llvm-project/llvm/lib/TableGen/TGParser.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

281 lines
9.8 KiB
C
Raw Normal View History

//===- TGParser.h - Parser for TableGen Files -------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class represents the Parser for tablegen files.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TABLEGEN_TGPARSER_H
#define LLVM_LIB_TABLEGEN_TGPARSER_H
#include "TGLexer.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <map>
namespace llvm {
class SourceMgr;
class Twine;
struct ForeachLoop;
struct MultiClass;
struct SubClassReference;
struct SubMultiClassReference;
struct LetRecord {
StringInit *Name;
std::vector<unsigned> Bits;
Init *Value;
2009-06-21 11:39:35 +08:00
SMLoc Loc;
LetRecord(StringInit *N, ArrayRef<unsigned> B, Init *V, SMLoc L)
: Name(N), Bits(B), Value(V), Loc(L) {
}
};
/// RecordsEntry - Holds exactly one of a Record, ForeachLoop, or
/// AssertionInfo.
struct RecordsEntry {
std::unique_ptr<Record> Rec;
std::unique_ptr<ForeachLoop> Loop;
std::unique_ptr<Record::AssertionInfo> Assertion;
void dump() const;
RecordsEntry() {}
RecordsEntry(std::unique_ptr<Record> Rec) : Rec(std::move(Rec)) {}
RecordsEntry(std::unique_ptr<ForeachLoop> Loop)
: Loop(std::move(Loop)) {}
RecordsEntry(std::unique_ptr<Record::AssertionInfo> Assertion)
: Assertion(std::move(Assertion)) {}
};
/// ForeachLoop - Record the iteration state associated with a for loop.
/// This is used to instantiate items in the loop body.
///
/// IterVar is allowed to be null, in which case no iteration variable is
/// defined in the loop at all. (This happens when a ForeachLoop is
/// constructed by desugaring an if statement.)
struct ForeachLoop {
SMLoc Loc;
VarInit *IterVar;
Init *ListValue;
std::vector<RecordsEntry> Entries;
void dump() const;
ForeachLoop(SMLoc Loc, VarInit *IVar, Init *LValue)
: Loc(Loc), IterVar(IVar), ListValue(LValue) {}
};
struct DefsetRecord {
SMLoc Loc;
RecTy *EltTy = nullptr;
SmallVector<Init *, 16> Elements;
};
[TableGen] Introduce a `defvar` statement. Summary: This allows you to define a global or local variable to an arbitrary value, and refer to it in subsequent definitions. The main use I anticipate for this is if you have to compute some difficult function of the parameters of a multiclass, and then use it many times. For example: multiclass Foo<int i, string s> { defvar op = !cast<BaseClass>("whatnot_" # s # "_" # i); def myRecord { dag a = (op this, (op that, the other), (op x, y, z)); int b = op.subfield; } def myOtherRecord<"template params including", op>; } There are a couple of ways to do this already, but they're not really satisfactory. You can replace `defvar x = y` with a loop over a singleton list, `foreach x = [y] in { ... }` - but that's unintuitive to someone who hasn't seen that workaround idiom before, and requires an extra pair of braces that you often didn't really want. Or you can define a nested pair of multiclasses, with the inner one taking `x` as a template parameter, and the outer one instantiating it just once with the desired value of `x` computed from its other parameters - but that makes it awkward to sequentially compute each value based on the previous ones. I think `defvar` makes things considerably easier. You can also use `defvar` at the top level, where it inserts globals into the same map used by `defset`. That allows you to define global constants without having to make a dummy record for them to live in: defvar MAX_BUFSIZE = 512; // previously: // def Dummy { int MAX_BUFSIZE = 512; } // and then refer to Dummy.MAX_BUFSIZE everywhere Reviewers: nhaehnle, hfinkel Reviewed By: hfinkel Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D71407
2020-01-14 17:10:18 +08:00
class TGLocalVarScope {
// A scope to hold local variable definitions from defvar.
std::map<std::string, Init *, std::less<>> vars;
std::unique_ptr<TGLocalVarScope> parent;
public:
TGLocalVarScope() = default;
TGLocalVarScope(std::unique_ptr<TGLocalVarScope> parent)
: parent(std::move(parent)) {}
std::unique_ptr<TGLocalVarScope> extractParent() {
// This is expected to be called just before we are destructed, so
// it doesn't much matter what state we leave 'parent' in.
return std::move(parent);
}
Init *getVar(StringRef Name) const {
auto It = vars.find(Name);
if (It != vars.end())
return It->second;
if (parent)
return parent->getVar(Name);
return nullptr;
}
bool varAlreadyDefined(StringRef Name) const {
// When we check whether a variable is already defined, for the purpose of
// reporting an error on redefinition, we don't look up to the parent
// scope, because it's all right to shadow an outer definition with an
// inner one.
