the rest as we gain support for the less common relocations when they are not part of this specific combination. * Renamed MipsMCExpr::VariantKind and the enum prefix ('VK_') to avoid confusion with MCSymbolRefExpr::VariantKind and its prefix (also 'VK_'). * fixup_Mips_GOT_Local and fixup_Mips_GOT_Global were found to be identical and merged into fixup_Mips_GOT. * MO_GOT16 and MO_GOT turned out to be identical and have been merged into MO_GOT. * VK_Mips_GOT and VK_Mips_GOT16 turned out to be the same thing so they have been merged into MEK_GOT Reviewers: sdardis Subscribers: dsanders, sdardis, llvm-commits Differential Revision: http://reviews.llvm.org/D19716 llvm-svn: 268379
2016-05-03 21:35:44 +08:00
#include "MipsMCExpr.h"
#include "MipsMCTargetDesc.h"
#include "MipsTargetObjectFile.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
using namespace llvm;
namespace {
static cl::opt<bool> RoundSectionSizes(
"mips-round-section-sizes", cl::init(false),
cl::desc("Round section sizes up to the section alignment"), cl::Hidden);
} // end anonymous namespace
MipsTargetStreamer::MipsTargetStreamer(MCStreamer &S)
: MCTargetStreamer(S), ModuleDirectiveAllowed(true) {
GPRInfoSet = FPRInfoSet = FrameInfoSet = false;
}
void MipsTargetStreamer::emitDirectiveSetMicroMips() {}
void MipsTargetStreamer::emitDirectiveSetNoMicroMips() {}
void MipsTargetStreamer::emitDirectiveSetMips16() {}
void MipsTargetStreamer::emitDirectiveSetNoMips16() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetReorder() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetNoReorder() {}
void MipsTargetStreamer::emitDirectiveSetMacro() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetNoMacro() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMsa() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetNoMsa() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetAt() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetAtWithArg(unsigned RegNo) {
forbidModuleDirective();
}
void MipsTargetStreamer::emitDirectiveSetNoAt() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveEnd(StringRef Name) {}
void MipsTargetStreamer::emitDirectiveEnt(const MCSymbol &Symbol) {}
void MipsTargetStreamer::emitDirectiveAbiCalls() {}
void MipsTargetStreamer::emitDirectiveNaN2008() {}
void MipsTargetStreamer::emitDirectiveNaNLegacy() {}
void MipsTargetStreamer::emitDirectiveOptionPic0() {}
void MipsTargetStreamer::emitDirectiveOptionPic2() {}
void MipsTargetStreamer::emitDirectiveInsn() { forbidModuleDirective(); }
void MipsTargetStreamer::emitFrame(unsigned StackReg, unsigned StackSize,
unsigned ReturnReg) {}
void MipsTargetStreamer::emitMask(unsigned CPUBitmask, int CPUTopSavedRegOff) {}
void MipsTargetStreamer::emitFMask(unsigned FPUBitmask, int FPUTopSavedRegOff) {
}
void MipsTargetStreamer::emitDirectiveSetArch(StringRef Arch) {
forbidModuleDirective();
}
void MipsTargetStreamer::emitDirectiveSetMips0() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips1() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips2() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips3() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips4() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips5() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips32() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips32R2() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips32R3() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips32R5() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips32R6() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips64() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips64R2() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips64R3() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips64R5() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetMips64R6() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetPop() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetPush() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetSoftFloat() {
forbidModuleDirective();
}
void MipsTargetStreamer::emitDirectiveSetHardFloat() {
forbidModuleDirective();
}
void MipsTargetStreamer::emitDirectiveSetDsp() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetNoDsp() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveCpLoad(unsigned RegNo) {}
bool MipsTargetStreamer::emitDirectiveCpRestore(
int Offset, std::function<unsigned()> GetATReg, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
forbidModuleDirective();
return true;
}
void MipsTargetStreamer::emitDirectiveCpsetup(unsigned RegNo, int RegOrOffset,
const MCSymbol &Sym, bool IsReg) {
}
void MipsTargetStreamer::emitDirectiveCpreturn(unsigned SaveLocation,
bool SaveLocationIsRegister) {}
void MipsTargetStreamer::emitDirectiveModuleFP() {}
void MipsTargetStreamer::emitDirectiveModuleOddSPReg() {
if (!ABIFlagsSection.OddSPReg && !ABIFlagsSection.Is32BitABI)
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
report_fatal_error("+nooddspreg is only valid for O32");
}
void MipsTargetStreamer::emitDirectiveModuleSoftFloat() {}
void MipsTargetStreamer::emitDirectiveModuleHardFloat() {}
void MipsTargetStreamer::emitDirectiveSetFp(
MipsABIFlagsSection::FpABIKind Value) {
forbidModuleDirective();
}
void MipsTargetStreamer::emitDirectiveSetOddSPReg() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetNoOddSPReg() {
forbidModuleDirective();
}
void MipsTargetStreamer::emitR(unsigned Opcode, unsigned Reg0, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
MCInst TmpInst;
TmpInst.setOpcode(Opcode);
TmpInst.addOperand(MCOperand::createReg(Reg0));
TmpInst.setLoc(IDLoc);
getStreamer().EmitInstruction(TmpInst, *STI);
}
void MipsTargetStreamer::emitRX(unsigned Opcode, unsigned Reg0, MCOperand Op1,
SMLoc IDLoc, const MCSubtargetInfo *STI) {
MCInst TmpInst;
TmpInst.setOpcode(Opcode);
TmpInst.addOperand(MCOperand::createReg(Reg0));
TmpInst.addOperand(Op1);
