llvm-project/clang/Lex/PPExpressions.cpp

471 lines
16 KiB
C++
Raw Normal View History

//===--- PPExpressions.cpp - Preprocessor Expression Evaluation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Preprocessor::EvaluateDirectiveExpression method,
// which parses and evaluates integer constant expressions for #if directives.
//
//===----------------------------------------------------------------------===//
//
// FIXME: implement testing for asserts.
// FIXME: Track signed/unsigned correctly.
// FIXME: Track and report integer overflow correctly.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
using namespace llvm;
using namespace clang;
static bool EvaluateDirectiveSubExpr(APInt &LHS, unsigned MinPrec,
LexerToken &PeekTok, Preprocessor &PP);
/// DefinedTracker - This struct is used while parsing expressions to keep track
/// of whether !defined(X) has been seen.
///
/// With this simple scheme, we handle the basic forms:
/// !defined(X) and !defined X
/// but we also trivially handle (silly) stuff like:
/// !!!defined(X) and +!defined(X) and !+!+!defined(X) and !(defined(X)).
struct DefinedTracker {
/// Each time a Value is evaluated, it returns information about whether the
/// parsed value is of the form defined(X), !defined(X) or is something else.
enum TrackerState {
DefinedMacro, // defined(X)
NotDefinedMacro, // !defined(X)
Unknown // Something else.
} State;
/// TheMacro - When the state is DefinedMacro or NotDefinedMacro, this
/// indicates the macro that was checked.
IdentifierInfo *TheMacro;
};
/// EvaluateValue - Evaluate the token PeekTok (and any others needed) and
/// return the computed value in Result. Return true if there was an error
/// parsing. This function also returns information about the form of the
/// expression in DT. See above for information on what DT means.
static bool EvaluateValue(APInt &Result, LexerToken &PeekTok,
DefinedTracker &DT, Preprocessor &PP) {
Result = 0;
DT.State = DefinedTracker::Unknown;
// If this token's spelling is a pp-identifier, check to see if it is
// 'defined' or if it is a macro. Note that we check here because many
// keywords are pp-identifiers, so we can't check the kind.
if (IdentifierInfo *II = PeekTok.getIdentifierInfo()) {
// If this identifier isn't 'defined' and it wasn't macro expanded, it turns
// into a simple 0.
if (II->getPPKeywordID() != tok::pp_defined) {
Result = 0;
PP.LexNonComment(PeekTok);
return false;
}
// Handle "defined X" and "defined(X)".
// Get the next token, don't expand it.
PP.LexUnexpandedToken(PeekTok);
// Two options, it can either be a pp-identifier or a (.
bool InParens = false;
if (PeekTok.getKind() == tok::l_paren) {
// Found a paren, remember we saw it and skip it.
InParens = true;
PP.LexUnexpandedToken(PeekTok);
}
// If we don't have a pp-identifier now, this is an error.
if ((II = PeekTok.getIdentifierInfo()) == 0) {
PP.Diag(PeekTok, diag::err_pp_defined_requires_identifier);
return true;
}
// Otherwise, we got an identifier, is it defined to something?
Result = II->getMacroInfo() != 0;
// If there is a macro, mark it used.
if (Result != 0) {
II->getMacroInfo()->setIsUsed(true);
// If this is the first use of a target-specific macro, warn about it.
if (II->getMacroInfo()->isTargetSpecific()) {
// Don't warn on second use.
II->getMacroInfo()->setIsTargetSpecific(false);
PP.getTargetInfo().DiagnoseNonPortability(PeekTok.getLocation(),
diag::port_target_macro_use);
}
} else {
// Use of a target-specific macro for some other target? If so, warn.
if (II->isOtherTargetMacro()) {
II->setIsOtherTargetMacro(false); // Don't warn on second use.
PP.getTargetInfo().DiagnoseNonPortability(PeekTok.getLocation(),
diag::port_target_macro_use);
}
}
// Consume identifier.