return vars.find(Name) != vars.end();
}
void addVar(StringRef Name, Init *I) {
bool Ins = vars.insert(std::make_pair(std::string(Name), I)).second;
[TableGen] Introduce a `defvar` statement. Summary: This allows you to define a global or local variable to an arbitrary value, and refer to it in subsequent definitions. The main use I anticipate for this is if you have to compute some difficult function of the parameters of a multiclass, and then use it many times. For example: multiclass Foo<int i, string s> { defvar op = !cast<BaseClass>("whatnot_" # s # "_" # i); def myRecord { dag a = (op this, (op that, the other), (op x, y, z)); int b = op.subfield; } def myOtherRecord<"template params including", op>; } There are a couple of ways to do this already, but they're not really satisfactory. You can replace `defvar x = y` with a loop over a singleton list, `foreach x = [y] in { ... }` - but that's unintuitive to someone who hasn't seen that workaround idiom before, and requires an extra pair of braces that you often didn't really want. Or you can define a nested pair of multiclasses, with the inner one taking `x` as a template parameter, and the outer one instantiating it just once with the desired value of `x` computed from its other parameters - but that makes it awkward to sequentially compute each value based on the previous ones. I think `defvar` makes things considerably easier. You can also use `defvar` at the top level, where it inserts globals into the same map used by `defset`. That allows you to define global constants without having to make a dummy record for them to live in: defvar MAX_BUFSIZE = 512; // previously: // def Dummy { int MAX_BUFSIZE = 512; } // and then refer to Dummy.MAX_BUFSIZE everywhere Reviewers: nhaehnle, hfinkel Reviewed By: hfinkel Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D71407
2020-01-14 17:10:18 +08:00
(void)Ins;
assert(Ins && "Local variable already exists");
}
};
struct MultiClass {
Record Rec; // Placeholder for template args and Name.
std::vector<RecordsEntry> Entries;
void dump() const;
MultiClass(StringRef Name, SMLoc Loc, RecordKeeper &Records) :
Rec(Name, Loc, Records) {}
};
class TGParser {
TGLexer Lex;
std::vector<SmallVector<LetRecord, 4>> LetStack;
std::map<std::string, std::unique_ptr<MultiClass>> MultiClasses;
/// Loops - Keep track of any foreach loops we are within.
///
std::vector<std::unique_ptr<ForeachLoop>> Loops;
SmallVector<DefsetRecord *, 2> Defsets;
/// CurMultiClass - If we are parsing a 'multiclass' definition, this is the
/// current value.
MultiClass *CurMultiClass;
[TableGen] Introduce a `defvar` statement. Summary: This allows you to define a global or local variable to an arbitrary value, and refer to it in subsequent definitions. The main use I anticipate for this is if you have to compute some difficult function of the parameters of a multiclass, and then use it many times. For example: multiclass Foo<int i, string s> { defvar op = !cast<BaseClass>("whatnot_" # s # "_" # i); def myRecord { dag a = (op this, (op that, the other), (op x, y, z)); int b = op.subfield; } def myOtherRecord<"template params including", op>; } There are a couple of ways to do this already, but they're not really satisfactory. You can replace `defvar x = y` with a loop over a singleton list, `foreach x = [y] in { ... }` - but that's unintuitive to someone who hasn't seen that workaround idiom before, and requires an extra pair of braces that you often didn't really want. Or you can define a nested pair of multiclasses, with the inner one taking `x` as a template parameter, and the outer one instantiating it just once with the desired value of `x` computed from its other parameters - but that makes it awkward to sequentially compute each value based on the previous ones. I think `defvar` makes things considerably easier. You can also use `defvar` at the top level, where it inserts globals into the same map used by `defset`. That allows you to define global constants without having to make a dummy record for them to live in: defvar MAX_BUFSIZE = 512; // previously: // def Dummy { int MAX_BUFSIZE = 512; } // and then refer to Dummy.MAX_BUFSIZE everywhere Reviewers: nhaehnle, hfinkel Reviewed By: hfinkel Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D71407
2020-01-14 17:10:18 +08:00
/// CurLocalScope - Innermost of the current nested scopes for 'defvar' local
/// variables.
std::unique_ptr<TGLocalVarScope> CurLocalScope;
// Record tracker
RecordKeeper &Records;
// A "named boolean" indicating how to parse identifiers. Usually
// identifiers map to some existing object but in special cases
// (e.g. parsing def names) no such object exists yet because we are
// in the middle of creating in. For those situations, allow the
// parser to ignore missing object errors.
enum IDParseMode {
ParseValueMode, // We are parsing a value we expect to look up.