TmpInst.setLoc(IDLoc);
getStreamer().EmitInstruction(TmpInst, *STI);
}
void MipsTargetStreamer::emitRI(unsigned Opcode, unsigned Reg0, int32_t Imm,
SMLoc IDLoc, const MCSubtargetInfo *STI) {
emitRX(Opcode, Reg0, MCOperand::createImm(Imm), IDLoc, STI);
}
void MipsTargetStreamer::emitRR(unsigned Opcode, unsigned Reg0, unsigned Reg1,
SMLoc IDLoc, const MCSubtargetInfo *STI) {
emitRX(Opcode, Reg0, MCOperand::createReg(Reg1), IDLoc, STI);
}
void MipsTargetStreamer::emitII(unsigned Opcode, int16_t Imm1, int16_t Imm2,
SMLoc IDLoc, const MCSubtargetInfo *STI) {
MCInst TmpInst;
TmpInst.setOpcode(Opcode);
TmpInst.addOperand(MCOperand::createImm(Imm1));
TmpInst.addOperand(MCOperand::createImm(Imm2));
TmpInst.setLoc(IDLoc);
getStreamer().EmitInstruction(TmpInst, *STI);
}
void MipsTargetStreamer::emitRRX(unsigned Opcode, unsigned Reg0, unsigned Reg1,
MCOperand Op2, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
MCInst TmpInst;
TmpInst.setOpcode(Opcode);
TmpInst.addOperand(MCOperand::createReg(Reg0));
TmpInst.addOperand(MCOperand::createReg(Reg1));
TmpInst.addOperand(Op2);
TmpInst.setLoc(IDLoc);
getStreamer().EmitInstruction(TmpInst, *STI);
}
void MipsTargetStreamer::emitRRR(unsigned Opcode, unsigned Reg0, unsigned Reg1,
unsigned Reg2, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
emitRRX(Opcode, Reg0, Reg1, MCOperand::createReg(Reg2), IDLoc, STI);
}
void MipsTargetStreamer::emitRRI(unsigned Opcode, unsigned Reg0, unsigned Reg1,
int16_t Imm, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
emitRRX(Opcode, Reg0, Reg1, MCOperand::createImm(Imm), IDLoc, STI);
}
void MipsTargetStreamer::emitAddu(unsigned DstReg, unsigned SrcReg,
unsigned TrgReg, bool Is64Bit,
const MCSubtargetInfo *STI) {
emitRRR(Is64Bit ? Mips::DADDu : Mips::ADDu, DstReg, SrcReg, TrgReg, SMLoc(),
STI);
}
void MipsTargetStreamer::emitDSLL(unsigned DstReg, unsigned SrcReg,
int16_t ShiftAmount, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
if (ShiftAmount >= 32) {
emitRRI(Mips::DSLL32, DstReg, SrcReg, ShiftAmount - 32, IDLoc, STI);
return;
}
emitRRI(Mips::DSLL, DstReg, SrcReg, ShiftAmount, IDLoc, STI);
}
void MipsTargetStreamer::emitEmptyDelaySlot(bool hasShortDelaySlot, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
if (hasShortDelaySlot)
emitRR(Mips::MOVE16_MM, Mips::ZERO, Mips::ZERO, IDLoc, STI);
else
emitRRI(Mips::SLL, Mips::ZERO, Mips::ZERO, 0, IDLoc, STI);
}
void MipsTargetStreamer::emitNop(SMLoc IDLoc, const MCSubtargetInfo *STI) {
emitRRI(Mips::SLL, Mips::ZERO, Mips::ZERO, 0, IDLoc, STI);
}
/// Emit the $gp restore operation for .cprestore.
void MipsTargetStreamer::emitGPRestore(int Offset, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
emitLoadWithImmOffset(Mips::LW, Mips::GP, Mips::SP, Offset, Mips::GP, IDLoc,
STI);
}
/// Emit a store instruction with an immediate offset.
void MipsTargetStreamer::emitStoreWithImmOffset(
unsigned Opcode, unsigned SrcReg, unsigned BaseReg, int64_t Offset,
std::function<unsigned()> GetATReg, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
if (isInt<16>(Offset)) {
emitRRI(Opcode, SrcReg, BaseReg, Offset, IDLoc, STI);
return;
}
// sw $8, offset($8) => lui $at, %hi(offset)
// add $at, $at, $8
// sw $8, %lo(offset)($at)
unsigned ATReg = GetATReg();
if (!ATReg)
return;
unsigned LoOffset = Offset & 0x0000ffff;
unsigned HiOffset = (Offset & 0xffff0000) >> 16;
// If msb of LoOffset is 1(negative number) we must increment HiOffset
// to account for the sign-extension of the low part.
if (LoOffset & 0x8000)
HiOffset++;
// Generate the base address in ATReg.
emitRI(Mips::LUi, ATReg, HiOffset, IDLoc, STI);
if (BaseReg != Mips::ZERO)
emitRRR(Mips::ADDu, ATReg, ATReg, BaseReg, IDLoc, STI);
// Emit the store with the adjusted base and offset.
emitRRI(Opcode, SrcReg, ATReg, LoOffset, IDLoc, STI);
}
/// Emit a store instruction with an symbol offset. Symbols are assumed to be
/// out of range for a simm16 will be expanded to appropriate instructions.
void MipsTargetStreamer::emitStoreWithSymOffset(
unsigned Opcode, unsigned SrcReg, unsigned BaseReg, MCOperand &HiOperand,
MCOperand &LoOperand, unsigned ATReg, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
// sw $8, sym => lui $at, %hi(sym)
// sw $8, %lo(sym)($at)
// Generate the base address in ATReg.
emitRX(Mips::LUi, ATReg, HiOperand, IDLoc, STI);
if (BaseReg != Mips::ZERO)
emitRRR(Mips::ADDu, ATReg, ATReg, BaseReg, IDLoc, STI);
// Emit the store with the adjusted base and offset.
emitRRX(Opcode, SrcReg, ATReg, LoOperand, IDLoc, STI);
}
/// Emit a load instruction with an immediate offset. DstReg and TmpReg are
/// permitted to be the same register iff DstReg is distinct from BaseReg and
/// DstReg is a GPR. It is the callers responsibility to identify such cases
/// and pass the appropriate register in TmpReg.
void MipsTargetStreamer::emitLoadWithImmOffset(unsigned Opcode, unsigned DstReg,
unsigned BaseReg, int64_t Offset,
unsigned TmpReg, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
if (isInt<16>(Offset)) {
emitRRI(Opcode, DstReg, BaseReg, Offset, IDLoc, STI);
return;
}
// 1) lw $8, offset($9) => lui $8, %hi(offset)
// add $8, $8, $9
// lw $8, %lo(offset)($9)
// 2) lw $8, offset($8) => lui $at, %hi(offset)
// add $at, $at, $8
// lw $8, %lo(offset)($at)
unsigned LoOffset = Offset & 0x0000ffff;
unsigned HiOffset = (Offset & 0xffff0000) >> 16;
// If msb of LoOffset is 1(negative number) we must increment HiOffset
// to account for the sign-extension of the low part.
if (LoOffset & 0x8000)
HiOffset++;
// Generate the base address in TmpReg.
emitRI(Mips::LUi, TmpReg, HiOffset, IDLoc, STI);
if (BaseReg != Mips::ZERO)
emitRRR(Mips::ADDu, TmpReg, TmpReg, BaseReg, IDLoc, STI);
// Emit the load with the adjusted base and offset.
emitRRI(Opcode, DstReg, TmpReg, LoOffset, IDLoc, STI);
}
/// Emit a load instruction with an symbol offset. Symbols are assumed to be
/// out of range for a simm16 will be expanded to appropriate instructions.