PP.LexNonComment(PeekTok);
// If we are in parens, ensure we have a trailing ).
if (InParens) {
if (PeekTok.getKind() != tok::r_paren) {
PP.Diag(PeekTok, diag::err_pp_missing_rparen);
return true;
}
// Consume the ).
PP.LexNonComment(PeekTok);
}
// Success, remember that we saw defined(X).
DT.State = DefinedTracker::DefinedMacro;
DT.TheMacro = II;
return false;
}
switch (PeekTok.getKind()) {
default: // Non-value token.
PP.Diag(PeekTok, diag::err_pp_expr_bad_token);
return true;
case tok::eom:
case tok::r_paren:
// If there is no expression, report and exit.
PP.Diag(PeekTok, diag::err_pp_expected_value_in_expr);
return true;
case tok::numeric_constant: {
SmallString<512> IntegerBuffer;
IntegerBuffer.resize(PeekTok.getLength());
const char *ThisTokBegin = &IntegerBuffer[0];
unsigned ActualLength = PP.getSpelling(PeekTok, ThisTokBegin);
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
PeekTok.getLocation(), PP);
if (Literal.hadError)
return true; // a diagnostic was already reported.
if (Literal.isFloatingLiteral()) {
PP.Diag(PeekTok, diag::err_pp_illegal_floating_literal);
return true;
}
assert(Literal.isIntegerLiteral() && "Unknown ppnumber");
// FIXME: Handle overflow based on whether the value is signed. If signed
// and if the value is too large, emit a warning "integer constant is so
// large that it is unsigned" e.g. 12345678901234567890.
if (Literal.GetIntegerValue(Result))
PP.Diag(PeekTok, diag::warn_integer_too_large);
PP.LexNonComment(PeekTok);
return false;
}
case tok::l_paren:
PP.LexNonComment(PeekTok); // Eat the (.
// Parse the value and if there are any binary operators involved, parse
// them.
if (EvaluateValue(Result, PeekTok, DT, PP)) return true;
// If this is a silly value like (X), which doesn't need parens, check for
// !(defined X).
if (PeekTok.getKind() == tok::r_paren) {
// Just use DT unmodified as our result.
} else {
if (EvaluateDirectiveSubExpr(Result, 1, PeekTok, PP)) return true;
if (PeekTok.getKind() != tok::r_paren) {
PP.Diag(PeekTok, diag::err_pp_expected_rparen);
return true;
}
DT.State = DefinedTracker::Unknown;
}
PP.LexNonComment(PeekTok); // Eat the ).
return false;
case tok::plus:
// Unary plus doesn't modify the value.
PP.LexNonComment(PeekTok);
return EvaluateValue(Result, PeekTok, DT, PP);
case tok::minus:
PP.LexNonComment(PeekTok);
if (EvaluateValue(Result, PeekTok, DT, PP)) return true;
Result = -Result;
DT.State = DefinedTracker::Unknown;
return false;
case tok::tilde:
PP.LexNonComment(PeekTok);
if (EvaluateValue(Result, PeekTok, DT, PP)) return true;
Result = ~Result;
DT.State = DefinedTracker::Unknown;
return false;
case tok::exclaim:
PP.LexNonComment(PeekTok);
if (EvaluateValue(Result, PeekTok, DT, PP)) return true;
Result = !Result;
if (DT.State == DefinedTracker::DefinedMacro)
DT.State = DefinedTracker::NotDefinedMacro;
else if (DT.State == DefinedTracker::NotDefinedMacro)
DT.State = DefinedTracker::DefinedMacro;
return false;
// FIXME: Handle #assert
}
}
/// getPrecedence - Return the precedence of the specified binary operator
/// token. This returns:
/// ~0 - Invalid token.
/// 14 - *,/,%
/// 13 - -,+
/// 12 - <<,>>
/// 11 - >=, <=, >, <
/// 10 - ==, !=
/// 9 - &
/// 8 - ^
/// 7 - |
/// 6 - &&
/// 5 - ||
/// 4 - ?