ParseNameMode, // We are parsing a name of an object that does not yet
// exist.
};
public:
TGParser(SourceMgr &SM, ArrayRef<std::string> Macros,
RecordKeeper &records)
: Lex(SM, Macros), CurMultiClass(nullptr), Records(records) {}
/// ParseFile - Main entrypoint for parsing a tblgen file. These parser
/// routines return true on error, or false on success.
bool ParseFile();
bool Error(SMLoc L, const Twine &Msg) const {
PrintError(L, Msg);
return true;
}
bool TokError(const Twine &Msg) const {
return Error(Lex.getLoc(), Msg);
}
const TGLexer::DependenciesSetTy &getDependencies() const {
return Lex.getDependencies();
}
[TableGen] Introduce a `defvar` statement. Summary: This allows you to define a global or local variable to an arbitrary value, and refer to it in subsequent definitions. The main use I anticipate for this is if you have to compute some difficult function of the parameters of a multiclass, and then use it many times. For example: multiclass Foo<int i, string s> { defvar op = !cast<BaseClass>("whatnot_" # s # "_" # i); def myRecord { dag a = (op this, (op that, the other), (op x, y, z)); int b = op.subfield; } def myOtherRecord<"template params including", op>; } There are a couple of ways to do this already, but they're not really satisfactory. You can replace `defvar x = y` with a loop over a singleton list, `foreach x = [y] in { ... }` - but that's unintuitive to someone who hasn't seen that workaround idiom before, and requires an extra pair of braces that you often didn't really want. Or you can define a nested pair of multiclasses, with the inner one taking `x` as a template parameter, and the outer one instantiating it just once with the desired value of `x` computed from its other parameters - but that makes it awkward to sequentially compute each value based on the previous ones. I think `defvar` makes things considerably easier. You can also use `defvar` at the top level, where it inserts globals into the same map used by `defset`. That allows you to define global constants without having to make a dummy record for them to live in: defvar MAX_BUFSIZE = 512; // previously: // def Dummy { int MAX_BUFSIZE = 512; } // and then refer to Dummy.MAX_BUFSIZE everywhere Reviewers: nhaehnle, hfinkel Reviewed By: hfinkel Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D71407
2020-01-14 17:10:18 +08:00
TGLocalVarScope *PushLocalScope() {
CurLocalScope = std::make_unique<TGLocalVarScope>(std::move(CurLocalScope));
// Returns a pointer to the new scope, so that the caller can pass it back
// to PopLocalScope which will check by assertion that the pushes and pops
// match up properly.
return CurLocalScope.get();
}
void PopLocalScope(TGLocalVarScope *ExpectedStackTop) {
assert(ExpectedStackTop == CurLocalScope.get() &&
"Mismatched pushes and pops of local variable scopes");
CurLocalScope = CurLocalScope->extractParent();
}
private: // Semantic analysis methods.
2009-06-21 11:39:35 +08:00
bool AddValue(Record *TheRec, SMLoc Loc, const RecordVal &RV);
bool SetValue(Record *TheRec, SMLoc Loc, Init *ValName,
ArrayRef<unsigned> BitList, Init *V,
bool AllowSelfAssignment = false);
bool AddSubClass(Record *Rec, SubClassReference &SubClass);
bool AddSubClass(RecordsEntry &Entry, SubClassReference &SubClass);
bool AddSubMultiClass(MultiClass *CurMC,
SubMultiClassReference &SubMultiClass);
using SubstStack = SmallVector<std::pair<Init *, Init *>, 8>;
bool addEntry(RecordsEntry E);
bool resolve(const ForeachLoop &Loop, SubstStack &Stack, bool Final,
std::vector<RecordsEntry> *Dest, SMLoc *Loc = nullptr);
bool resolve(const std::vector<RecordsEntry> &Source, SubstStack &Substs,
bool Final, std::vector<RecordsEntry> *Dest,
SMLoc *Loc = nullptr);
bool addDefOne(std::unique_ptr<Record> Rec);
private: // Parser methods.