/// DstReg and TmpReg are permitted to be the same register iff DstReg is a
/// GPR. It is the callers responsibility to identify such cases and pass the
/// appropriate register in TmpReg.
void MipsTargetStreamer::emitLoadWithSymOffset(unsigned Opcode, unsigned DstReg,
unsigned BaseReg,
MCOperand &HiOperand,
MCOperand &LoOperand,
unsigned TmpReg, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
// 1) lw $8, sym => lui $8, %hi(sym)
// lw $8, %lo(sym)($8)
// 2) ldc1 $f0, sym => lui $at, %hi(sym)
// ldc1 $f0, %lo(sym)($at)
// Generate the base address in TmpReg.
emitRX(Mips::LUi, TmpReg, HiOperand, IDLoc, STI);
if (BaseReg != Mips::ZERO)
emitRRR(Mips::ADDu, TmpReg, TmpReg, BaseReg, IDLoc, STI);
// Emit the load with the adjusted base and offset.
emitRRX(Opcode, DstReg, TmpReg, LoOperand, IDLoc, STI);
}
MipsTargetAsmStreamer::MipsTargetAsmStreamer(MCStreamer &S,
formatted_raw_ostream &OS)
: MipsTargetStreamer(S), OS(OS) {}
void MipsTargetAsmStreamer::emitDirectiveSetMicroMips() {
OS << "\t.set\tmicromips\n";
forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoMicroMips() {
OS << "\t.set\tnomicromips\n";
forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips16() {
OS << "\t.set\tmips16\n";
forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoMips16() {
OS << "\t.set\tnomips16\n";
MipsTargetStreamer::emitDirectiveSetNoMips16();
}
void MipsTargetAsmStreamer::emitDirectiveSetReorder() {
OS << "\t.set\treorder\n";
MipsTargetStreamer::emitDirectiveSetReorder();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoReorder() {
OS << "\t.set\tnoreorder\n";
forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveSetMacro() {
OS << "\t.set\tmacro\n";
MipsTargetStreamer::emitDirectiveSetMacro();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoMacro() {
OS << "\t.set\tnomacro\n";
MipsTargetStreamer::emitDirectiveSetNoMacro();
}
void MipsTargetAsmStreamer::emitDirectiveSetMsa() {
OS << "\t.set\tmsa\n";
MipsTargetStreamer::emitDirectiveSetMsa();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoMsa() {
OS << "\t.set\tnomsa\n";
MipsTargetStreamer::emitDirectiveSetNoMsa();
}
void MipsTargetAsmStreamer::emitDirectiveSetAt() {
OS << "\t.set\tat\n";
MipsTargetStreamer::emitDirectiveSetAt();
}
void MipsTargetAsmStreamer::emitDirectiveSetAtWithArg(unsigned RegNo) {
OS << "\t.set\tat=$" << Twine(RegNo) << "\n";
MipsTargetStreamer::emitDirectiveSetAtWithArg(RegNo);
}
void MipsTargetAsmStreamer::emitDirectiveSetNoAt() {
OS << "\t.set\tnoat\n";
MipsTargetStreamer::emitDirectiveSetNoAt();
}
void MipsTargetAsmStreamer::emitDirectiveEnd(StringRef Name) {
OS << "\t.end\t" << Name << '\n';
}
void MipsTargetAsmStreamer::emitDirectiveEnt(const MCSymbol &Symbol) {
OS << "\t.ent\t" << Symbol.getName() << '\n';
}
void MipsTargetAsmStreamer::emitDirectiveAbiCalls() { OS << "\t.abicalls\n"; }
void MipsTargetAsmStreamer::emitDirectiveNaN2008() { OS << "\t.nan\t2008\n"; }
void MipsTargetAsmStreamer::emitDirectiveNaNLegacy() {
OS << "\t.nan\tlegacy\n";
}
void MipsTargetAsmStreamer::emitDirectiveOptionPic0() {
OS << "\t.option\tpic0\n";
}
void MipsTargetAsmStreamer::emitDirectiveOptionPic2() {
OS << "\t.option\tpic2\n";
}
void MipsTargetAsmStreamer::emitDirectiveInsn() {
MipsTargetStreamer::emitDirectiveInsn();
OS << "\t.insn\n";
}
void MipsTargetAsmStreamer::emitFrame(unsigned StackReg, unsigned StackSize,
unsigned ReturnReg) {
OS << "\t.frame\t$"
<< StringRef(MipsInstPrinter::getRegisterName(StackReg)).lower() << ","
<< StackSize << ",$"
<< StringRef(MipsInstPrinter::getRegisterName(ReturnReg)).lower() << '\n';
}
void MipsTargetAsmStreamer::emitDirectiveSetArch(StringRef Arch) {
OS << "\t.set arch=" << Arch << "\n";
MipsTargetStreamer::emitDirectiveSetArch(Arch);
}
void MipsTargetAsmStreamer::emitDirectiveSetMips0() {
OS << "\t.set\tmips0\n";
MipsTargetStreamer::emitDirectiveSetMips0();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips1() {
OS << "\t.set\tmips1\n";
MipsTargetStreamer::emitDirectiveSetMips1();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips2() {
OS << "\t.set\tmips2\n";
MipsTargetStreamer::emitDirectiveSetMips2();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips3() {
OS << "\t.set\tmips3\n";
MipsTargetStreamer::emitDirectiveSetMips3();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips4() {
OS << "\t.set\tmips4\n";
MipsTargetStreamer::emitDirectiveSetMips4();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips5() {
OS << "\t.set\tmips5\n";
MipsTargetStreamer::emitDirectiveSetMips5();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips32() {
OS << "\t.set\tmips32\n";
MipsTargetStreamer::emitDirectiveSetMips32();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips32R2() {
OS << "\t.set\tmips32r2\n";
MipsTargetStreamer::emitDirectiveSetMips32R2();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips32R3() {
OS << "\t.set\tmips32r3\n";
MipsTargetStreamer::emitDirectiveSetMips32R3();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips32R5() {
OS << "\t.set\tmips32r5\n";
MipsTargetStreamer::emitDirectiveSetMips32R5();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips32R6() {
OS << "\t.set\tmips32r6\n";
