llvm-project/llvm/lib/CodeGen/RegAllocBasic.cpp

347 lines
12 KiB
C++
Raw Normal View History

//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RABasic function pass, which provides a minimal
// implementation of the basic register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "LiveIntervalUnion.h"
#include "RegAllocBase.h"
#include "RenderMachineFunction.h"
#include "Spiller.h"
#include "VirtRegRewriter.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <vector>
#include <queue>
using namespace llvm;
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
createBasicRegisterAllocator);
namespace {
/// RABasic provides a minimal implementation of the basic register allocation
/// algorithm. It prioritizes live virtual registers by spill weight and spills
/// whenever a register is unavailable. This is not practical in production but
/// provides a useful baseline both for measuring other allocators and comparing
/// the speed of the basic algorithm against other styles of allocators.
class RABasic : public MachineFunctionPass, public RegAllocBase
{
// context
MachineFunction *mf_;
const TargetMachine *tm_;
MachineRegisterInfo *mri_;
// analyses
LiveStacks *ls_;
RenderMachineFunction *rmf_;
// state
std::auto_ptr<Spiller> spiller_;
public:
RABasic();
/// Return the pass name.
virtual const char* getPassName() const {
return "Basic Register Allocator";
}
/// RABasic analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &au) const;
virtual void releaseMemory();
virtual unsigned selectOrSplit(LiveInterval &lvr,
SmallVectorImpl<LiveInterval*> &splitLVRs);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
static char ID;
};
char RABasic::ID = 0;
} // end anonymous namespace
// We should not need to publish the initializer as long as no other passes
// require RABasic.
#if 0 // disable INITIALIZE_PASS
INITIALIZE_PASS_BEGIN(RABasic, "basic-regalloc",
"Basic Register Allocator", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
#ifndef NDEBUG
INITIALIZE_PASS_DEPENDENCY(RenderMachineFunction)
#endif
INITIALIZE_PASS_END(RABasic, "basic-regalloc",
"Basic Register Allocator", false, false)
#endif // disable INITIALIZE_PASS
RABasic::RABasic(): MachineFunctionPass(ID) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
}
void RABasic::getAnalysisUsage(AnalysisUsage &au) const {
au.setPreservesCFG();
au.addRequired<LiveIntervals>();
au.addPreserved<SlotIndexes>();
if (StrongPHIElim)
au.addRequiredID(StrongPHIEliminationID);
au.addRequiredTransitive<RegisterCoalescer>();
au.addRequired<CalculateSpillWeights>();
au.addRequired<LiveStacks>();
au.addPreserved<LiveStacks>();
au.addRequired<MachineLoopInfo>();
au.addPreserved<MachineLoopInfo>();
au.addRequired<VirtRegMap>();
au.addPreserved<VirtRegMap>();
DEBUG(au.addRequired<RenderMachineFunction>());
MachineFunctionPass::getAnalysisUsage(au);
}
void RABasic::releaseMemory() {
spiller_.reset(0);
RegAllocBase::releaseMemory();
}
//===----------------------------------------------------------------------===//
// RegAllocBase Implementation
//===----------------------------------------------------------------------===//
// Instantiate a LiveIntervalUnion for each physical register.
void RegAllocBase::LIUArray::init(unsigned nRegs) {
array_.reset(new LiveIntervalUnion[nRegs]);
nRegs_ = nRegs;
for (unsigned pr = 0; pr < nRegs; ++pr) {
array_[pr].init(pr);
}
}
void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm,
LiveIntervals &lis) {
tri_ = &tri;
vrm_ = &vrm;
lis_ = &lis;
physReg2liu_.init(tri_->getNumRegs());
}
void RegAllocBase::LIUArray::clear() {
nRegs_ = 0;
array_.reset(0);
}
void RegAllocBase::releaseMemory() {
physReg2liu_.clear();
}
namespace llvm {
/// This class defines a queue of live virtual registers prioritized by spill
/// weight. The heaviest vreg is popped first.