2020-04-26 12:05:19 +08:00
bool consume(tgtok::TokKind K);
2014-04-28 12:05:08 +08:00
bool ParseObjectList(MultiClass *MC = nullptr);
bool ParseObject(MultiClass *MC);
bool ParseClass();
bool ParseMultiClass();
bool ParseDefm(MultiClass *CurMultiClass);
bool ParseDef(MultiClass *CurMultiClass);
bool ParseDefset();
[TableGen] Introduce a `defvar` statement. Summary: This allows you to define a global or local variable to an arbitrary value, and refer to it in subsequent definitions. The main use I anticipate for this is if you have to compute some difficult function of the parameters of a multiclass, and then use it many times. For example: multiclass Foo<int i, string s> { defvar op = !cast<BaseClass>("whatnot_" # s # "_" # i); def myRecord { dag a = (op this, (op that, the other), (op x, y, z)); int b = op.subfield; } def myOtherRecord<"template params including", op>; } There are a couple of ways to do this already, but they're not really satisfactory. You can replace `defvar x = y` with a loop over a singleton list, `foreach x = [y] in { ... }` - but that's unintuitive to someone who hasn't seen that workaround idiom before, and requires an extra pair of braces that you often didn't really want. Or you can define a nested pair of multiclasses, with the inner one taking `x` as a template parameter, and the outer one instantiating it just once with the desired value of `x` computed from its other parameters - but that makes it awkward to sequentially compute each value based on the previous ones. I think `defvar` makes things considerably easier. You can also use `defvar` at the top level, where it inserts globals into the same map used by `defset`. That allows you to define global constants without having to make a dummy record for them to live in: defvar MAX_BUFSIZE = 512; // previously: // def Dummy { int MAX_BUFSIZE = 512; } // and then refer to Dummy.MAX_BUFSIZE everywhere Reviewers: nhaehnle, hfinkel Reviewed By: hfinkel Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D71407
2020-01-14 17:10:18 +08:00
bool ParseDefvar();
bool ParseForeach(MultiClass *CurMultiClass);
bool ParseIf(MultiClass *CurMultiClass);
bool ParseIfBody(MultiClass *CurMultiClass, StringRef Kind);
bool ParseAssert(MultiClass *CurMultiClass, Record *CurRec = nullptr);
bool ParseTopLevelLet(MultiClass *CurMultiClass);
void ParseLetList(SmallVectorImpl<LetRecord> &Result);
bool ParseObjectBody(Record *CurRec);
bool ParseBody(Record *CurRec);
bool ParseBodyItem(Record *CurRec);
bool ParseTemplateArgList(Record *CurRec);
Init *ParseDeclaration(Record *CurRec, bool ParsingTemplateArgs);
VarInit *ParseForeachDeclaration(Init *&ForeachListValue);
SubClassReference ParseSubClassReference(Record *CurRec, bool isDefm);
SubMultiClassReference ParseSubMultiClassReference(MultiClass *CurMC);
Init *ParseIDValue(Record *CurRec, StringInit *Name, SMLoc NameLoc,
IDParseMode Mode = ParseValueMode);
2014-04-28 12:05:08 +08:00
Init *ParseSimpleValue(Record *CurRec, RecTy *ItemType = nullptr,
IDParseMode Mode = ParseValueMode);
2014-04-28 12:05:08 +08:00
Init *ParseValue(Record *CurRec, RecTy *ItemType = nullptr,
IDParseMode Mode = ParseValueMode);
void ParseValueList(SmallVectorImpl<llvm::Init*> &Result,
Record *CurRec, RecTy *ItemType = nullptr);
bool ParseTemplateArgValueList(SmallVectorImpl<llvm::Init *> &Result,
Record *CurRec, Record *ArgsRec);
void ParseDagArgList(
SmallVectorImpl<std::pair<llvm::Init*, StringInit*>> &Result,
Record *CurRec);
bool ParseOptionalRangeList(SmallVectorImpl<unsigned> &Ranges);
bool ParseOptionalBitList(SmallVectorImpl<unsigned> &Ranges);
void ParseRangeList(SmallVectorImpl<unsigned> &Result);
bool ParseRangePiece(SmallVectorImpl<unsigned> &Ranges,
TypedInit *FirstItem = nullptr);
RecTy *ParseType();
Init *ParseOperation(Record *CurRec, RecTy *ItemType);
Init *ParseOperationSubstr(Record *CurRec, RecTy *ItemType);
Init *ParseOperationFind(Record *CurRec, RecTy *ItemType);
Init *ParseOperationForEachFilter(Record *CurRec, RecTy *ItemType);
Init *ParseOperationCond(Record *CurRec, RecTy *ItemType);
RecTy *ParseOperatorType();
Init *ParseObjectName(MultiClass *CurMultiClass);
Record *ParseClassID();
MultiClass *ParseMultiClassID();
bool ApplyLetStack(Record *CurRec);
bool ApplyLetStack(RecordsEntry &Entry);
bool CheckTemplateArgValues(SmallVectorImpl<llvm::Init *> &Values,
SMLoc Loc, Record *ArgsRec);
};
} // end namespace llvm
#endif