MipsTargetStreamer::emitDirectiveSetMips32R6();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips64() {
OS << "\t.set\tmips64\n";
MipsTargetStreamer::emitDirectiveSetMips64();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips64R2() {
OS << "\t.set\tmips64r2\n";
MipsTargetStreamer::emitDirectiveSetMips64R2();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips64R3() {
OS << "\t.set\tmips64r3\n";
MipsTargetStreamer::emitDirectiveSetMips64R3();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips64R5() {
OS << "\t.set\tmips64r5\n";
MipsTargetStreamer::emitDirectiveSetMips64R5();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips64R6() {
OS << "\t.set\tmips64r6\n";
MipsTargetStreamer::emitDirectiveSetMips64R6();
}
void MipsTargetAsmStreamer::emitDirectiveSetDsp() {
OS << "\t.set\tdsp\n";
MipsTargetStreamer::emitDirectiveSetDsp();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoDsp() {
OS << "\t.set\tnodsp\n";
MipsTargetStreamer::emitDirectiveSetNoDsp();
}
void MipsTargetAsmStreamer::emitDirectiveSetPop() {
OS << "\t.set\tpop\n";
MipsTargetStreamer::emitDirectiveSetPop();
}
void MipsTargetAsmStreamer::emitDirectiveSetPush() {
OS << "\t.set\tpush\n";
MipsTargetStreamer::emitDirectiveSetPush();
}
void MipsTargetAsmStreamer::emitDirectiveSetSoftFloat() {
OS << "\t.set\tsoftfloat\n";
MipsTargetStreamer::emitDirectiveSetSoftFloat();
}
void MipsTargetAsmStreamer::emitDirectiveSetHardFloat() {
OS << "\t.set\thardfloat\n";
MipsTargetStreamer::emitDirectiveSetHardFloat();
}
// Print a 32 bit hex number with all numbers.
static void printHex32(unsigned Value, raw_ostream &OS) {
OS << "0x";
for (int i = 7; i >= 0; i--)
OS.write_hex((Value & (0xF << (i * 4))) >> (i * 4));
}
void MipsTargetAsmStreamer::emitMask(unsigned CPUBitmask,
int CPUTopSavedRegOff) {
OS << "\t.mask \t";
printHex32(CPUBitmask, OS);
OS << ',' << CPUTopSavedRegOff << '\n';
}
void MipsTargetAsmStreamer::emitFMask(unsigned FPUBitmask,
int FPUTopSavedRegOff) {
OS << "\t.fmask\t";
printHex32(FPUBitmask, OS);
OS << "," << FPUTopSavedRegOff << '\n';
}
void MipsTargetAsmStreamer::emitDirectiveCpLoad(unsigned RegNo) {
OS << "\t.cpload\t$"
<< StringRef(MipsInstPrinter::getRegisterName(RegNo)).lower() << "\n";
forbidModuleDirective();
}
bool MipsTargetAsmStreamer::emitDirectiveCpRestore(
int Offset, std::function<unsigned()> GetATReg, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
MipsTargetStreamer::emitDirectiveCpRestore(Offset, GetATReg, IDLoc, STI);
OS << "\t.cprestore\t" << Offset << "\n";
return true;
}
void MipsTargetAsmStreamer::emitDirectiveCpsetup(unsigned RegNo,
int RegOrOffset,
const MCSymbol &Sym,
bool IsReg) {
OS << "\t.cpsetup\t$"
<< StringRef(MipsInstPrinter::getRegisterName(RegNo)).lower() << ", ";
if (IsReg)
OS << "$"
<< StringRef(MipsInstPrinter::getRegisterName(RegOrOffset)).lower();
else
OS << RegOrOffset;
OS << ", ";
OS << Sym.getName();
forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveCpreturn(unsigned SaveLocation,
bool SaveLocationIsRegister) {
OS << "\t.cpreturn";
forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveModuleFP() {
OS << "\t.module\tfp=";
OS << ABIFlagsSection.getFpABIString(ABIFlagsSection.getFpABI()) << "\n";
}
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
void MipsTargetAsmStreamer::emitDirectiveSetFp(
MipsABIFlagsSection::FpABIKind Value) {
MipsTargetStreamer::emitDirectiveSetFp(Value);
OS << "\t.set\tfp=";
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
OS << ABIFlagsSection.getFpABIString(Value) << "\n";
}
void MipsTargetAsmStreamer::emitDirectiveModuleOddSPReg() {
MipsTargetStreamer::emitDirectiveModuleOddSPReg();
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
OS << "\t.module\t" << (ABIFlagsSection.OddSPReg ? "" : "no") << "oddspreg\n";
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 llvm-svn: 212717
2014-07-10 21:38:23 +08:00
}
void MipsTargetAsmStreamer::emitDirectiveSetOddSPReg() {
MipsTargetStreamer::emitDirectiveSetOddSPReg();
OS << "\t.set\toddspreg\n";
}
void MipsTargetAsmStreamer::emitDirectiveSetNoOddSPReg() {
MipsTargetStreamer::emitDirectiveSetNoOddSPReg();
OS << "\t.set\tnooddspreg\n";
}
void MipsTargetAsmStreamer::emitDirectiveModuleSoftFloat() {
OS << "\t.module\tsoftfloat\n";
}
void MipsTargetAsmStreamer::emitDirectiveModuleHardFloat() {
OS << "\t.module\thardfloat\n";
}
// This part is for ELF object output.
MipsTargetELFStreamer::MipsTargetELFStreamer(MCStreamer &S,
const MCSubtargetInfo &STI)
: MipsTargetStreamer(S), MicroMipsEnabled(false), STI(STI) {
MCAssembler &MCA = getStreamer().getAssembler();
// It's possible that MCObjectFileInfo isn't fully initialized at this point
// due to an initialization order problem where LLVMTargetMachine creates the
// target streamer before TargetLoweringObjectFile calls
// InitializeMCObjectFileInfo. There doesn't seem to be a single place that
// covers all cases so this statement covers most cases and direct object
// emission must call setPic() once MCObjectFileInfo has been initialized. The
// cases we don't handle here are covered by MipsAsmPrinter.
Pic = MCA.getContext().getObjectFileInfo()->getRelocM() == Reloc::PIC_;
const FeatureBitset &Features = STI.getFeatureBits();
// Set the header flags that we can in the constructor.