/// 3 - :
/// 0 - eom, )
static unsigned getPrecedence(tok::TokenKind Kind) {
switch (Kind) {
default: return ~0U;
case tok::percent:
case tok::slash:
case tok::star: return 14;
case tok::plus:
case tok::minus: return 13;
case tok::lessless:
case tok::greatergreater: return 12;
case tok::lessequal:
case tok::less:
case tok::greaterequal:
case tok::greater: return 11;
case tok::exclaimequal:
case tok::equalequal: return 10;
case tok::amp: return 9;
case tok::caret: return 8;
case tok::pipe: return 7;
case tok::ampamp: return 6;
case tok::pipepipe: return 5;
case tok::question: return 4;
case tok::colon: return 3;
case tok::comma: return 2;
case tok::r_paren: return 0; // Lowest priority, end of expr.
case tok::eom: return 0; // Lowest priority, end of macro.
}
}
/// EvaluateDirectiveSubExpr - Evaluate the subexpression whose first token is
/// PeekTok, and whose precedence is PeekPrec.
static bool EvaluateDirectiveSubExpr(APInt &LHS, unsigned MinPrec,
LexerToken &PeekTok, Preprocessor &PP) {
unsigned PeekPrec = getPrecedence(PeekTok.getKind());
// If this token isn't valid, report the error.
if (PeekPrec == ~0U) {
PP.Diag(PeekTok, diag::err_pp_expr_bad_token);
return true;
}
while (1) {
// If this token has a lower precedence than we are allowed to parse, return
// it so that higher levels of the recursion can parse it.
if (PeekPrec < MinPrec)
return false;
tok::TokenKind Operator = PeekTok.getKind();
// Consume the operator, saving the operator token for error reporting.
LexerToken OpToken = PeekTok;
PP.LexNonComment(PeekTok);
APInt RHS(LHS.getBitWidth(), 0);
// Parse the RHS of the operator.
DefinedTracker DT;
if (EvaluateValue(RHS, PeekTok, DT, PP)) return true;
// Remember the precedence of this operator and get the precedence of the
// operator immediately to the right of the RHS.
unsigned ThisPrec = PeekPrec;
PeekPrec = getPrecedence(PeekTok.getKind());
// If this token isn't valid, report the error.
if (PeekPrec == ~0U) {
PP.Diag(PeekTok, diag::err_pp_expr_bad_token);
return true;
}
bool isRightAssoc = Operator == tok::question;
// Get the precedence of the operator to the right of the RHS. If it binds
// more tightly with RHS than we do, evaluate it completely first.
if (ThisPrec < PeekPrec ||
(ThisPrec == PeekPrec && isRightAssoc)) {
if (EvaluateDirectiveSubExpr(RHS, ThisPrec+1, PeekTok, PP))
return true;
PeekPrec = getPrecedence(PeekTok.getKind());
}
assert(PeekPrec <= ThisPrec && "Recursion didn't work!");
switch (Operator) {
default: assert(0 && "Unknown operator token!");
case tok::percent:
if (RHS == 0) {
PP.Diag(OpToken, diag::err_pp_remainder_by_zero);
return true;
}
// FIXME: sign.
LHS = LHS.urem(RHS);
break;
case tok::slash:
if (RHS == 0) {
PP.Diag(OpToken, diag::err_pp_division_by_zero);
return true;
}
// FIXME: sign.
LHS = LHS.udiv(RHS);
break;
case tok::star : LHS *= RHS; break;
case tok::lessless:
// FIXME: shift amt overflow?
// FIXME: Don't use getZExtValue.
LHS = LHS << RHS.getZExtValue();
break;
case tok::greatergreater:
// FIXME: signed vs unsigned
// FIXME: Don't use getZExtValue.