///
/// Currently, this is trivial wrapper that gives us an opaque type in the
/// header, but we may later give it a virtual interface for register allocators
/// to override the priority queue comparator.
class LiveVirtRegQueue {
typedef std::priority_queue
<LiveInterval*, std::vector<LiveInterval*>, LessSpillWeightPriority> PQ;
PQ pq_;
public:
// Is the queue empty?
bool empty() { return pq_.empty(); }
// Get the highest priority lvr (top + pop)
LiveInterval *get() {
LiveInterval *lvr = pq_.top();
pq_.pop();
return lvr;
}
// Add this lvr to the queue
void push(LiveInterval *lvr) {
pq_.push(lvr);
}
};
} // end namespace llvm
// Visit all the live virtual registers. If they are already assigned to a
// physical register, unify them with the corresponding LiveIntervalUnion,
// otherwise push them on the priority queue for later assignment.
void RegAllocBase::seedLiveVirtRegs(LiveVirtRegQueue &lvrQ) {
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
liItr != liEnd; ++liItr) {
unsigned reg = liItr->first;
LiveInterval &li = *liItr->second;
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
physReg2liu_[reg].unify(li);
}
else {
lvrQ.push(&li);
}
}
}
// Top-level driver to manage the queue of unassigned LiveVirtRegs and call the
// selectOrSplit implementation.
void RegAllocBase::allocatePhysRegs() {
LiveVirtRegQueue lvrQ;
seedLiveVirtRegs(lvrQ);
while (!lvrQ.empty()) {
LiveInterval *lvr = lvrQ.get();
typedef SmallVector<LiveInterval*, 4> LVRVec;
LVRVec splitLVRs;
unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs);
if (availablePhysReg) {
assert(splitLVRs.empty() && "inconsistent splitting");
assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions");
vrm_->assignVirt2Phys(lvr->reg, availablePhysReg);
physReg2liu_[availablePhysReg].unify(*lvr);
}
else {
for (LVRVec::iterator lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end();
lvrI != lvrEnd; ++lvrI) {
assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) &&
"expect split value in virtual register");
lvrQ.push(*lvrI);
}
}
}
}
// Check if this live virtual reg interferes with a physical register. If not,
// then check for interference on each register that aliases with the physical
// register.
bool RegAllocBase::checkPhysRegInterference(LiveIntervalUnion::Query &query,
unsigned preg) {
if (query.checkInterference())
return true;
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) {
// We assume it's very unlikely for a register in the alias set to also be
// in the original register class. So we don't bother caching the
// interference.
LiveIntervalUnion::Query subQuery(query.lvr(), physReg2liu_[*asI] );
if (subQuery.checkInterference())
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// RABasic Implementation
//===----------------------------------------------------------------------===//
// Driver for the register assignment and splitting heuristics.
// Manages iteration over the LiveIntervalUnions.
//
// Minimal implementation of register assignment and splitting--spills whenever
// we run out of registers.
//
// selectOrSplit can only be called once per live virtual register. We then do a
// single interference test for each register the correct class until we find an
// available register. So, the number of interference tests in the worst case is
// |vregs| * |machineregs|. And since the number of interference tests is
// minimal, there is no value in caching them.
unsigned RABasic::selectOrSplit(LiveInterval &lvr,
SmallVectorImpl<LiveInterval*> &splitLVRs) {
// Check for an available reg in this class.
const TargetRegisterClass *trc = mri_->getRegClass(lvr.reg);
for (TargetRegisterClass::iterator trcI = trc->allocation_order_begin(*mf_),
trcEnd = trc->allocation_order_end(*mf_);
trcI != trcEnd; ++trcI) {
unsigned preg = *trcI;
LiveIntervalUnion::Query query(lvr, physReg2liu_[preg]);
if (!checkPhysRegInterference(query, preg)) {
DEBUG(dbgs() << "\tallocating: " << tri_->getName(preg) << lvr << '\n');
return preg;
}
}
DEBUG(dbgs() << "\tspilling: " << lvr << '\n');
SmallVector<LiveInterval*, 1> spillIs; // ignored
spiller_->spill(&lvr, splitLVRs, spillIs);
// FIXME: update LiveStacks
return 0;
}
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)mf.getFunction())->getName() << '\n');
mf_ = &mf;
tm_ = &mf.getTarget();
mri_ = &mf.getRegInfo();
DEBUG(rmf_ = &getAnalysis<RenderMachineFunction>());
RegAllocBase::init(*tm_->getRegisterInfo(), getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>());
spiller_.reset(createSpiller(*this, *mf_, *vrm_));
allocatePhysRegs();
// Diagnostic output before rewriting
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm_ << "\n");
// optional HTML output
DEBUG(rmf_->renderMachineFunction("After basic register allocation.", vrm_));
// Run rewriter
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
rewriter->runOnMachineFunction(*mf_, *vrm_, lis_);
// The pass output is in VirtRegMap. Release all the transient data.
releaseMemory();
return true;
}
FunctionPass* llvm::createBasicRegisterAllocator()
{
return new RABasic();
}