// FIXME: This is a fairly terrible hack. We set the rest
// of these in the destructor. The problem here is two-fold:
//
// a: Some of the eflags can be set/reset by directives.
// b: There aren't any usage paths that initialize the ABI
// pointer until after we initialize either an assembler
// or the target machine.
// We can fix this by making the target streamer construct
// the ABI, but this is fraught with wide ranging dependency
// issues as well.
unsigned EFlags = MCA.getELFHeaderEFlags();
// Architecture
if (Features[Mips::FeatureMips64r6])
EFlags |= ELF::EF_MIPS_ARCH_64R6;
else if (Features[Mips::FeatureMips64r2] ||
Features[Mips::FeatureMips64r3] ||
Features[Mips::FeatureMips64r5])
EFlags |= ELF::EF_MIPS_ARCH_64R2;
else if (Features[Mips::FeatureMips64])
EFlags |= ELF::EF_MIPS_ARCH_64;
else if (Features[Mips::FeatureMips5])
EFlags |= ELF::EF_MIPS_ARCH_5;
else if (Features[Mips::FeatureMips4])
EFlags |= ELF::EF_MIPS_ARCH_4;
else if (Features[Mips::FeatureMips3])
EFlags |= ELF::EF_MIPS_ARCH_3;
else if (Features[Mips::FeatureMips32r6])
EFlags |= ELF::EF_MIPS_ARCH_32R6;
else if (Features[Mips::FeatureMips32r2] ||
Features[Mips::FeatureMips32r3] ||
Features[Mips::FeatureMips32r5])
EFlags |= ELF::EF_MIPS_ARCH_32R2;
else if (Features[Mips::FeatureMips32])
EFlags |= ELF::EF_MIPS_ARCH_32;
else if (Features[Mips::FeatureMips2])
EFlags |= ELF::EF_MIPS_ARCH_2;
else
EFlags |= ELF::EF_MIPS_ARCH_1;
// Machine
if (Features[Mips::FeatureCnMips])
EFlags |= ELF::EF_MIPS_MACH_OCTEON;
// Other options.
if (Features[Mips::FeatureNaN2008])
EFlags |= ELF::EF_MIPS_NAN2008;
// -mabicalls and -mplt are not implemented but we should act as if they were
// given.
EFlags |= ELF::EF_MIPS_CPIC;
MCA.setELFHeaderEFlags(EFlags);
}
void MipsTargetELFStreamer::emitLabel(MCSymbol *S) {
auto *Symbol = cast<MCSymbolELF>(S);
if (!isMicroMipsEnabled())
return;
getStreamer().getAssembler().registerSymbol(*Symbol);
uint8_t Type = Symbol->getType();
if (Type != ELF::STT_FUNC)
return;
Symbol->setOther(ELF::STO_MIPS_MICROMIPS);
}
void MipsTargetELFStreamer::finish() {
MCAssembler &MCA = getStreamer().getAssembler();
const MCObjectFileInfo &OFI = *MCA.getContext().getObjectFileInfo();
// .bss, .text and .data are always at least 16-byte aligned.
MCSection &TextSection = *OFI.getTextSection();
MCA.registerSection(TextSection);
MCSection &DataSection = *OFI.getDataSection();
MCA.registerSection(DataSection);
MCSection &BSSSection = *OFI.getBSSSection();
MCA.registerSection(BSSSection);
TextSection.setAlignment(std::max(16u, TextSection.getAlignment()));
DataSection.setAlignment(std::max(16u, DataSection.getAlignment()));
BSSSection.setAlignment(std::max(16u, BSSSection.getAlignment()));
if (RoundSectionSizes) {
// Make sections sizes a multiple of the alignment. This is useful for
// verifying the output of IAS against the output of other assemblers but
// it's not necessary to produce a correct object and increases section
// size.
MCStreamer &OS = getStreamer();
for (MCSection &S : MCA) {
MCSectionELF &Section = static_cast<MCSectionELF &>(S);
unsigned Alignment = Section.getAlignment();
if (Alignment) {
OS.SwitchSection(&Section);
if (Section.UseCodeAlign())
OS.EmitCodeAlignment(Alignment, Alignment);
else
OS.EmitValueToAlignment(Alignment, 0, 1, Alignment);
}
}
}
const FeatureBitset &Features = STI.getFeatureBits();
// Update e_header flags. See the FIXME and comment above in
// the constructor for a full rundown on this.
unsigned EFlags = MCA.getELFHeaderEFlags();
// ABI
// N64 does not require any ABI bits.
if (getABI().IsO32())
EFlags |= ELF::EF_MIPS_ABI_O32;
else if (getABI().IsN32())
EFlags |= ELF::EF_MIPS_ABI2;
if (Features[Mips::FeatureGP64Bit]) {
if (getABI().IsO32())
EFlags |= ELF::EF_MIPS_32BITMODE; /* Compatibility Mode */
} else if (Features[Mips::FeatureMips64r2] || Features[Mips::FeatureMips64])
EFlags |= ELF::EF_MIPS_32BITMODE;
// If we've set the cpic eflag and we're n64, go ahead and set the pic
// one as well.
if (EFlags & ELF::EF_MIPS_CPIC && getABI().IsN64())
EFlags |= ELF::EF_MIPS_PIC;
MCA.setELFHeaderEFlags(EFlags);
// Emit all the option records.
// At the moment we are only emitting .Mips.options (ODK_REGINFO) and
// .reginfo.