LHS = LHS.ashr(RHS.getZExtValue());
break;
case tok::plus : LHS += RHS; break;
case tok::minus: LHS -= RHS; break;
case tok::lessequal:
// FIXME: signed vs unsigned
LHS = LHS.sle(RHS);
break;
case tok::less:
// FIXME: signed vs unsigned
LHS = LHS.slt(RHS);
break;
case tok::greaterequal:
// FIXME: signed vs unsigned
LHS = LHS.sge(RHS);
break;
case tok::greater:
// FIXME: signed vs unsigned
LHS = LHS.sgt(RHS);
break;
case tok::exclaimequal: LHS = LHS != RHS; break;
case tok::equalequal: LHS = LHS == RHS; break;
case tok::amp: LHS &= RHS; break;
case tok::caret: LHS ^= RHS; break;
case tok::pipe: LHS |= RHS; break;
case tok::ampamp: LHS = LHS != 0 && RHS != 0; break;
case tok::pipepipe: LHS = LHS != 0 || RHS != 0; break;
case tok::comma:
PP.Diag(OpToken, diag::ext_pp_comma_expr);
LHS = RHS; // LHS = LHS,RHS -> RHS.
break;
case tok::question: {
// Parse the : part of the expression.
if (PeekTok.getKind() != tok::colon) {
PP.Diag(OpToken, diag::err_pp_question_without_colon);
return true;
}
// Consume the :.
PP.LexNonComment(PeekTok);
// Evaluate the value after the :.
APInt AfterColonVal(LHS.getBitWidth(), 0);
DefinedTracker DT;
if (EvaluateValue(AfterColonVal, PeekTok, DT, PP)) return true;
// Parse anything after the : RHS that has a higher precedence than ?.
if (EvaluateDirectiveSubExpr(AfterColonVal, ThisPrec+1,
PeekTok, PP))
return true;
// Now that we have the condition, the LHS and the RHS of the :, evaluate.
LHS = LHS != 0 ? RHS : AfterColonVal;
// Figure out the precedence of the token after the : part.
PeekPrec = getPrecedence(PeekTok.getKind());
break;
}
case tok::colon:
// Don't allow :'s to float around without being part of ?: exprs.
PP.Diag(OpToken, diag::err_pp_colon_without_question);
return true;
}
}
return false;
}
/// EvaluateDirectiveExpression - Evaluate an integer constant expression that
/// may occur after a #if or #elif directive. If the expression is equivalent
/// to "!defined(X)" return X in IfNDefMacro.
bool Preprocessor::
EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro) {
// Peek ahead one token.
LexerToken Tok;
Lex(Tok);
// C99 6.10.1p3 - All expressions are evaluated as intmax_t or uintmax_t.
unsigned BitWidth = getTargetInfo().getIntMaxTWidth(Tok.getLocation());
APInt ResVal(BitWidth, 0);
DefinedTracker DT;
if (EvaluateValue(ResVal, Tok, DT, *this)) {
// Parse error, skip the rest of the macro line.
if (Tok.getKind() != tok::eom)
DiscardUntilEndOfDirective();
return false;
}
// If we are at the end of the expression after just parsing a value, there
// must be no (unparenthesized) binary operators involved, so we can exit
// directly.
if (Tok.getKind() == tok::eom) {
// If the expression we parsed was of the form !defined(macro), return the
// macro in IfNDefMacro.
if (DT.State == DefinedTracker::NotDefinedMacro)
IfNDefMacro = DT.TheMacro;
return ResVal != 0;
}
// Otherwise, we must have a binary operator (e.g. "#if 1 < 2"), so parse the
// operator and the stuff after it.
if (EvaluateDirectiveSubExpr(ResVal, 1, Tok, *this)) {
// Parse error, skip the rest of the macro line.
if (Tok.getKind() != tok::eom)
DiscardUntilEndOfDirective();
return false;
}
// If we aren't at the tok::eom token, something bad happened, like an extra
// ')' token.
if (Tok.getKind() != tok::eom) {
Diag(Tok, diag::err_pp_expected_eol);
DiscardUntilEndOfDirective();
}
return ResVal != 0;
}