MipsELFStreamer &MEF = static_cast<MipsELFStreamer &>(Streamer);
MEF.EmitMipsOptionRecords();
emitMipsAbiFlags();
}
void MipsTargetELFStreamer::emitAssignment(MCSymbol *S, const MCExpr *Value) {
auto *Symbol = cast<MCSymbolELF>(S);
// If on rhs is micromips symbol then mark Symbol as microMips.
if (Value->getKind() != MCExpr::SymbolRef)
return;
const auto &RhsSym = cast<MCSymbolELF>(
static_cast<const MCSymbolRefExpr *>(Value)->getSymbol());
if (!(RhsSym.getOther() & ELF::STO_MIPS_MICROMIPS))
return;
Symbol->setOther(ELF::STO_MIPS_MICROMIPS);
}
MCELFStreamer &MipsTargetELFStreamer::getStreamer() {
return static_cast<MCELFStreamer &>(Streamer);
}
void MipsTargetELFStreamer::emitDirectiveSetMicroMips() {
MicroMipsEnabled = true;
MCAssembler &MCA = getStreamer().getAssembler();
unsigned Flags = MCA.getELFHeaderEFlags();
Flags |= ELF::EF_MIPS_MICROMIPS;
MCA.setELFHeaderEFlags(Flags);
forbidModuleDirective();
}
void MipsTargetELFStreamer::emitDirectiveSetNoMicroMips() {
MicroMipsEnabled = false;
forbidModuleDirective();
}
void MipsTargetELFStreamer::emitDirectiveSetMips16() {
MCAssembler &MCA = getStreamer().getAssembler();
unsigned Flags = MCA.getELFHeaderEFlags();
Flags |= ELF::EF_MIPS_ARCH_ASE_M16;
MCA.setELFHeaderEFlags(Flags);
forbidModuleDirective();
}
void MipsTargetELFStreamer::emitDirectiveSetNoReorder() {
MCAssembler &MCA = getStreamer().getAssembler();
unsigned Flags = MCA.getELFHeaderEFlags();
Flags |= ELF::EF_MIPS_NOREORDER;
MCA.setELFHeaderEFlags(Flags);
forbidModuleDirective();
}
void MipsTargetELFStreamer::emitDirectiveEnd(StringRef Name) {
MCAssembler &MCA = getStreamer().getAssembler();
MCContext &Context = MCA.getContext();
MCStreamer &OS = getStreamer();
MCSectionELF *Sec = Context.getELFSection(".pdr", ELF::SHT_PROGBITS, 0);
MCSymbol *Sym = Context.getOrCreateSymbol(Name);
const MCSymbolRefExpr *ExprRef =
MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, Context);
MCA.registerSection(*Sec);
Sec->setAlignment(4);
OS.PushSection();
OS.SwitchSection(Sec);
OS.EmitValueImpl(ExprRef, 4);
OS.EmitIntValue(GPRInfoSet ? GPRBitMask : 0, 4); // reg_mask
OS.EmitIntValue(GPRInfoSet ? GPROffset : 0, 4); // reg_offset
OS.EmitIntValue(FPRInfoSet ? FPRBitMask : 0, 4); // fpreg_mask
OS.EmitIntValue(FPRInfoSet ? FPROffset : 0, 4); // fpreg_offset
OS.EmitIntValue(FrameInfoSet ? FrameOffset : 0, 4); // frame_offset
OS.EmitIntValue(FrameInfoSet ? FrameReg : 0, 4); // frame_reg
OS.EmitIntValue(FrameInfoSet ? ReturnReg : 0, 4); // return_reg
// The .end directive marks the end of a procedure. Invalidate
// the information gathered up until this point.
GPRInfoSet = FPRInfoSet = FrameInfoSet = false;
OS.PopSection();
// .end also implicitly sets the size.
MCSymbol *CurPCSym = Context.createTempSymbol();
OS.EmitLabel(CurPCSym);
const MCExpr *Size = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(CurPCSym, MCSymbolRefExpr::VK_None, Context),
ExprRef, Context);
int64_t AbsSize;
if (!Size->evaluateAsAbsolute(AbsSize, MCA))
llvm_unreachable("Function size must be evaluatable as absolute");
Size = MCConstantExpr::create(AbsSize, Context);
static_cast<MCSymbolELF *>(Sym)->setSize(Size);
}
void MipsTargetELFStreamer::emitDirectiveEnt(const MCSymbol &Symbol) {
GPRInfoSet = FPRInfoSet = FrameInfoSet = false;
// .ent also acts like an implicit '.type symbol, STT_FUNC'
static_cast<const MCSymbolELF &>(Symbol).setType(ELF::STT_FUNC);
}
void MipsTargetELFStreamer::emitDirectiveAbiCalls() {
MCAssembler &MCA = getStreamer().getAssembler();
unsigned Flags = MCA.getELFHeaderEFlags();
Flags |= ELF::EF_MIPS_CPIC | ELF::EF_MIPS_PIC;
MCA.setELFHeaderEFlags(Flags);
}
void MipsTargetELFStreamer::emitDirectiveNaN2008() {
MCAssembler &MCA = getStreamer().getAssembler();
unsigned Flags = MCA.getELFHeaderEFlags();
Flags |= ELF::EF_MIPS_NAN2008;
MCA.setELFHeaderEFlags(Flags);
}
void MipsTargetELFStreamer::emitDirectiveNaNLegacy() {
MCAssembler &MCA = getStreamer().getAssembler();
unsigned Flags = MCA.getELFHeaderEFlags();
Flags &= ~ELF::EF_MIPS_NAN2008;
MCA.setELFHeaderEFlags(Flags);
}
void MipsTargetELFStreamer::emitDirectiveOptionPic0() {
MCAssembler &MCA = getStreamer().getAssembler();
unsigned Flags = MCA.getELFHeaderEFlags();
// This option overrides other PIC options like -KPIC.
Pic = false;
Flags &= ~ELF::EF_MIPS_PIC;
MCA.setELFHeaderEFlags(Flags);
}
void MipsTargetELFStreamer::emitDirectiveOptionPic2() {
MCAssembler &MCA = getStreamer().getAssembler();
unsigned Flags = MCA.getELFHeaderEFlags();
Pic = true;
// NOTE: We are following the GAS behaviour here which means the directive
// 'pic2' also sets the CPIC bit in the ELF header. This is different from
// what is stated in the SYSV ABI which consider the bits EF_MIPS_PIC and
// EF_MIPS_CPIC to be mutually exclusive.
Flags |= ELF::EF_MIPS_PIC | ELF::EF_MIPS_CPIC;
MCA.setELFHeaderEFlags(Flags);
}
void MipsTargetELFStreamer::emitDirectiveInsn() {
MipsTargetStreamer::emitDirectiveInsn();
MipsELFStreamer &MEF = static_cast<MipsELFStreamer &>(Streamer);
MEF.createPendingLabelRelocs();
}
void MipsTargetELFStreamer::emitFrame(unsigned StackReg, unsigned StackSize,
unsigned ReturnReg_) {
MCContext &Context = getStreamer().getAssembler().getContext();
const MCRegisterInfo *RegInfo = Context.getRegisterInfo();
FrameInfoSet = true;
FrameReg = RegInfo->getEncodingValue(StackReg);
FrameOffset = StackSize;
ReturnReg = RegInfo->getEncodingValue(ReturnReg_);
}
void MipsTargetELFStreamer::emitMask(unsigned CPUBitmask,
int CPUTopSavedRegOff) {
GPRInfoSet = true;
GPRBitMask = CPUBitmask;
GPROffset = CPUTopSavedRegOff;
}
void MipsTargetELFStreamer::emitFMask(unsigned FPUBitmask,
int FPUTopSavedRegOff) {
FPRInfoSet = true;
FPRBitMask = FPUBitmask;
FPROffset = FPUTopSavedRegOff;
}
void MipsTargetELFStreamer::emitDirectiveCpLoad(unsigned RegNo) {
// .cpload $reg
// This directive expands to:
// lui $gp, %hi(_gp_disp)
// addui $gp, $gp, %lo(_gp_disp)
// addu $gp, $gp, $reg
// when support for position independent code is enabled.
if (!Pic || (getABI().IsN32() || getABI().IsN64()))
return;
// There's a GNU extension controlled by -mno-shared that allows
// locally-binding symbols to be accessed using absolute addresses.
// This is currently not supported. When supported -mno-shared makes
// .cpload expand to:
// lui $gp, %hi(__gnu_local_gp)
// addiu $gp, $gp, %lo(__gnu_local_gp)
StringRef SymName("_gp_disp");
MCAssembler &MCA = getStreamer().getAssembler();
MCSymbol *GP_Disp = MCA.getContext().getOrCreateSymbol(SymName);
MCA.registerSymbol(*GP_Disp);
MCInst TmpInst;
TmpInst.setOpcode(Mips::LUi);
TmpInst.addOperand(MCOperand::createReg(Mips::GP));
[mips] Use MipsMCExpr instead of MCSymbolRefExpr for all relocations. Summary: This is much closer to the way MIPS relocation expressions work (%hi(foo + 2) rather than %hi(foo) + 2) and removes the need for the various bodges in MipsAsmParser::evaluateRelocExpr(). Removing those bodges ensures that the constant stored in MCValue is the full 32 or 64-bit (depending on ABI) offset from the symbol. This will be used to correct the %hi/%lo matching needed to sort the relocation table correctly. As part of this: * Gave MCExpr::print() the ability to omit parenthesis when emitting a symbol reference inside a MipsMCExpr operator like %hi(X). Without this we print things like %lo(($L1)). * %hi(%neg(%gprel(X))) is now three MipsMCExpr's instead of one. Most of the related special cases have been removed or moved to MipsMCExpr. We can remove the rest as we gain support for the less common relocations when they are not part of this specific combination. * Renamed MipsMCExpr::VariantKind and the enum prefix ('VK_') to avoid confusion with MCSymbolRefExpr::VariantKind and its prefix (also 'VK_'). * fixup_Mips_GOT_Local and fixup_Mips_GOT_Global were found to be identical and merged into fixup_Mips_GOT. * MO_GOT16 and MO_GOT turned out to be identical and have been merged into MO_GOT. * VK_Mips_GOT and VK_Mips_GOT16 turned out to be the same thing so they have been merged into MEK_GOT Reviewers: sdardis Subscribers: dsanders, sdardis, llvm-commits Differential Revision: http://reviews.llvm.org/D19716 llvm-svn: 268379
2016-05-03 21:35:44 +08:00
const MCExpr *HiSym = MipsMCExpr::create(
MipsMCExpr::MEK_HI,
MCSymbolRefExpr::create("_gp_disp", MCSymbolRefExpr::VK_None,
MCA.getContext()),
MCA.getContext());
TmpInst.addOperand(MCOperand::createExpr(HiSym));
getStreamer().EmitInstruction(TmpInst, STI);
TmpInst.clear();
TmpInst.setOpcode(Mips::ADDiu);
TmpInst.addOperand(MCOperand::createReg(Mips::GP));
TmpInst.addOperand(MCOperand::createReg(Mips::GP));
[mips] Use MipsMCExpr instead of MCSymbolRefExpr for all relocations. Summary: This is much closer to the way MIPS relocation expressions work (%hi(foo + 2) rather than %hi(foo) + 2) and removes the need for the various bodges in MipsAsmParser::evaluateRelocExpr(). Removing those bodges ensures that the constant stored in MCValue is the full 32 or 64-bit (depending on ABI) offset from the symbol. This will be used to correct the %hi/%lo matching needed to sort the relocation table correctly. As part of this: * Gave MCExpr::print() the ability to omit parenthesis when emitting a symbol reference inside a MipsMCExpr operator like %hi(X). Without this we print things like %lo(($L1)). * %hi(%neg(%gprel(X))) is now three MipsMCExpr's instead of one. Most of the related special cases have been removed or moved to MipsMCExpr. We can remove the rest as we gain support for the less common relocations when they are not part of this specific combination. * Renamed MipsMCExpr::VariantKind and the enum prefix ('VK_') to avoid confusion with MCSymbolRefExpr::VariantKind and its prefix (also 'VK_'). * fixup_Mips_GOT_Local and fixup_Mips_GOT_Global were found to be identical and merged into fixup_Mips_GOT. * MO_GOT16 and MO_GOT turned out to be identical and have been merged into MO_GOT. * VK_Mips_GOT and VK_Mips_GOT16 turned out to be the same thing so they have been merged into MEK_GOT Reviewers: sdardis Subscribers: dsanders, sdardis, llvm-commits Differential Revision: http://reviews.llvm.org/D19716 llvm-svn: 268379
2016-05-03 21:35:44 +08:00
const MCExpr *LoSym = MipsMCExpr::create(
MipsMCExpr::MEK_LO,
MCSymbolRefExpr::create("_gp_disp", MCSymbolRefExpr::VK_None,
MCA.getContext()),
MCA.getContext());
TmpInst.addOperand(MCOperand::createExpr(LoSym));
getStreamer().EmitInstruction(TmpInst, STI);
TmpInst.clear();
TmpInst.setOpcode(Mips::ADDu);
TmpInst.addOperand(MCOperand::createReg(Mips::GP));
TmpInst.addOperand(MCOperand::createReg(Mips::GP));
TmpInst.addOperand(MCOperand::createReg(RegNo));
getStreamer().EmitInstruction(TmpInst, STI);
forbidModuleDirective();
}
bool MipsTargetELFStreamer::emitDirectiveCpRestore(
int Offset, std::function<unsigned()> GetATReg, SMLoc IDLoc,
const MCSubtargetInfo *STI) {
MipsTargetStreamer::emitDirectiveCpRestore(Offset, GetATReg, IDLoc, STI);
// .cprestore offset
// When PIC mode is enabled and the O32 ABI is used, this directive expands
// to:
// sw $gp, offset($sp)
// and adds a corresponding LW after every JAL.
// Note that .cprestore is ignored if used with the N32 and N64 ABIs or if it
// is used in non-PIC mode.
if (!Pic || (getABI().IsN32() || getABI().IsN64()))
return true;
// Store the $gp on the stack.
emitStoreWithImmOffset(Mips::SW, Mips::GP, Mips::SP, Offset, GetATReg, IDLoc,
STI);
return true;
}
void MipsTargetELFStreamer::emitDirectiveCpsetup(unsigned RegNo,
int RegOrOffset,
const MCSymbol &Sym,
bool IsReg) {
// Only N32 and N64 emit anything for .cpsetup iff PIC is set.
if (!Pic || !(getABI().IsN32() || getABI().IsN64()))
return;
MCAssembler &MCA = getStreamer().getAssembler();
MCInst Inst;
// Either store the old $gp in a register or on the stack
if (IsReg) {
// move $save, $gpreg
Inst.setOpcode(Mips::OR64);
Inst.addOperand(MCOperand::createReg(RegOrOffset));
Inst.addOperand(MCOperand::createReg(Mips::GP));
Inst.addOperand(MCOperand::createReg(Mips::ZERO));
} else {
// sd $gpreg, offset($sp)
Inst.setOpcode(Mips::SD);
Inst.addOperand(MCOperand::createReg(Mips::GP));
Inst.addOperand(MCOperand::createReg(Mips::SP));
Inst.addOperand(MCOperand::createImm(RegOrOffset));
}
getStreamer().EmitInstruction(Inst, STI);
Inst.clear();
[mips] Use MipsMCExpr instead of MCSymbolRefExpr for all relocations. Summary: This is much closer to the way MIPS relocation expressions work (%hi(foo + 2) rather than %hi(foo) + 2) and removes the need for the various bodges in MipsAsmParser::evaluateRelocExpr(). Removing those bodges ensures that the constant stored in MCValue is the full 32 or 64-bit (depending on ABI) offset from the symbol. This will be used to correct the %hi/%lo matching needed to sort the relocation table correctly. As part of this: * Gave MCExpr::print() the ability to omit parenthesis when emitting a symbol reference inside a MipsMCExpr operator like %hi(X). Without this we print things like %lo(($L1)). * %hi(%neg(%gprel(X))) is now three MipsMCExpr's instead of one. Most of the related special cases have been removed or moved to MipsMCExpr. We can remove the rest as we gain support for the less common relocations when they are not part of this specific combination. * Renamed MipsMCExpr::VariantKind and the enum prefix ('VK_') to avoid confusion with MCSymbolRefExpr::VariantKind and its prefix (also 'VK_'). * fixup_Mips_GOT_Local and fixup_Mips_GOT_Global were found to be identical and merged into fixup_Mips_GOT. * MO_GOT16 and MO_GOT turned out to be identical and have been merged into MO_GOT. * VK_Mips_GOT and VK_Mips_GOT16 turned out to be the same thing so they have been merged into MEK_GOT Reviewers: sdardis Subscribers: dsanders, sdardis, llvm-commits Differential Revision: http://reviews.llvm.org/D19716 llvm-svn: 268379
2016-05-03 21:35:44 +08:00
const MipsMCExpr *HiExpr = MipsMCExpr::createGpOff(
MipsMCExpr::MEK_HI, MCSymbolRefExpr::create(&Sym, MCA.getContext()),
MCA.getContext());
const MipsMCExpr *LoExpr = MipsMCExpr::createGpOff(
MipsMCExpr::MEK_LO, MCSymbolRefExpr::create(&Sym, MCA.getContext()),
MCA.getContext());
// lui $gp, %hi(%neg(%gp_rel(funcSym)))
Inst.setOpcode(Mips::LUi);
Inst.addOperand(MCOperand::createReg(Mips::GP));
Inst.addOperand(MCOperand::createExpr(HiExpr));
getStreamer().EmitInstruction(Inst, STI);
Inst.clear();
// addiu $gp, $gp, %lo(%neg(%gp_rel(funcSym)))
Inst.setOpcode(Mips::ADDiu);
Inst.addOperand(MCOperand::createReg(Mips::GP));
Inst.addOperand(MCOperand::createReg(Mips::GP));
Inst.addOperand(MCOperand::createExpr(LoExpr));
getStreamer().EmitInstruction(Inst, STI);
Inst.clear();
// daddu $gp, $gp, $funcreg
Inst.setOpcode(Mips::DADDu);
Inst.addOperand(MCOperand::createReg(Mips::GP));
Inst.addOperand(MCOperand::createReg(Mips::GP));
Inst.addOperand(MCOperand::createReg(RegNo));
getStreamer().EmitInstruction(Inst, STI);
forbidModuleDirective();
}
void MipsTargetELFStreamer::emitDirectiveCpreturn(unsigned SaveLocation,
bool SaveLocationIsRegister) {
// Only N32 and N64 emit anything for .cpreturn iff PIC is set.
if (!Pic || !(getABI().IsN32() || getABI().IsN64()))
return;
MCInst Inst;
// Either restore the old $gp from a register or on the stack
if (SaveLocationIsRegister) {
Inst.setOpcode(Mips::OR);
Inst.addOperand(MCOperand::createReg(Mips::GP));
Inst.addOperand(MCOperand::createReg(SaveLocation));
Inst.addOperand(MCOperand::createReg(Mips::ZERO));
} else {
Inst.setOpcode(Mips::LD);
Inst.addOperand(MCOperand::createReg(Mips::GP));
Inst.addOperand(MCOperand::createReg(Mips::SP));
Inst.addOperand(MCOperand::createImm(SaveLocation));
}
getStreamer().EmitInstruction(Inst, STI);
forbidModuleDirective();
}
void MipsTargetELFStreamer::emitMipsAbiFlags() {
MCAssembler &MCA = getStreamer().getAssembler();
MCContext &Context = MCA.getContext();
MCStreamer &OS = getStreamer();
MCSectionELF *Sec = Context.getELFSection(
".MIPS.abiflags", ELF::SHT_MIPS_ABIFLAGS, ELF::SHF_ALLOC, 24, "");
MCA.registerSection(*Sec);
Sec->setAlignment(8);
OS.SwitchSection(Sec);
OS << ABIFlagsSection;
}